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Abstract. In this paper, we address the problem of efficiently trackingthe pose
of a camera in a 3D environment. We present an algorithm whichis able to work
with mono and stereo cameras and an attitude sensor. The camera position is
estimated from corresponding features, and potential outliers are rejected by us-
ing a variant of the PROSAC algorithm. To be able to track the camera pose
over multiple frames, our system estimates both the camera pose and a map of
th environment. The environment is described as a set of spatially located image
features. This enables the system to recognize when it movesin regions which
have previously been visited, thus it allows us find loop closures problem. Our
technique constructs a graph of spatial constraints between camera poses and it
applies an efficient gradient descent-based optimization approach to revise the
past estimates to obtain a consistent trajectory. The approach has been evaluated
in comparably large outdoor and indoor environments. We furthermore present
experiments in which our technique is applied to build a map with a blimp.1

1 Introduction

Estimating the position of a moving camera in an unknown environment has been an
active field of research in both the computer vision and the mobile robot community.
In the robotic community, this problem is referred to as simultaneous localization and
mapping (SLAM). Here, the word “simultaneous” highlights the nature of the problem.
On the one hand one has to estimate the position of the camera based on the map of the
environment. On the other hand one has to estimate the spatial location of features in
the environment perceived from images acquired at different locations. The estimates of
both, map and camera pose, are therefore correlated and needto be jointly calculated.

In the last decades, the simultaneous localization and mapping (SLAM) problem
has been an active field of research and effective solutions have been proposed [12, 5,
11, 13]. However, most of these solutions rely on bulky, expensive, and accurate sen-
sors such as SICK laser range finders. Cameras are an attractive alternative to laser
range finders. Due to their limited weight and low power consumption, they are already
incorporated into a wide class of devices, like mobile phones. Existing approaches that

1 This work has partly been supported by the EC under contract number FP6-IST-34120-muFly,
action line: 2.5.2.: micro/nano based subsystems.



Fig. 1. Top Left: the sensors used for testing our approach. We assembled two cheap USB web-
cams as a stereo pair and combined it with a XSens MTi inertialmeasurement unit. Bottom Left:
a typical stereo image used for constructing the map. Note the significant motion blur affecting
the image. Right: the procedure for acquiring the data. We mounted the sensors with the cameras
looking downwards on a stick and we then walked around the campus.

address the vision-based SLAM problem mainly focus on scenarios in which a robot
repeatedly observes a set of features [4, 10]. They have beenshown to learn accurate
feature maps of small-scale environments.

In this paper, we present a system that allows us to acquire elevation maps of large
environments using two low quality web-cams and a low cost inertial measurement
unit (IMU). Especially the cameras provide comparably low quality images which are
affected by significant motion blur. Figure 1 illustrates this sensor setup. Our approach
integrates the data coming from the IMU and the cameras to obtain an estimate of the
camera motion of the 3D position of the features extracted from the image data. We
address the SLAM problem by constructing a graph of relations between poses. Here,
each node in the graph represents a camera pose. An edge between two nodes is ob-
tained from the sensor measurements and encodes the spatialconstraints between two
different camera poses. Our system combines SURF features [2] with a PROSAC-based
technique [3] to identify the correct correspondences between images. When reenter-
ing in a known region after having moved for a long time in an unknown part of the
environment, the drift in the estimate of camera pose becomes relevant. In this case,
the system must be able to recognize such a situation and to localize itself with respect
to the previous location. This problem is known as loop closing. Our systems detects
loops by matching features extracted from the images recorded from the different lo-
cations. Once a loop is found the estimated trajectory showsan inconsistency due to
the re-localization procedure which results in a “jump” in the tracked camera poses.
Depending on the application of our system, we may choose to re-compute a consistent
trajectory by processing the whole graph of camera poses by an optimization algorithm
or to leave the graph unchanged.

The contribution of this paper is an approach that enables usto reliably estimate
both the trajectory of the camera and the map of the environment using a comparably
poor sensor setup.



2 Related Work

The effectiveness of vision-based approaches strongly depends on the feature extraction
algorithms. To this end, SIFT features [9] represent a robust and popular option but they
require significant computational resources. Compared to SIFT, SURF features [2] are
significantly faster to compute while providing comparablystable feature descriptors.
Therefore, we apply this technique in our work.

