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Abstract. In this paper, we address the problem of efficiently trackimgpose
of a camera in a 3D environment. We present an algorithm wikiable to work
with mono and stereo cameras and an attitude sensor. Thaaaostion is
estimated from corresponding features, and potentiaievsithre rejected by us-
ing a variant of the PROSAC algorithm. To be able to track tamera pose
over multiple frames, our system estimates both the camesea and a map of
th environment. The environment is described as a set ofadlgdbcated image
features. This enables the system to recognize when it movegions which
have previously been visited, thus it allows us find loop wtes problem. Our
technique constructs a graph of spatial constraints betwamera poses and it
applies an efficient gradient descent-based optimizatpprcach to revise the
past estimates to obtain a consistent trajectory. The apprbas been evaluated
in comparably large outdoor and indoor environments. Wthé&rmore present
experiments in which our technique is applied to build a mith eblimp?

1 Introduction

Estimating the position of a moving camera in an unknownremment has been an
active field of research in both the computer vision and théita@obot community.
In the robotic community, this problem is referred to as dtameous localization and
mapping (SLAM). Here, the word “simultaneous” highlightge thature of the problem.
On the one hand one has to estimate the position of the carased lon the map of the
environment. On the other hand one has to estimate the kloatigion of features in
the environment perceived from images acquired at diftdosations. The estimates of
both, map and camera pose, are therefore correlated andakeedgbintly calculated.

In the last decades, the simultaneous localization and mggSLAM) problem
has been an active field of research and effective solutiams heen proposed [12, 5,
11,13]. However, most of these solutions rely on bulky, egdee, and accurate sen-
sors such as SICK laser range finders. Cameras are an a#raftérnative to laser
range finders. Due to their limited weight and low power congtion, they are already
incorporated into a wide class of devices, like mobile ploBsisting approaches that

1 This work has partly been supported by the EC under contranber FP6-1ST-34120-muFly,
action line: 2.5.2.: micro/nano based subsystems.



Fig. 1. Top Left: the sensors used for testing our approach. We ddsdrtwo cheap USB web-
cams as a stereo pair and combined it with a XSens MTi inemt@dsurement unit. Bottom Left:
a typical stereo image used for constructing the map. Na&ssigmificant motion blur affecting
the image. Right: the procedure for acquiring the data. Wentenl the sensors with the cameras
looking downwards on a stick and we then walked around thgpoam

address the vision-based SLAM problem mainly focus on s@eha which a robot
repeatedly observes a set of features [4, 10]. They have sfemmn to learn accurate
feature maps of small-scale environments.

In this paper, we present a system that allows us to acquvatn maps of large
environments using two low quality web-cams and a low costtial measurement
unit (IMU). Especially the cameras provide comparably lavalkity images which are
affected by significant motion blur. Figure 1 illustratesthensor setup. Our approach
integrates the data coming from the IMU and the cameras @b estimate of the
camera motion of the 3D position of the features extractethfthe image data. We
address the SLAM problem by constructing a graph of relatiogtween poses. Here,
each node in the graph represents a camera pose. An edgesbhdtveenodes is ob-
tained from the sensor measurements and encodes the spatsalaints between two
different camera poses. Our system combines SURF feajre#th a PROSAC-based
technique [3] to identify the correct correspondences betwimages. When reenter-
ing in a known region after having moved for a long time in aknown part of the
environment, the drift in the estimate of camera pose besamlevant. In this case,
the system must be able to recognize such a situation andabde itself with respect
to the previous location. This problem is known as loop clgsiOur systems detects
loops by matching features extracted from the images recbficom the different lo-
cations. Once a loop is found the estimated trajectory steowisiconsistency due to
the re-localization procedure which results in a “jump” re ttracked camera poses.
Depending on the application of our system, we may choosetmmpute a consistent
trajectory by processing the whole graph of camera posea bptimization algorithm
or to leave the graph unchanged.

The contribution of this paper is an approach that enablds wsliably estimate
both the trajectory of the camera and the map of the envirobhomng a comparably
poor sensor setup.



2 Related Work

The effectiveness of vision-based approaches stronglgraison the feature extraction
algorithms. To this end, SIFT features [9] represent a rodood popular option but they
require significant computational resources. Comparedrd, SURF features [2] are
significantly faster to compute while providing comparastgble feature descriptors.
Therefore, we apply this technique in our work.

