
Robust On-line Model-based Object Detection from Range Images

Bastian Steder Giorgio Grisetti Mark Van Loock Wolfram Burgard

Abstract—A mobile robot that accomplishes high level tasks
needs to be able to classify the objects in the environment and to
determine their location. In this paper, we address the problem
of online object detection in 3D laser range data. The object
classes are represented by 3D point-clouds that can be obtained
from a set of range scans. Our method relies on the extraction
of point features from range images that are computed from
the point-clouds. Compared to techniques that directly operate
on a full 3D representation of the environment, our approach
requires less computation time while retaining the robustness of
full 3D matching. Experiments demonstrate that the proposed
approach is even able to deal with partially occluded scenes
and to fulfill the runtime requirements of online applications.

Index Terms—Object detection, point clouds, range images

I. INTRODUCTION

Service robots that offer various services to their users

need interfaces that facilitate high-level interactions with

the user and the environment. To achieve this goal, one

fundamental issue is the ability to classify and localize the

objects under discourse or relevant for the current task. For

example, to execute high level commands such as “please

bring a chair” or “please wait at the table” the robot needs

to have the ability to identify the corresponding objects in

the scene. Whereas the ability to robustly identify objects is

obviously required for service robot applications, even other

tasks including navigation may take advantage from such

a capability. For example, in the domain of simultaneous

localization and mapping the ability to recognize objects

can be combined with the prior about their dynamic charac-

teristics. This would improve the robustness of the existing

SLAM systems in non-static environments and additionally

would allow them to produce high level models of their

environment.

In the literature, the problem of identifying objects in

3D point clouds has been intensively studied. Most of the

existing techniques approach the problem by seeking for

a transformation that aligns the model and the data. In

principle, this task could be solved by one of the many

3D scan-matching algorithms. However, this is generally not

practical because of two reasons. First, in object recognition

an initial guess of the position of the object is not known

in advance. This would require a scan matching algorithm

to perform an expensive search in the full space of potential

transformations. Second, to operate properly most of the scan

matchers require a good overlapping of the model and the

B. Steder, G. Grisetti and W. Burgard are with the Dept. of Com-
puter Science of the University of Freiburg. Mark Van Loock is
with Toyota Motor Europe/NV/SA, Production Engineering - Advanced
Technologies, Zaventem, Belgium.{steder,grisetti,burgard}@informatik.uni-
freiburg.de,Mark.Van.Loock@toyota-europe.com

Fig. 1. Three-dimensional point cloud recorded with a mobile robot (top)
and the corresponding range image (bottom). In the point cloud we also
highlight two chairs identified with our approach.

data. Due to the nature of the sensor, in a single 3D scan

typically at most 50% of an object is visible and in presence

of occlusions this percentage decreases. Therefore, one seeks

for alternative and more effective solutions.

In this paper, we present a fast and robust technique

for detecting multiple objects in complex scenes. Our ap-

proach relies on the analysis of range images obtained

from raw 3D laser data and is based on the extraction

of point features from the range images. Robust feature

matching is performed using a variant of the GOODSAC [9]

algorithm. Furthermore, we propose a validation strategy

based on range images, which allows us to robustly reject

false positives. Compared to existing approaches, one of

the major advantages of our method is that it is designed

for online application. It directly operates on range images

extracted from single 3D scans and thus is highly efficient.

Furthermore, it does not require the robot to change its

viewpoint.

The paper is organized as follows. After discussing related

work, we will introduce our feature extraction and matching

procedure in Section III-A. Then, Section IV will discuss

the relationship of our approach to the popular spherical

spin images [10]. Finally, in Section V we will present

experiments illustrating the recognition rate of our approach

and analyzing the dependency on the distance of the object.

II. RELATED WORK

Many approaches for object detection operating on raw

3D data attempt to find the best alignment by determining

correspondences between regions of the current scan and

regions of the model. Typically, these regions are represented

by features that compactly describe areas in the data so that

comparisons can be carried out efficiently.

This concept is extensively applied in computer vision,

where object recognition based on feature extraction is a

popular research topic. E.g., Lowe [7] used SIFT features

to compare an image with a database of reference images.

Clusters of matching features that agree on a possible object

pose are extracted. The probability to be a true match is

computed based on how well the matched features fit and

on the number of probable false matches.