Jensfelt et al. [7] proposed an effective way of meeting the computational con-
straints imposed by online processing by combining a SIFT feature extractor and an in-
terest points tracker. The interest points are obtained by using an Harris corner extractor.
While the SIFT feature extraction can be performed at low frequency, the movement of
the robot is constantly estimated by tracking the interest points at high frequency. An-
dreassonet al. [1] presented a technique that is based on a local similaritymeasure for
images. They store reference images at different locationsand use these references as a
map. In this way, their approach is reported to scale well with the size of the environ-
ment.

Davisonet al. [4] proposed a single camera SLAM algorithm. The system com-
putes the map by means of a Kalman filter. A particle filter is applied to initialize the
3D landmarks. The particles estimate the depth informationof the landmarks. The ap-
proach does not depend on an initial odometry estimate and iseffective on small scale
environments as well as in situations in which the robot repeatedly observes the same
scene. However, it is able to track only up to a hundred of landmarks. Montielet al. [10]
extended this framework by proposing an inverse depth parameterization of the land-
marks. Since this parameterization can be better approximated by a Gaussian, the use
of the particle filter in the initial stage can be avoided.

Other approaches use a combination of inertial sensors and cameras. For example,
Eusticeet. al [5] rely on a combination of highly accurate gyroscopes, magnetometers,
and pressure sensors to obtain a good estimate of orientation and altitude of an under-
water vehicle. Based on these estimates, they construct an accurate global map using an
information filter based on high resolution stereo images.

The work which is closest to our approach is a technique proposed by Junget al. [8].
They use a high resolution stereo camera for building elevation maps with a blimp.
The map consists of 3D landmarks extracted from interest points in the stereo image
obtained by a Harris corner detector and the map is estimatedusing a Kalman filter.
Due to the wide field of view and the high quality of the images the nonlinearities in the
process were adequately solved by the Kalman filter. In contrast to this, our approach
is able to deal with low resolution and low quality images. Itis particularly suitable
for mapping indoor environments and for being used on small size flying vehicles. We
furthermore apply a more efficient error minimization approach [6].

3 Maximum Likelihood Elevation Map Estimation

The SLAM problem can be formulated as a graph: the nodes of thegraph represent
the poses of the robot along its trajectory and an edge between two nodes encodes the
pairwise observations. Here, each nodexi of the graph represents a 6D camera pose.
An edge between two nodesi and j is represented by the tuple

〈

δ ji,Ω ji
〉

. δ ji andΩ ji



are respectively the mean and the information matrix of a measurement made from the
nodei about the location of the nodej expressed in the reference frame of the nodei.

In our system, the information between two poses depends on the correspondence of
the images acquired between the poses and on the IMU measurements. Once the graph
is constructed, one has to compute theconfiguration of the nodes which best explains
the observations. This results in deforming the robot trajectory based on the constraints
to obtain a map.

Such a graph-based maximum likelihood SLAM approach requires to solve the fol-
lowing sub-problems:

– The construction of the graph based on the sensor input.
– The optimization of the graph so that the likelihood of the observations is maxi-

mized.

The first problem is addressed in this and the two subsequent sections. For a solution
to the second problem we refer the reader to the approach of Grisetti et al. [6]. The
techique proposed in this paper relies on visual features extracted from the images ob-
tained from two down-looking cameras. We use SURF features [2] instead of SIFT
features [9] since they are significantly faster to compute while providing the same ro-
bustness. A SURF feature is rotation and scale invariant andis described by a descriptor
vector and the position, orientation, and scale in the image. In order to build consistent
maps, we need to determine the camera position(x y z φ θ ψ)T given the features in the
current image, a subset of spatially close features in the map, and the measurements
obtained by the IMU.

The IMU provides the orientation of the system in terms of theEuler angles roll (φ),
pitch (θ), and yaw (ψ). Due to the low quality IMU in combination with the presence
of magnetic disturbances in indoor environments as well as on real robots, the heading
information is highly affected by noise. In our experiments, we found that the roll and
the pitch observations can directly be integrated into the estimate whereas the yaw in-
formation was too noisy to provide useful information. Thisreduces the dimensionality
of each pose that needs to be estimated fromR

6 to R
4.