Jensfelt et al. [7] proposed an effective way of meeting the computatioma-c
straints imposed by online processing by combining a SIEluf@ extractor and an in-
terest points tracker. The interest points are obtainedimguan Harris corner extractor.
While the SIFT feature extraction can be performed at lowdency, the movement of
the robot is constantly estimated by tracking the interesitp at high frequency. An-
dreassort al. [1] presented a technique that is based on a local similarégsure for
images. They store reference images at different locatiodsise these references as a
map. In this way, their approach is reported to scale welwie size of the environ-
ment.

Davisonet al. [4] proposed a single camera SLAM algorithm. The system com-
putes the map by means of a Kalman filter. A particle filter ipli@gl to initialize the
3D landmarks. The particles estimate the depth informaifdhe landmarks. The ap-
proach does not depend on an initial odometry estimate agffieistive on small scale
environments as well as in situations in which the robot atgaly observes the same
scene. However, it is able to track only up to a hundred ofrizemtts. Montiekt al. [10]
extended this framework by proposing an inverse depth peteximation of the land-
marks. Since this parameterization can be better appreadvzy a Gaussian, the use
of the patrticle filter in the initial stage can be avoided.

Other approaches use a combination of inertial sensorsandras. For example,
Eusticeet. al [5] rely on a combination of highly accurate gyroscopes, negmeters,
and pressure sensors to obtain a good estimate of oriemtai altitude of an under-
water vehicle. Based on these estimates, they constructamade global map using an
information filter based on high resolution stereo images.

The work which is closest to our approach is a technique epby Jungt al. [8].
They use a high resolution stereo camera for building el@vahaps with a blimp.
The map consists of 3D landmarks extracted from interesitpan the stereo image
obtained by a Harris corner detector and the map is estimatied) a Kalman filter.
Due to the wide field of view and the high quality of the imadesnonlinearities in the
process were adequately solved by the Kalman filter. In eshto this, our approach
is able to deal with low resolution and low quality imagesislparticularly suitable
for mapping indoor environments and for being used on snmlftying vehicles. We
furthermore apply a more efficient error minimization aygaro [6].

3 Maximum Likelihood Elevation Map Estimation

The SLAM problem can be formulated as a graph: the nodes ofjitheh represent
the poses of the robot along its trajectory and an edge bativeenodes encodes the
pairwise observations. Here, each noglef the graph represents a 6D camera pose.
An edge between two nodésnd | is represented by the tup(éji,jS>. oji andQj;



are respectively the mean and the information matrix of asmesment made from the
nodei about the location of the nodeexpressed in the reference frame of the niode

In our system, the information between two poses dependwaotrrespondence of
the images acquired between the poses and on the IMU meamuier@®nce the graph
is constructed, one has to compute theconfiguration of tidesiahich best explains
the observations. This results in deforming the robot ttajgy based on the constraints
to obtain a map.

Such a graph-based maximum likelihood SLAM approach reguo solve the fol-
lowing sub-problems:

— The construction of the graph based on the sensor input.
— The optimization of the graph so that the likelihood of thes@lyations is maxi-
mized.

The first problem is addressed in this and the two subseqeetibss. For a solution
to the second problem we refer the reader to the approachisétGet al. [6]. The
techique proposed in this paper relies on visual featurgae®d from the images ob-
tained from two down-looking cameras. We use SURF featiginftead of SIFT
features [9] since they are significantly faster to computdenproviding the same ro-
bustness. A SURF feature is rotation and scale invarianisashescribed by a descriptor
vector and the position, orientation, and scale in the imbgerder to build consistent
maps, we need to determine the camera positiorz @8 @) given the features in the
current image, a subset of spatially close features in thg, mwad the measurements
obtained by the IMU.

The IMU provides the orientation of the system in terms ofiléer angles roll ),
pitch (0), and yaw (). Due to the low quality IMU in combination with the presence
of magnetic disturbances in indoor environments as welha®al robots, the heading
information is highly affected by noise. In our experimemts found that the roll and
the pitch observations can directly be integrated into #temate whereas the yaw in-
formation was too noisy to provide useful information. Theduces the dimensionality
of each pose that needs to be estimated ffSno R*.