Our approach operates on 3D laser data. Compared to

cameras these sensors provide accurate range information

and are less sensible to the lightening conditions, but they are

affected by a slow acquisition time. The increased accuracy

of 3D lasers allows us to determine more accurate positions

of the objects in the scene.

Gelfand et al. [3] present an approach to global registration

based on “integral volume descriptors”, which are one-

dimensional descriptors whose values depend on the volume

enclosed by the local surface around a point. Compared to

our approach described in this paper, this technique is mainly

targeted towards finding the best alignment of two shapes and

not to test if an identical shape exists.

Johnson et al. [6] proposed the spin-images for object

detection in 3D data. A spin image is a 2D representation

of the surface surrounding a 3D point. This technique has

been often reported to provide good matching results. In

their approach they compute a spin-image for every point

in the model and every point in the scene. Correa et al. [10]

proposed a variant of spin-images (spherical spin images)

that simplifies the comparison to nearest neighbor search

by using the linear correlation coefficient as the equivalence

classes of spin-images. To efficiently perform the comparison

of features they compress the descriptor.

Triebel et al. [12] use spin-images as features for an

associative Markov network (AMN). The parameters of this

AMN are learned from a manually labeled training data set.

The main difference between this work and our approach

is that we identify complete instances of objects from their

partial views observable in a scene, rather than labeling the

single points according to classes they resemble. Mian et

al. [8] use the so-called tensor descriptors which rely either

on an accurate estimate of the surface normals or on the

mesh structure of the data in general.

Stiene et al. [11] present an object detection approach

based on silhouettes extracted from range images. Their fea-

tures are based on a fast Eigen-CSS method and a supervised

learning algorithm. Similar to this approach, our method also

works on range images created from 3D laser range scans.

However, in our method the extraction of features is not

restricted to the contour of the objects. It also uses feature

points that have a higher resistance against partial occlusion.

III. OBJECT DETECTION BASED ON RANGE IMAGES

Our object database consists of a set of object models,

which are given as point clouds obtained from real 3D data.

From these data points, we first calculate a set of range

images and from those a set of features. The overall object

detection procedure works as follows: When a new 3D scan

is acquired, we compute the corresponding range image for

this scan (see Section III-A). We then extract a set of point

features from this image. Subsequently, we compare the

features in the scene with the features of the models. From a

set of corresponding features we determine a set of potential

alignments, as described in Section III-B. To this end we use

a GOODSAC-like procedure and we rank the solutions based

on the score function discussed in Section III-C. The final

step seeks to validate each candidate solution based on the

overlap between the range image of the scene and the range

image of the candidate model. This is described in detail in

Section III-D.

A. Feature Extraction and Matching from Range Images

Range images are visual representations of 3D scenes. The

grey-value of every pixel in the image is proportional to

the distance of the closest object in the direction of the ray

corresponding to the pixel. Range images can be calculated

efficiently from a 3D-scan by implementing a z-buffer [2].

An example of such a range image can be seen in Figure 1.

For online object detection, considering all points in a range

image would be too computationally demanding. Therefore

we extract a set of interest points from the range images. We

utilize the Harris Detector [4] for this purpose.

For each of these points pi we compute a descriptor

vector fi which captures the structure of the object in

the neighborhood of pi. These descriptors are computed as

follows:

• Let N (pi) be a set of 3D points of the scene whose

distance from pi is below a given threshold.

• We compute the normal ni of the planar approximation

of the set N (pi).
• We select a point vi along the line which passes through

pi and is oriented according to ni.

• We set the observer position at vi and its viewing

direction at −ni.

• We finally compute a descriptor vector fi for the point

pi by generating a range image which contains all the

points in N (pi), according to the computed observer

position. To make the feature vector scale invariant we

subtract from each entry of fi the mean of the values

in the range image.

The procedure described above is illustrated in Figure 2.

Note that the selection of the viewpoint vi along the normal

vector of the surface resolves two of the three degrees of

freedom in the observer orientation, since the angle of the

range image along the normal axis is not specified. In our

current implementation, we resolve this degree of freedom

by orienting the image patch according to the z-axis in the

world, i.e., the x-axis of the image patch will always be

orthogonal to the z-axis in the world. In this way, our feature

descriptor is not invariant to changes in the roll and the pitch

of an object. However, since our goal is the detection of

objects in human-made environments, like chairs or tables,

this restriction makes sense and increases the robustness of

the approach. However, in our experiments we found that our

approach is still able to detect objects under mild violations

of this assumption (variations of ±15◦ in roll and pitch).

ni

vi

pi

Fig. 2. Example for the extraction of the feature descriptor. In the
point cloud of this chair, a square marks the projection plane used for the
calculation of the range image patch. The normal of the patch corresponds
to the plane approximation of the points in the area. The square is then
divided into a grid (the pixels) of a fixed size and the distances of the
surrounding points projected onto the plane determine the value for every
grid cell.

