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Abstract—The problem of place recognition appears in dif-
ferent mobile robot navigation problems including localization,
SLAM, or change detection in dynamic environments. Whereas
this problem has been studied intensively in the context of
robot vision, relatively few approaches are available for three-
dimensional range data. In this paper, we present a novel and
robust method for place recognition based on range images.
Our algorithm matches a given 3D scan against a database
using point features and scores potential transformations by
comparing significant points in the scans. A further advantage
of our approach is that the features allow for a computation of
the relative transformations between scans which is relevant for
registration processes. Our approach has been implemented and
tested on different 3D data sets obtained outdoors. In several
experiments we demonstrate the advantages of our approach
also in comparison to existing techniques.

Index Terms—Place recognition, SLAM, loop closing, point
clouds, range images, range sensing

I. INTRODUCTION

In the recent years, the problem of place recognition

has been studied intensively in the area of mobile robotics.

Techniques for place recognition are highly relevant in the

context of the SLAM problem, as they can be used to

solve the data association problem. They can also be applied

to speed up global localization or to detect changes in

the environment. Whereas the majority of place recognition

techniques have been developed for vision-based navigation,

there are relatively few approaches that can be applied to

three-dimensional laser range scans to efficiently calculate

the similarity between scans or to efficiently calculate the

relative transformations between two scans.

In this paper we present a novel approach to place

recognition which operates on 3D laser data. Our approach

transforms a given 3D range scan into a range image and

calculates interest points based on a variant of the Laplacian

of Gaussian method. Candidate transformations are then cal-

culated by matching features extracted at the position of these

interest points. The quality of a match between range images

is then further evaluated by projecting several of the interest

points into the coordinate frame of the other range image.

One typical example of a range image is depicted in Figure 1.

It also shows the range images and their scores as they were

obtained with our algorithm from a database of range images

recorded in the same area as the query scan. The entire

approach described in this paper has two desirable properties.

First, as the experimental results demonstrate, it is able to

reliably retrieve for a given 3D scan all corresponding scans
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Fig. 1. Motivating example for the place recognition procedure. The images
show 360

◦ range images. The top range image was given to the system as
input and the four bottom images were correctly identified as the same
place. For each of these, the corresponding score for the match is given. No
false positives were returned. The left two images are consecutive scans in
the trajectory of the robot, the right two are loop closures, when the robot
returned into that area.

taken at nearby locations. Compared to existing techniques,

our method exhibits a higher recognition rate when it is

trained to minimize the number of false matches. Second,

our system allows for an accurate estimation of the relative

transformations between the input scan and all the matches

in the database and thus can provide good initial guesses for

scan matching routines, which are known to be sensitive to

the initialization.

This paper is organized as follows. After discussing related

work we will describe our approach in Section III. In

Section IV we then will present experimental results based

on two different datasets obtained in outdoor environments.

II. RELATED WORK

In the past, the problem of place recognition has been

addresses by several researchers and a wide variety of ap-

proaches for different types of sensors have been developed.

One very successful and recently developed approach in this

area is the Feature Appearance Based MAPping algorithm

(FABMAP) proposed by Cummins and Newman [5]. This

algorithm uses a bag-of-words approach based on SURF

features [3] extracted from omni-directional camera images.

Cummins and Newman evaluated their method on two ex-

tremely large-scale datasets including a 70km and a 1000km

trajectory recorded with a car. For the 70 km dataset they

achieved a 48.4% recall rate. For the 1000 km dataset they

report a rate of 3.1% (respectively with no false positives),

which is still enough for a graph-based SLAM algorithm to

create a proper map. The query time for a new image is about

half a second. However, most of the required computation

time is spent for the feature extraction. We would like to



refer the reader to this paper for a detailed discussion of

vision-based place recognition approaches.

In the area of place recognition with 2D range scans,

Granström et al. [6] proposed a machine learning approach

to detect loops. A combination of rotation-invariant features

is extracted from the scans and a binary classifier based on

boosting is used to recognize previously visited locations.

Bosse and Zlot [4] also presented a loop closing solution for

2D range data. They build local maps from consecutive 2D

scans for which they compute histogram-based features. The

correlation between these features is than used to match the

local maps against each other.