Whenever a new image is acquired, a nade that models the new camera pose
is added to the graph. The main challenge is to add the coedgms betweer;. 1
and other nodes;, j <i of the graph. To do so, one has to solve the so-called data
association problem. This means one has to determine whiafure in the current
image corresponds to which feature in the map.3-et{s;,...,s:} referto alocal map
of features that will be matched against the featéres{ f1,..., f} extracted from the
currentimage. The result of such a matching is a transfeom@twhich describes the
spatial relations between the two sets of features. In timaireder of this section, we
discuss how to compute the camera pose given the twdbsetdF while the question
of how to determine the s&is discussed in Section 5.

4 The Transformation Between Camera Poses

In this section, we describe how to compute the transfoonaif the camera based on
the set of observed featurBsand the set of map featur&s



Given the camera parameters, such a transformation candremieed by using two
corresponding features in the two sets. This holds onlyesthe attitude of the cam-
era is known. In order to reduce the effects of outliers, wecée¢he correspondences
by using a consensus algorithm similar to PROSAC [3]. Thennidéa of PROSAC
is to construct a prior for sampling the correspondencesdas the distance of the
descriptors. In this way, a smaller number of trials is reegiito find good candidate
transformations than with the uninformed version of the FBC algorithm. We first
determine the possible correspondences based on thegfeasariptors. Subsequently,
we select from this set the correspondences to compute titgdzde transformations.
We assign a score based on a fitness function to each cantatetformation and select
the transformation with the highest score. The next sulsecexplain our procedure
in detail.

4.1 Potential Correspondences

For each featurd in the camera image and each featsjrin the map, we compute the
Euclidian distancejF(fi,sj) between their descriptor vectors. The distance is used to
compute the set of potential correspondet@es{c;; }. We consider only those feature
pairs whose distance is below a given threslinlas

CZ{Cij=<fi,Sj>|dF(fi,Sj)<D/\fi€F/\SjES}. (1)

For simplicity of notation, we will refer to the elements ©fasc, neglecting the
indicesi and . The features in a correspondence can be retrieved by usrggtector
functions {c) and gc) so that

c=(fi,sj) — fi=f(c) Asj = 5(c). )

A camera transformation is determined by two corresponein@andc,. Accord-
ingly, the number of possible transformations is propaico |C|2. We can limit the
computational load of the approach by sorting the corredponces based on the dis-
tance of their feature descriptors and by considering dmyltestN correspondences
(in our current systerihl = 250). LetC’ be this reduced set. A candidate transformation
Tan is computed for each pair of corresponden@gsc,) € C' x C'.

We compute the transformatidp, based on(c,, c,) as follows. Assuming the at-
titude and the internal parameters of the camera to be knibwenpossible to project
the segment connecting the two features on a plane pamlteketground. The same
is done with the two features in the map. The offset betweentwo camera poses
along thez axis is determined from the length of the segment using thieqghe camera
model. Subsequently, the yaw between the images is compst#ie angle between
the two projections. Finallyx andy can be directly calculated by matching a pair of
corresponding points in the translated image after apglthie yaw correction.

4.2 Score

The previous step computes a set of candidate transfomsdflg, }. To select the best
one, we need to rank them according to a quality measure&(sdarthe following we
explain how to compute this measure for a given transfomati



Let Tap be a transformation for which we want to compute the scorefitdecom-
pute the se€q, = C— {ca, cp} Which contains all correspondences which have not been
used for computing the transformation. Subsequently,dohey € Cap, we project the
features in the map(€x) in the image, according tdy,. The score (ci) of the corre-
spondence is the following:

0"(f(ck),3(ck))>Jr < dF(f(Ck)vS(Ck))>
-~ == Ql-w)(1-—ZF——= .

O

v(ck) =w (1— 3

O

Here,w is a weighting factord' (f(ck),s(ck)) is the distance between the features pro-
jected into the image spacehgl is the maximum value to accept as a match, and
d” (f(ck),s(ck)) is the distance between the feature descriptors. The dsetak of the
transformatioyy, is the sum of the individual scores of the correspondendéﬁ,irWe
compute the score for each transformation in the set, ancleetshe transformation
having the highest score.

5 Extracting Constraints

The procedure described in the previous sections tells wdt@aompute the transfor-
mation of the camera given two subsets of features. So fdgfivepen how the subsets
of map feature$ are selected. In this section, we explain how to choose tiiset to
adequately keep track of the potential topologies of th@lyiat poses. The selection
of the subset of features in combination with the approadtriteed in the previous
section, defines the constraints represented by the edges gmaph.