As mentioned above, the object models are given as sets

of features extracted from range images of the objects. These

range images are sampled from point clouds of the objects

obtained by scanning the object from different viewpoints.

An example of this procedure is illustrated in Figure 3. From

each of these range images we then extract the features of

the model in the same way as we do with the scene.

Fig. 3. Point cloud model of a chair (left) and four range images sampled
from different perspectives (right)

The feature matching is done by treating the small range-

image patches as vectors and searching for the closest

neighbors in the feature space. For each feature fs
i in the

current scene and each feature fm
j in the model, we compute

the Euclidean distance d(fs
i , fm

j) between their descriptor

vectors. Based on this distance we create the set of potential

correspondences C = {cij} which are given by all feature

pairs whose distances are below a given threshold dmax.

To efficiently perform this comparison process, we store all

feature description vectors in a kd-tree. To find the neighbors

in the feature space, we apply the best-bins-first technique

proposed by Lowe [7] to handle the high dimensionality of

the vectors.

B. Computing the Transformations

Since the range images contain the entire information

of a 3D scan, it is possible to align a range image of

the model with that of the current scene. Furthermore, if

we know at least three correct correspondences between

features in the scene and in the model, we can compute

the 3D transformation between them (see Horn et al. [5]).

To reject false feature matches, we use a method similar to

GOODSAC [9]. This procedure is a deterministic variant of

RANSAC [1], which also takes the quality of the matches (in

our case the Euclidean distance between the descriptors) into

account. This results in a performance increase, as shown

in [9].

For simplicity of notation, we will refer to the elements

of C as c, neglecting the indices i and j. Then, this

procedure works as follows: A possible object pose, i.e.,

a transformation between the point cloud of the current

scene and the point cloud of the model, is determined by

three correspondences. Accordingly, the number of possi-

ble transformations is proportional to |C|3. We limit the

computational requirements of this approach by sorting the

correspondences based on their descriptor distances and by

considering only the best n correspondences. Let C ′ =
{c′

1
, . . . , c′n} be the resulting ordered set.

Triples of correspondences are then selected from C ′ in

the order defined by the loop structure of Algorithm 1. This

generates the sequence (c′
1
, c′

2
, c′

3
), (c′

1
, c′

2
, c′

4
), (c′

1
, c′

3
, c′

4
),

(c′
2
, c′

3
, c′

4
), (c′

1
, c′

2
, c′

5
), In this way, we obtain the best

correspondences (according to the descriptor distance). Fur-

thermore, the search will not get stuck if one of the corre-

spondences with a low descriptor distance is a false match.

Algorithm 1 Nested loops for the selection of triples of

correspondences.

FOR (k = 3; k ≤ |C|; k = k + 1)
FOR (j = 2; j ≤ k; j = j + 1)
FOR (i = 1; i < j; i = i + 1)

triple = (ci, cj , ck)
. . .

The current triple of correspondences c′a, c′b, c
′
c ∈ C ′ is

then used to compute a candidate transformation Tabc. This

candidate transformation now has to be validated. To this

end, we apply the score function described in the following

section.

C. Assigning a Score to the Candidate Matches

To compute the score of a transformation, we sample

different views of the object and select a fixed number n

(in our implementation, n = 100) of uniformly distributed

3D points from the resulting range images. In the remainder

of this document, we will refer to these points as validation

points. Note that this procedure is performed during model

creation and does not need to be repeated during the match-

ing process.

For each candidate transformation Tabc we consider the

validation points sampled from the range image whose

viewpoint is closest to the transformation. We then map

the selected validation points into the scene by applying

Tabc. For each transformed validation point of the model

we consider the corresponding pixel in the scene.

If a candidate transformation is correct, the depth values

of the original points in the range image of the scene

Ds = {ds
1
, . . . , ds

n} and the depth values of the transformed

validation points Dv = {dv
1
, . . . , dv

n} should be the same.