Whenever a new image is acquired, a nodexi+1 that models the new camera pose
is added to the graph. The main challenge is to add the correctedges betweenxi+1

and other nodesx j, j ≤ i of the graph. To do so, one has to solve the so-called data
association problem. This means one has to determine which feature in the current
image corresponds to which feature in the map. LetS = {s1, . . . ,sn} refer to a local map
of features that will be matched against the featuresF = { f1, . . . , fm} extracted from the
current image. The result of such a matching is a transformation T which describes the
spatial relations between the two sets of features. In the remainder of this section, we
discuss how to compute the camera pose given the two setsS andF while the question
of how to determine the setS is discussed in Section 5.

4 The Transformation Between Camera Poses

In this section, we describe how to compute the transformation of the camera based on
the set of observed featuresF and the set of map featuresS.



Given the camera parameters, such a transformation can be determined by using two
corresponding features in the two sets. This holds only since the attitude of the cam-
era is known. In order to reduce the effects of outliers, we select the correspondences
by using a consensus algorithm similar to PROSAC [3]. The main idea of PROSAC
is to construct a prior for sampling the correspondences based on the distance of the
descriptors. In this way, a smaller number of trials is required to find good candidate
transformations than with the uninformed version of the RANSAC algorithm. We first
determine the possible correspondences based on the feature descriptors. Subsequently,
we select from this set the correspondences to compute the candidate transformations.
We assign a score based on a fitness function to each candidatetransformation and select
the transformation with the highest score. The next subsections explain our procedure
in detail.

4.1 Potential Correspondences

For each featurefi in the camera image and each features j in the map, we compute the
Euclidian distancedF( fi,s j) between their descriptor vectors. The distance is used to
compute the set of potential correspondencesC = {ci j}. We consider only those feature
pairs whose distance is below a given thresholdD as

C = {ci j =
〈

fi,s j
〉

| dF( fi,s j) < D∧ fi ∈ F ∧ s j ∈ S}. (1)

For simplicity of notation, we will refer to the elements ofC asc, neglecting the
indicesi and j. The features in a correspondence can be retrieved by using the selector
functions f(c) and s(c) so that

c =
〈

fi,s j
〉

↔ fi = f(c)∧ s j = s(c). (2)

A camera transformation is determined by two correspondencesca andcb. Accord-
ingly, the number of possible transformations is proportional to |C|2. We can limit the
computational load of the approach by sorting the correspondences based on the dis-
tance of their feature descriptors and by considering only the bestN correspondences
(in our current systemN = 250). LetC′ be this reduced set. A candidate transformation
Tab is computed for each pair of correspondences〈ca,cb〉 ∈C′×C′.

We compute the transformationTab based on〈ca,cb〉 as follows. Assuming the at-
titude and the internal parameters of the camera to be known,it is possible to project
the segment connecting the two features on a plane parallel to the ground. The same
is done with the two features in the map. The offset between the two camera poses
along thez axis is determined from the length of the segment using the pinhole camera
model. Subsequently, the yaw between the images is computedas the angle between
the two projections. Finally,x andy can be directly calculated by matching a pair of
corresponding points in the translated image after applying the yaw correction.

4.2 Score

The previous step computes a set of candidate transformations{Tab}. To select the best
one, we need to rank them according to a quality measure(score). In the following we
explain how to compute this measure for a given transformation.



Let Ta,b be a transformation for which we want to compute the score. Wefirst com-
pute the set̃Cab = C−{ca,cb} which contains all correspondences which have not been
used for computing the transformation. Subsequently, for eachck ∈ C̃ab, we project the
features in the map f(ck) in the image, according toTab. The score v(ck) of the corre-
spondenceck is the following:

v(ck) = w

(

1−
dI(f(ck),s(ck))

dI
max

)

+(1−w)

(

1−
dF(f(ck),s(ck))

dF
max

)

. (3)

Here,w is a weighting factor,dI(f(ck),s(ck)) is the distance between the features pro-
jected into the image space, dI

max is the maximum value to accept as a match, and
dF(f(ck),s(ck)) is the distance between the feature descriptors. The overall score of the
transformationTab is the sum of the individual scores of the correspondences inC̃ab. We
compute the score for each transformation in the set, and we select the transformation
having the highest score.