While incrementally constructing a graph, one can distisigthree types of con-
straints:visual odometry constraints, localization constraints, andloop closing con-
gtraints. Visual odometry constraints are computed by considetiegobtential match
between the features in the currentimage, and a limitedeswibérames acquired from
camera poses which are temporally close to the current amzalization constraints
occur when the camera is moving through an already visitgabme In this case, the
features in the current map are selected in a region arounpdbe estimate obtained
from visual odometry. Finally, loop closing constraintsdarba spatial relation between
the current frame and a region in the map which has been segriioe before. In our
approach, we seek to find these different constraints in st&gh

Visual Odometry Each time a new image is acquired, we augment the graph with a
new pose that represents the location of the most recentraarheervation. This node
is initialized according to the translation resulting fréarthe visual odometry.

The visual odometry estimate is obtained by first constngctine setS, based on
the features extracted from the ldsframes and then extracting the best transformation
according to Section 4. L&k be a node in the graph and B(x) be the set of features
which have been observed by that node If; is the current pose, we compute the set
S for determining the visual odometry & = U\__ym S(Xj).

An advantage of this procedure is that it in practice alwaydsia good incremental
motion estimate. However, due to the error accumulatioreiiinate is affected by a
drift which in general grows over time.



Localization When the camera moves through known terrain, it is possibtieter-
mine the constraints by matching the current features Wwetohes in the map. This can
be done by localizing the robot in a region around the esémabvided by the visual
odometry. This set of features is computed by consideringpales in the graph that are
close to the current node. Note that we ignore the featuststie already used to com-
pute the visual odometry. This procedure is effective felomlizing the camera in a
small region around the most recent position. The compmrtaticost depends roughly
on the area spanned by the search.

Loop Closing As a third step, we seek for loop closures. In case the careezaters
known terrain after having moved for a long time in an unknawgion, the accu-
mulated uncertainty can prevent the localization procedar determining the right
correspondences. Performing the localization procedurth® whole map is possible
in theory. However, this operation is typically too expeedio be performed online.
Therefore, our algorithm reduces this cost by executing gkearch in two passes.
At a first level only one feature in the current image is matichéth all the features
in the map, and the descriptors distances are computed.€ference feature is the
one having the highest score when computing the visual ottgr&ubsequently, a
localization is performed around all features whose distdrom the reference feature
is below a given threshold. This is clearly a heuristic bughibws a robust matching
behavior in real world situations. Note that it can happet this approach does not
find an existing correspondences but it is unlikely that léhégls to a wrong constraint.

6 Experiments

In this section, we present the experiments carried outatuate our approach. We used
only real world data which we recorded with our sensor ptatfghown in Figure 1
as well as using a real blimp. All the experiments have beecued on a 1.8 GHz
Pentium dual core laptop computer. The frame rate we tylgicéitain for computing
the visual odometry and performing the local search for hiatcconstraints is between
5 and 10fps. We use an image resolution of 320 by 240 pixel antypically obtain
between 50 and 100 features per image. The exact value, kowdepends on the
quality of the images.

The time to carry out the global search for matching constséncreases linearly
with the size of the map. In the first experiment presentetimpaper, the frequency
with which the global search for loop closures could be etetwas 1 Hz.

6.1 Outdoor Environments

In the first experiment, we measured the performance of ayorihm using data
recorded in outdoor environments. For obtaining this ddfase mounted our sen-
sor platform on the tip of a rod to simulate a freely floatindpiede with the cameras
pointing downwards (see Figure 1). We walked on a long patlirad our building
over different types of ground like grass and pavement. €hktrajectory has a length
of about 190 m (estimated via Google Earth). The final graptiains approximately
1400 nodes and 1600 constraints. The trajectory resultorg the visual odometry is
illustrated in the left part of Figure 2. Our system autonosip extracted data asso-
ciation hypotheses and constructed the graph. These mgtchnstraints are colored
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Fig. 2. The left image shows the path of the camera in black and thehimat constraints in gray.
The right image shows the corrected trajectory after apglyiie optimization technique.

light blue/gray in the same image. The corrected trajeaspown in the right part of
Figure 2.