Therefore, we choose the following scoring function for a

single validation point:

s(dv
i , ds

i) =







dv
i − ds

i < −ε : 0.0

|dv
i − ds

i | < ε :
|dv

i
−ds

i
|

ε

dv
i − ds

i > ε : −p

(1)

Here, ε is the maximal error value where the validation point

can still be considered to be at the right place. If dv
i −ds

i > ε,

the point in the scene is behind a point in the model and

we give a negative reward of −p to this situation (in our

implementation p = 10). In other words we give a penalty

of −p to the points in the scene which should have been

occluded by the matched object. If dv
i − ds

i < −ε something

was in front of the object and blocked the view. The score

for the complete set of validation points has a value between

0.0 and 1.0 and is defined as

S(Ds, Dv) =

max(0.0,
∑

i

s(dv
i , ds

i))

n
(2)

Once the score of the current transformation is computed,

we repeat this procedure for the subsequent three correspon-

dences. In our implementation, we stop the search when

a maximum number of trials has been reached. Since our

approach only requires three correspondences to calculate

a potential alignment, it can handle partial occlusions. Our

algorithm returns a possible position of an object in the

scene for every transformation with a score above a certain

threshold γ.

We further reduce the computational cost of this approach

by discarding the triples of correspondences which seem to

be invalid in advance. For example, we found it very effective

to check if the metric distances between the three feature

points in the scene are similar to the distances of the feature

points in the model. Additionally, we do not use triples of

features that lie on a line and use only features with a relative

distance above a certain threshold.

D. Rejection of False Positives

Typically, the procedure described above returns many

instances of an object at very similar locations. This results

from different triples of correspondences, which all originate

from the same object in the scene. Therefore, we prune

the solutions by keeping only the ones with the highest

score for all objects that are found in a local area. Then,

we validate each of these solutions based on two criteria:

the absence of collisions between neighboring solutions and

the similarity of range images. If two nearby solutions are

conflicting, the corresponding models transformed according

to the computed transformations will collide. This collision

check can be performed efficiently by using pre-computed

low-resolution point clouds of the models stored in a kd-tree.

If collisions are found, the solution with the lower score is

rejected.

Fig. 4. Range image as it should look like according to the model (left)
and actual part of the scene range image (middle). The black part on the top
right of the image is clutter in front of the object. The right image shows
the overlay of the other two images. The parts that are too different are
marked in blue.

To reject remaining false positives, we calculate a low-

resolution range image of the model given the virtual camera

position described by the transformation. If the match is

valid, the result should be similar to the corresponding part

of the range image of the scene. We compare these two sub-

images and determine another score value based on their sim-

ilarity. This scheme is based on the same principle as scoring

based on the validation points explained in Section III-C. The

difference here is that instead of using previously sampled

range images, we compute one from the viewpoint defined by

the transformation. The score is then calculated by pixel-to-

pixel comparison. This step is more expensive, since we have

to compute a new range image from the model. However,

we found that this leads to more reliable score values. Note

that the computational overhead is minor, since this last

validation step is performed only on a few potential object

poses. Figure 4 illustrates the procedure described above.

IV. OPTIMAL PARAMETERS AND COMPARISON WITH

SPIN IMAGES

Our system relies on several parameters, the most impor-

tant ones are related to the feature extraction: the resolution

of the image (i.e., the size of the description vector), the size

of the area around the point where the feature was extracted

(the support), and the maximal descriptor distance dmax used

to determine if a feature pair is a possible correspondence.

To learn the optimal values for these parameters, we used

a set of 30 3D scans with hand-labeled object positions

and evaluated the object recognition system for different

combinations of the parameters. For the evaluation of the

parameters, we used a very low threshold γ to reject false

matches (γ = 0.3 - see Section III-C). Having a small γ

increases the number of the solutions reported by the first

step of the algorithm. We furthermore disabled the rejection

of false positives described in Section III-D. This allows us to

measure the discriminative power of the features themselves.

For every combination of parameters we computed a score

based on the number of true positives, false positives, and

false negatives found in the test scenes. Since the false

positive rejection described in Section III-D is very effective,

we are mainly interested in the true positives and in the false

negatives. False positives mainly affect the runtime. To take

this into account, we introduced the following score function

ζ =
(#true positives)2

(#false negatives)2 + (#false positives)
. (3)

our features spherical spin images

Fig. 5. Score according to Eq. 3 of different parameter sets when
performing a search. Bright values correspond to high scores. The top row
shows the results for different parameters when using our features (left)
and the spherical spin images (right). The bottom row shows the score
normalized by the runtime.