An approach that is similar to ours regarding the utiliza-

tion of point features to create candidate transformations is

described in the PhD thesis of Huber [10]. His approach

extracts Spin Images [11] from 3D scans and uses them

to match each scan against a database. In our previous

work [15] we demonstrated, that the features we use in

this paper are more descriptive than Spin Images in the

context of object recognition. Huber reported 1.5 s as the

time requirement to match one scan against another. Even

considering the advances in computer hardware since 2002,

our approach is substantially faster (about factor 80).

Recently, Magnusson et al. [14] proposed a system for

place recognition based on 3D data. They utilize the Normal

Distribution Transform as features to match scans. These

features are global appearance descriptors, which describe

the whole 3D scan instead of just small areas as it is the case

for our features. They report impressive results regarding the

matching time per scan pair (below 0.1 ms). However, their

recall rates are substantially lower than ours. Additionally,

in contrast to their approach, our method is able not only

to identify similar places, but also to directly return the

location of the robot within the corresponding scans. In the

experimental results section we will compare our approach to

theirs based on a freely available dataset (see Section IV-B).

III. PLACE RECOGNITION USING RANGE IMAGES

The goal of our approach is to retrieve those 3D scans

from a database that are most similar to a given query scan.

We represent all scans as range images. A range image is an

image, in which each pixel contains the depth returned by a

laser beam passing through that pixel. In the remainder of

this section we will use the terms “scan” and “range image”

interchangeable.

To retrieve scans similar to a given query scan, our system

compares the current measurement with all scans in the

database using an efficient feature based search algorithm.

We then calculate candidate transformations between the

query scan and the scans in the database. We assign a score

to each candidate transformation by comparing significant

points in the scans and the similarity of two scans is the

maximum of the scores for all found candidate transforma-

tions. In the following we will explain the individual steps

in more detail.

A. Feature Extraction

Our feature extraction algorithm operates in two phases:

We first identify the so-called interest points of the query

scan. Afterward, we extract a descriptor vector for each of

these points. These descriptors are later used to compare two

features.

We calculate the descriptor vector of the features according

to the procedure described in our previous work [15]. In

particular, we extract a local interpolated range image patch

from a view point lying along the normal of an interest

point. This constrains 5 of the 6 degrees of freedom of

the relative transformation between the two range images.

We resolve the remaining degree of freedom (the rotation

around this normal) by orienting the patch along the z-

axis in the world, i.e., the simulated viewers orientation is

along the normal and upright in the world. This method

effectively removes the invariance to the roll of the robot

pose. This restriction did not have any noticeable effect in

the datasets used in our experiments, since the robot was

moving on mostly flat ground. The feature descriptor covers

a fixed 3D distance around the point it was extracted from.

In our experiments we used a radius of 1.25 m and the size

of the range image patches was 10 × 10 pixels. Since the

features encode a complete 3D transformation, knowing a

single feature correspondence between two scans, we are

able to retrieve all 6 degrees of freedom of the relative

transformation between them.

As interest points, we would like to select those pixels of

the range image which represent areas that are substantially

different from their surrounding. In our previous work, we

used a standard Harris detector [8] calculated directly on the

range images to find interest points. Whereas this appears

to be an effective solution, the Harris detector in its original

form is designed for vision and not for range images. If

it is applied without any modification to a range image,

its reaction to points is not invariant to the distance of the

pixel. Additionally, interest points that lie on the border of

an object might be placed on the pixels in the background

instead of the ones in the front. In this work we therefore

propose a novel method that is based on the Laplacian

of Gaussian (LoG) method [12] and analyzes the second

derivative of the depth values in the range image. Let the

range values in the image be rx,y , with x, y being the pixel

position in the image. The gradient in x at pixel x, y can be

approximated as Gx
x,y = ∂

∂x
rx,y ≈ rx+1,y − rx−1,y and the

gradient in y as Gy
x,y = ∂

∂y
rx,y ≈ rx,y+1 − rx,y−1. To gain

invariance regarding the depth at which the interest point

lies, we normalize the gradient as follows:

G
′x
x,y = arctan

(

Gx
x,y

tan(α) · r(x, y)

)

·
2

π
(1)

G
′y
x,y = arctan

(

Gy
x,y

tan(α) · r(x, y)

)

·
2

π
(2)

where α is the angular resolution of the range image. This

term is connected to the impact angle γ of the sensor beam

on the obstacle surface by γ ≈ π
2 − arctan

(

Gx,y

tan(α)·r(x,y)

)

.