The length of the trajectory after correction was 208 m wiiéchn overestimation
of approximatively 9% (given the rough ground truth estienabtained from Google
Earth). Given that our low cost stereo system has an unogrtai around 10 cm at an
altitude of 1 m, this is in the bounds of a consistent map.

This experiment illustrates that our approach is able ttdbmiaps of comparably
large environments and that it is able to find the correctaspondences between the
observations. Note that this is done without real odometfgrimation compared to
wheeled robots. This is possible even if the camera imagelslarry and mainly show
grass and concrete surfaces.

6.2 Indoor Environments

The second experiment evaluates the performance of ouoa@pruantitatively in an
indoor environment. The data was acquired with the sameossrtup as in the previ-
ous experiment. We moved in the corridor of our building whias a wooden floor.
For a better illustration, some objects were placed on tbergt. Note that although
the artificial objects on the ground act as reliable landmatey are not necessary for
our algorithm as shown by the first experiment. Figure 3 dejtie result of the visual
odometry (top image) and the final map after least square griimization (lower
image). We measured the location of six landmarks in therensient manually with
a measurement tape (up to an accuracy of approx. 3cm). Ttamdésin thex coordi-
nate between neighboring landmarks is 5m and it is 1.5 m iryttieection. The six
landmarks are labeled as A to F in the lower image. We useeé gir&known locations
to estimate the quality of our mapping technique. We repkitite experiment 10 times
and measured the relative distance between them. Thegeduhis experiment are
summarized in the following table:

landmark$A-B|B-C|C-D|D-E|E-F |F-Alloop|
erfm]  |0.190.270.1 [0.230.2 [0.131.1
o [m] 0.240.350.120.4 |0.320.151.3
err[%] 4.2 16.1 (8.1 |5.7 |14.5 8.6 |5.2

As can be seen, the error of the relative pose estimatesayalbelow 10% compared to
the true difference. The error results mainly from potdmtismatches of features and



Fig. 3. Top view of the map in the indoor experiment. The top imagesthe map estimate based
on the visual odometry (before the global correction) aralthver image depicts it after least
square error minimization. The labels A to F present six faaks for which we determined the
ground truth location manually and which are used to eveltfed accuracy of our approach.
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Fig. 4. The left image illustrates the trajectory recovered by @praach. Straight lines indicate
that the robot re-localized in previously seen parts of tidrenment (loop closure). The small
loops and the discontinuities in the trajectory result frassuming the attitude to be identically
zero. In this way changes in tilt and roll were mapped by ogp@ihm in changes ix andy.
The central image shows our robotic blimp. The right imagmasha typical image received via
the analog radio link.

from the error in our low quality stereo setup. Given thisajheetup, this is an accurate
estimate for a system lacking sonar, laser range data, ahddemetry information.

6.3 Experiment using a Blimp

The third experiment was performed using a real flying vehighich is depicted in
the left part of Figure 4. The problem with the blimp is its lied payload. Therefore,
we were unable to mount the IMU and had only a single cameriéablawhich was
pointing downwards. Since only one camera was availab&edistance information
estimated by the visual odometry can only be determined apstale factor. Further-
more, our system had no information about the attitude of#resor platform due to
the missing IMU. Therefore, we flew conservative maneuvelgand assumed that the
blimp was flying parallel to the ground. The central part @fufe 4 shows our blimp in
action.

The data from the camera was transmitted via an analog viidleahd all process-
ing has been done off board. Interferences in the image émtyuoccurred due to the
analog link as illustrated in the right part of Figure 4. Imgtice, such noise typically
leads to outliers in the feature matching. The mapped enmient is a factory floor of
concrete that provides poor textures which makes it hardstinduish the individual



features. Even under these hard conditions, our systenmedadtisfactory well. We ob-
tained a comparably good visual odometry and could ext@cespondences between
the individual nodes on the graph. The left part of Figure@wshcorrected graph from
a top view.

7 Conclusions

In this paper, we presented a mapping system that is abldiablyeestimate the tra-
jectory of a moving down looking camera the camera and talbaéps of the environ-
ment. Our approach integrates state-of-the-art techniguextract features, to estimate
correspondences between landmarks, and to perform leastesgrror minimization.
Our system is robust enough to handle low textured surféieekakge areas of concrete
or lawn. We are furthermore able to deploy our system on adlyehicle and to obtain
consistent elevation maps of the ground.
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