For each set of parameters we also measured the time

required for the search.

We furthermore compared our features with the so called

spherical spin images [10], a variant of the original spin im-

ages by Johnson [6], that simplifies the comparison between

the description vectors to nearest neighbor. The runtime of

this approach is similar to the one of our method. Our object

detection method is independent of the specific features

used and it only relies on the Euclidean distance between

feature descriptors. In this experiment we simply replaced

our features with the spin images. To learn the correlation

between the spin image parameters and the performance of

the system, we used the same procedure as for our features.

Figure 5 summarizes the result of these trials. It visualizes

the score values for different combinations of the feature

resolution and the support radius. The score used for the

visualization was chosen as the maximum over different

values for the descriptor distance threshold dmax. Since we

are interested in an object recognition system that can run

online, we also took the runtime for the object search into

account.

The influence of the parameters on the runtime is typi-

cally as follows. An increased descriptor distance threshold

increases the runtime, since it leads to more candidate trans-

formations. An increase of the support size makes the feature

extraction phase more expensive, since a larger radius has to

be considered for every feature. Increasing the descriptor size

makes the feature more descriptive and therefore reduces the

number of candidate transformations, leading to a reduced

runtime. This effect is stronger than the runtime increase

caused by the more expensive matching phase.

The bottom row of Figure 5 depicts the score values

normalized by the runtime. By selecting the maximum value

from the image, we can determine the optimal parameters

according to our score function ζ. The optimal values for

our features regarding score and runtime are descriptors of

size 8x8 with a support width of 35 cm. For the spin images

they are 5x5 and 60 cm. Over all, the spin images reached

significantly lower maximal scores in this context, which

confirms our choice of features.

V. EXPERIMENTAL RESULTS

The approach described above has been implemented and

tested using real world data recorded with a wheeled robot

equipped with a SICK LMS laser range scanner mounted on

a pan-tilt unit. The resolution of the range images extracted

from the scans (100,000-150,000 points) was 0.4◦ per pixel,

resulting in 450x225 pixels. Our platform requires about 15

seconds to acquire a full 3D scan. The models of the objects

were created by joining 3D scans obtained from different

view-points into a single point-cloud.

We tested our system with seven classes of objects: a

cardboard box, a fan, a monitor, two types of chairs, a

small pioneer robot and a table. For all the experiments, the

average time to analyze a 3D scan and identify the objects

was between 1.5 and 3.0 seconds on a 2.4 GHz Dual-core

Pentium PC. The typical time requirements of the individual

components were as follows: calculation of the range images:

100-120ms, extraction of the interest points (800-1300 points

per scene): 150-250ms, calculation of the feature descriptors:

300-500ms, matching of the features: 250-450ms, search

of the candidate transformations: 100-300ms scoring the

candidate transformations using the validation points: 15-

150ms; collision detection: 1-100ms; rejection of the false

positives: 500-1400ms.

In the remainder of this section we analyze the per-

formance of our system in a typical office environment.

Subsequently we measure the variation of the success rate

as a function of the distance to the corresponding object.

A. Success Rate in Cluttered Environments

In this experiment we measured the success rate of our

approach in a cluttered office environment. The recognition

procedure was tested on 20 3D scans. Each object was

present exactly 10 times although sometimes only partly

covered by the scan. A typical result of the object search

can be seen in Fig. 6. The result of all scans is summarized

in Table I. Whereas the rows represent the classes of objects

which can be detected by our system, the columns represent

the objects in the scene. Each entry contains the number of

times an object in the scene (column) has been identified by

the system as the object in the row. Since our system can

detect multiple instances of objects, neither the row nor the

columns sum up to the number of examples. The last column

contains how often an object was recognized at places where

no known object was actually present (in the clutter of the

surrounding).

On average, an object contained in the scene was correctly

matched in 84% of the cases. For the 20 scans and 7 objects,

TABLE I

STATISTICS ON THE DETECTION PERFORMANCE (B=BOX,

F=FAN,M=MONITOR, O=OFFICE CHAIR, T=TABLE, W=WOODEN

CHAIR, AND C=CLUTTER).