5 Extracting Constraints

The procedure described in the previous sections tells us how to compute the transfor-
mation of the camera given two subsets of features. So far, weleft open how the subsets
of map featuresS are selected. In this section, we explain how to choose this subset to
adequately keep track of the potential topologies of the graph of poses. The selection
of the subset of features in combination with the approach described in the previous
section, defines the constraints represented by the edges inthe graph.

While incrementally constructing a graph, one can distinguish three types of con-
straints:visual odometry constraints, localization constraints, and loop closing con-
straints. Visual odometry constraints are computed by considering the potential match
between the features in the current image, and a limited subset of frames acquired from
camera poses which are temporally close to the current one. Localization constraints
occur when the camera is moving through an already visited region. In this case, the
features in the current map are selected in a region around the pose estimate obtained
from visual odometry. Finally, loop closing constraints model a spatial relation between
the current frame and a region in the map which has been seen long time before. In our
approach, we seek to find these different constraints in eachstep.

Visual Odometry Each time a new image is acquired, we augment the graph with a
new pose that represents the location of the most recent camera observation. This node
is initialized according to the translation resulting fromto the visual odometry.

The visual odometry estimate is obtained by first constructing the setSo based on
the features extracted from the lastM frames and then extracting the best transformation
according to Section 4. Letxk be a node in the graph and letS(xk) be the set of features
which have been observed by that node. Ifxi+1 is the current pose, we compute the set
So for determining the visual odometry asSo =

Si
j=i−M S(x j).

An advantage of this procedure is that it in practice always finds a good incremental
motion estimate. However, due to the error accumulation theestimate is affected by a
drift which in general grows over time.



Localization When the camera moves through known terrain, it is possible to deter-
mine the constraints by matching the current features with the ones in the map. This can
be done by localizing the robot in a region around the estimate provided by the visual
odometry. This set of features is computed by considering all nodes in the graph that are
close to the current node. Note that we ignore the features that are already used to com-
pute the visual odometry. This procedure is effective for re-localizing the camera in a
small region around the most recent position. The computational cost depends roughly
on the area spanned by the search.

Loop Closing As a third step, we seek for loop closures. In case the camera re-enters
known terrain after having moved for a long time in an unknownregion, the accu-
mulated uncertainty can prevent the localization procedure for determining the right
correspondences. Performing the localization procedure on the whole map is possible
in theory. However, this operation is typically too expensive to be performed online.

Therefore, our algorithm reduces this cost by executing this search in two passes.
At a first level only one feature in the current image is matched with all the features
in the map, and the descriptors distances are computed. The reference feature is the
one having the highest score when computing the visual odometry. Subsequently, a
localization is performed around all features whose distance from the reference feature
is below a given threshold. This is clearly a heuristic but itshows a robust matching
behavior in real world situations. Note that it can happen that this approach does not
find an existing correspondences but it is unlikely that thisleads to a wrong constraint.

6 Experiments
In this section, we present the experiments carried out to evaluate our approach. We used
only real world data which we recorded with our sensor platform shown in Figure 1
as well as using a real blimp. All the experiments have been executed on a 1.8 GHz
Pentium dual core laptop computer. The frame rate we typically obtain for computing
the visual odometry and performing the local search for matching constraints is between
5 and 10 fps. We use an image resolution of 320 by 240 pixel and we typically obtain
between 50 and 100 features per image. The exact value, however, depends on the
quality of the images.

The time to carry out the global search for matching constraints increases linearly
with the size of the map. In the first experiment presented in this paper, the frequency
with which the global search for loop closures could be executed was 1 Hz.

6.1 Outdoor Environments

In the first experiment, we measured the performance of our algorithm using data
recorded in outdoor environments. For obtaining this dataset, we mounted our sen-
sor platform on the tip of a rod to simulate a freely floating vehicle with the cameras
pointing downwards (see Figure 1). We walked on a long path around our building
over different types of ground like grass and pavement. The real trajectory has a length
of about 190 m (estimated via Google Earth). The final graph contains approximately
1400 nodes and 1600 constraints. The trajectory resulting from the visual odometry is
illustrated in the left part of Figure 2. Our system autonomously extracted data asso-
ciation hypotheses and constructed the graph. These matching constraints are colored
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Fig. 2.The left image shows the path of the camera in black and the matching constraints in gray.
The right image shows the corrected trajectory after applying the optimization technique.

light blue/gray in the same image. The corrected trajectoryis shown in the right part of
Figure 2.