The factor 2
π

scales the value to [-1,1]. G′
x,y = 0.0 means

that the neighboring ranges are equal and a value of 1.0
marks a jump to infinity.

We calculate the second derivative of the gradient of Eq. 2

in the image as

Gx2
x,y = G

′x
x+1,y − G

′x
x−1,y (3)

Gy2
x,y = G

′y
x,y+1 − G

′x
x,y−1 (4)

The interest value I(x, y) ∈ [0, 1] is then defined as:

I(x, y) =
√

(Gx2
x,y)2 + (Gy2

x,y)2. (5)

I(x, y) = 0 corresponds to a planar surface and higher

values mark possible interest points characterized by a high

curvature. To reduce the effect of sensor noise, we apply a

Gaussian convolution to G′
x,y , before calculating G2

x,y .

The above procedure also gives high interest values to

certain points, that should not be used for feature extraction,

like the shadows of occlusions or straight edges which do not

represent corners in the sensed surface. To reject these points

as interest points we apply the following filtering procedure:

i) Occlusions: When one object occludes another, the

points at the border of the occluded area in the back-

ground object will receive a high interest value, since

there is a high change of a substantial gradient. However

these features are typically not stable since they are

viewpoint dependent. We identify such points because

of their high normalized gradient (close to 1.0) and since

they have a greater range value than their neighbors. For

these points we set the interest value to 0.0.

ii) Points on a line: Our procedure returns all points where

there is an abrupt change in gradient and will capture

all the points lying on the edge of an object. However,

if these points lie on a straight line, they are not salient

for the matching. Therefore, we calculate the angle of

the dominant direction of the change in the gradient

at each image point using Gx2 and Gy2, effectively

finding the local direction of the line on which the

points lie. We keep only pixels as interest points, where

the neighboring pixels in the determined direction have

different angles. This change marks corners, since all

pixels on a straight line will have very similar angles.

After applying these two filters, the interest points are

determined as all local maxima whose interest value lies

above a certain threshold. Figure 2 shows an example of

the interest point extraction process.

Additionally, to keep the number of extracted features

small, we restrict the minimal distance between interest

points in 3D, since close obstacles can have many interest

points on them. In our experiments we found that a minimum

distance of 0.5 m provides appropriate point sets.

B. Calculation of Candidate Transformations

For each 3D scan, we calculate the range image and

extract the features as described in the previous section. The

resulting features are then stored in a database. For a typical

3D scan obtained with our robot, that contains up to 200,000

Fig. 2. Example of the interest point extraction procedure on the scan
of a Teddy bear. The points are at positions where the gradient changes
significantly and does not lie on a straight line.

data points, the features obtained with our algorithm require

about 200 KB per scan. To match a query scan against the

database, we compare all the features in the scan with the

features in the database using the Euclidean distance between

their descriptors. We consider all pairs of features whose

descriptors distance is below a certain threshold as possible

feature matches. To perform this procedure in an efficient

way, we store all feature description vectors in a kd-tree and

apply the best-bins-first strategy proposed by Lowe [13] to

handle the high dimensionality of the vectors. We then use

the resulting feature correspondences between two scans to

calculate candidate transformations between the scans, which

are the 6DOF displacements between the robot poses.

Since the features encode a complete transformation be-

tween the scan coordinate system and the feature coordi-

nate system, one correspondence is enough to determine

the transformation between the scans. Yet, using multiple

correspondences increases the accuracy of the result. Using

at least three feature correspondences one can compute the

3D transformation between the scans using standard least

square minimization methods (see, e.g., Horn et al. [9]).

For two correspondences, one can use an additional virtual

point per feature, lying on an arbitrary position in the

feature coordinate system, thereby reducing it to a four

point correspondence problem. Unfortunately, the number of

possible combinations grows exponentially with the number

of correspondences. Additionally, in some cases, where the

overlap between scans is small, there might only be a

very small number of correct feature matches available.

Therefore, to restrict the number of created candidate trans-

formations but still maximize the chances of finding the

correct ones, we calculate a fixed number of transformations

for different numbers of feature correspondences. During

our experiments, we used 500 transformations for one, two,

and three feature correspondences respectively, resulting in

a maximum of 1,500 candidate transformations between two

scans. We can efficiently reject outliers in the matching

by exploiting some constraints (e.g., distance) between the

features in the same image and checking that this constraint

is not violated by the matches as described in our previous

work [15].