B F M O P T W C

B 8 0 3 0 0 0 0 4

F 0 7 0 0 0 0 0 0

M 2 2 10 1 0 0 1 4

O 0 1 0 8 0 0 2 0

P 0 0 0 0 10 0 0 3

T 0 0 0 0 0 7 0 1

W 0 2 0 3 0 0 9 0

Fig. 6. Example of a 3D scan and the corresponding range image. The
objects detected are marked in the scan. One instance of the monitor, the
pioneer robot and the table were identified correctly. The office chair was
present two times, which was also found correctly by the system. The
wooden chair was also found correctly, but a second instance was wrongly
matched on the office chair.

there was a total number of 29 false positives which means

that the false positive rate is 20%. It turned out that this is

often due to the high similarity of the considered objects.

For example, the two chairs led to several failures since

their shapes are similar. The box and the monitor also had a

similar size and form which made them hard to distinguish.

Additionally, several other objects in the scenes were box-

like which led to a higher number of false positives.

B. Performance Depending on the Distance to Objects

In principle, our approach does not depend on the distance

to the objects in the scene. However, due to the limited

angular resolution of the scanner, the performance of our ap-

proach degrades with the distance to the observed object. To

analyze this, we measured the performance of our algorithm

as a function of the distance. We considered the same object

classes as in the previous experiment. For every object, we

took five scans from different viewpoints at a fixed distance

from the object. Then we increased the distance and acquired

five new scans. This procedure was repeated, until none of

the objects was correctly identified anymore. The results

of this experiment are illustrated in Fig. 7. It turned out

that for distances under 5m without occlusions the success

rate is about 89%. For distances larger 5m the success

rate decreased and beyond 12m no successful detection was

possible. Note that these values depend strongly on the size

of the objects and the resolution of the sensor at hand. For

example, at 12m the size of one of the chairs in the range

image is only about 10x10 pixels. This leads to the situation,

Fig. 7. Recognition rate depending on the distance to the object. For every
distance step, five scans from different perspectives were taken.

in which an 8x8 pixels large feature descriptor is extrapolated

from less than 3x3 pixels of the source image.

VI. CONCLUSIONS

In this paper we presented an efficient approach to object

recognition in range scans. Our approach operates on features

extracted from range images calculated from the range scans.

It is highly efficient and requires only a few seconds to

identify all objects in a given scene. The approach has

been implemented and tested on data acquired with a laser

range scanner installed on a pan/tilt unit. The experiments

demonstrate that our approach can robustly identify the

objects even if they are only partly visible. Our approach

furthermore showed superior performance compared to spin

images.

REFERENCES

[1] M. A. Fischler and R. C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6):381–395, June 1981.

[2] J. D. Foley, A. Van Dam, K Feiner, J.F. Hughes, and Phillips R.L.
Introduction to Computer Graphics. Addison-Wesley, 1993.

[3] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Robust
global registration. In Proc. of the third Eurographics symposium

on Geometry processing, page 197, 2005.
[4] C. Harris and M. Stephens. A combined corner and edge detector. In

Proceedings of The Fourth Alvey Vision Conference, pages 147–151,
1988.

[5] B. K. P. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America. A, 4(4):629–
642, Apr 1987.

[6] A. E. Johnson and M. Hebert. Using spin images for efficient object
recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach.

Intell., 21(5):433–449, 1999.
[7] D.G. Lowe. Object recognition from local scale-invariant features. In

Proc. of the Int. Conf. on Computer Vision (ICCV), 1999.
[8] A. S. Mian, M. Bennamoun, and R. A. Owens. 3d recognition

and segmentation of objects in cluttered scenes. In WACV-MOTION

’05: Proceedings of the Seventh IEEE Workshops on Application of

Computer Vision, pages 8–13, 2005.
[9] E. Michaelsen, W. von Hansen, M. Kirchhof, J. Meidow, and U. Stilla.

Estimating the essential matrix: GOODSAC versus RANSAC. 2006.
[10] S. Ruiz-Correa, L. G. Shapiro, and M. Meila. A new signature-based

method for efficient 3-d object recognition. In CVPR (1), pages 769–
776, 2001.

[11] S. Stiene, K. Lingemann, A. Nüchter, and J. Hertzberg. Contour-based
object detection in range images. In Proc. of the Third International

Symposium on 3D Data Processing, Visualization, and Transmission,
pages 168–175, 2006.

[12] R. Triebel, R. Schmidt, O. M. Mozos, and W. Burgard. Instance-
based AMN classification for improved object recognition in 2D and
3D laser raneg data. In ”Proc. of the International Joint Conference

on Artificial Intelligence(IJCAI)”, 2007.