The length of the trajectory after correction was 208 m whichis an overestimation
of approximatively 9% (given the rough ground truth estimate obtained from Google
Earth). Given that our low cost stereo system has an uncertainty of around 10 cm at an
altitude of 1 m, this is in the bounds of a consistent map.

This experiment illustrates that our approach is able to build maps of comparably
large environments and that it is able to find the correct correspondences between the
observations. Note that this is done without real odometry information compared to
wheeled robots. This is possible even if the camera images are blurry and mainly show
grass and concrete surfaces.

6.2 Indoor Environments

The second experiment evaluates the performance of our approach quantitatively in an
indoor environment. The data was acquired with the same sensor setup as in the previ-
ous experiment. We moved in the corridor of our building which has a wooden floor.
For a better illustration, some objects were placed on the ground. Note that although
the artificial objects on the ground act as reliable landmarks, they are not necessary for
our algorithm as shown by the first experiment. Figure 3 depicts the result of the visual
odometry (top image) and the final map after least square error minimization (lower
image). We measured the location of six landmarks in the environment manually with
a measurement tape (up to an accuracy of approx. 3 cm). The distance in thex coordi-
nate between neighboring landmarks is 5 m and it is 1.5 m in they direction. The six
landmarks are labeled as A to F in the lower image. We used these six known locations
to estimate the quality of our mapping technique. We repeated the experiment 10 times
and measured the relative distance between them. The results of this experiment are
summarized in the following table:

landmarksA-B B-C C-D D-E E-F F-A loop
err[m] 0.190.270.1 0.230.2 0.131.11
σ [m] 0.240.350.120.4 0.320.151.32
err[%] 4.2 6.1 8.1 5.7 4.5 8.6 5.2

As can be seen, the error of the relative pose estimates is always below 10% compared to
the true difference. The error results mainly from potential mismatches of features and
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Fig. 3.Top view of the map in the indoor experiment. The top image show the map estimate based
on the visual odometry (before the global correction) and the lower image depicts it after least
square error minimization. The labels A to F present six landmarks for which we determined the
ground truth location manually and which are used to evaluate the accuracy of our approach.
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Fig. 4. The left image illustrates the trajectory recovered by our approach. Straight lines indicate
that the robot re-localized in previously seen parts of the environment (loop closure). The small
loops and the discontinuities in the trajectory result fromassuming the attitude to be identically
zero. In this way changes in tilt and roll were mapped by our algorithm in changes inx andy.
The central image shows our robotic blimp. The right image shows a typical image received via
the analog radio link.

from the error in our low quality stereo setup. Given this cheap setup, this is an accurate
estimate for a system lacking sonar, laser range data, and real odometry information.

6.3 Experiment using a Blimp

The third experiment was performed using a real flying vehicle which is depicted in
the left part of Figure 4. The problem with the blimp is its limited payload. Therefore,
we were unable to mount the IMU and had only a single camera available which was
pointing downwards. Since only one camera was available, the distance information
estimated by the visual odometry can only be determined up toa scale factor. Further-
more, our system had no information about the attitude of thesensor platform due to
the missing IMU. Therefore, we flew conservative maneuvers only and assumed that the
blimp was flying parallel to the ground. The central part of Figure 4 shows our blimp in
action.

The data from the camera was transmitted via an analog video link and all process-
ing has been done off board. Interferences in the image frequently occurred due to the
analog link as illustrated in the right part of Figure 4. In practice, such noise typically
leads to outliers in the feature matching. The mapped environment is a factory floor of
concrete that provides poor textures which makes it hard to distinguish the individual



features. Even under these hard conditions, our system worked satisfactory well. We ob-
tained a comparably good visual odometry and could extract correspondences between
the individual nodes on the graph. The left part of Figure 4 shows corrected graph from
a top view.

7 Conclusions

In this paper, we presented a mapping system that is able to reliably estimate the tra-
jectory of a moving down looking camera the camera and to build maps of the environ-
ment. Our approach integrates state-of-the-art techniques to extract features, to estimate
correspondences between landmarks, and to perform least square error minimization.
Our system is robust enough to handle low textured surfaces like large areas of concrete
or lawn. We are furthermore able to deploy our system on a flying vehicle and to obtain
consistent elevation maps of the ground.
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