C. Scoring of Candidate Transformations

To evaluate how well two scans match given a candidate

transformation, we analyze the re-projection of a fixed num-



ber n (100 in our implementation) of points into the other

coordinate frame. We call these points validation points.

It is important that these points have some significance in

the scene and are not just selected randomly, or two scans

could get a high score, just because the floor or a big

wall is matched well. To avoid this problem, we employ

the interest points (see Section III-A), that were already

calculated during the feature extraction phase. We select a

subset of the interest points V = {v1, · · · , vn}, containing

points that are as equidistant as possible. We then transform

these points into the coordinate system of the other scan,

which results in the set of points V ′ = {v′
1, · · · , v

′
n}. Now

we project each point v′
i into the range image of the second

scan, leading to the range value ri and the pixel position

(xi, yi). Next we want to compare the range of our validation

point with the actual range value at that position in the

image rxi,yi
. To avoid that slight errors in the estimation

of a correct transformation lead to a very small score, e.g.,

if the point lies on an obstacle border and we hit the much

further away neighbor instead, we consider not only (xi, yi),
but also its neighbors in a small error radius e ∈ N (2 in our

implementation) around it. This leads to the set

N = {(x, y) | x ∈ {xi − e, · · · , xi + e},
y ∈ {yi − e, · · · , xy + e}}.

(6)

Since we are mostly interested in image points with ranges

that are similar to ri we also define the subset

N ′ = {(x, y) | (x, y) ∈ N ∧ |rx,y − ri| ≤ d̂}, (7)

where d̂ is the maximum allowed error for the difference in

range (we used 0.3 m).

The next step is to calculate a score for each validation

point. This score should have the following properties: If

there are no points in the image at this position (the area was

not visible), the score should be 0.0. If the area is visible, but

non of the range values there are similar, we would like to

give this a penalty of −p (which corresponds to -0.3 in our

implementation). If there are similar range values, we would

like to obtain a score between zero and one, according to

how similar the value is and how far x′, y′ is away from

xi, yi

Taking these requirements into account, we define the

following scoring function for a single validation point:

s(vi) =











0.0, if N = ∅
−p, if N ′ = ∅ ∧ N 6= ∅

max
(x′,y′)∈N ′

(

1 −
|rx′,y′−ri|

d̂

)

· λx′,y′ , else

(8)

where λx′,y′ ∈ (0.0, 1.0] is a weighting factor that is based

on how far x′, y′ is away from xi, yi. In our implementation

we use

λx′,y′ = 0.75 +
0.25

√

(x′ − xi)2 + (y′ − yi)2 + 1
, (9)

which is actually a value between 0.75 and 1.0.

When the score for all validation points is calculated, we

can sum them up to get the score S ∈ [0, 1] for the candidate

transformation:

S =
1

n
· max

(

0.0,

n
∑

i=0

s(vi)

)

(10)

The resulting score is then used to decide if the candidate

transformation is valid. To achieve this, we introduce a

threshold, which was set to 0.25 in all our experiments.

This value was found as a bound above which we did not

encounter any false positives in our datasets.

IV. EXPERIMENTS

In this section, we present the real-world experiments

carried out to evaluate our approach. For the first experiment

we used a self-recorded dataset that we acquired on our

campus using a wheeled robot equipped with a SICK LMS

laser range scanner mounted on a pan-tilt unit. The pan-tilt

unit was moved to acquire a 360◦ view of the surrounding.

The scans were obtained in a stop-and-go fashion and it

takes our platform about 25 s to capture a scan. The dataset

contains 77 3D scans captured along a 723 m long trajectory.

The average distance between the captured scans was about

10 m and we used a maximum range of 50 m for the laser

measurements. Figure 3 shows an overlay of the trajectory

over an aerial image. Each scan consists of 150,000-200,000

points. The resolution of the range images we extracted from

the scans was 0.5◦ per pixel. We made this dataset freely

available (see [1]).

Additionally, we used the freely available Hanover2

dataset (Courtesy of Oliver Wulf) which has also been used

by Magnusson et al. [14] to evaluate their place recognition

system. It contains 923 3D scans acquired along a 1.24 km

long path. Fig. 5 depicts an overlay of the trajectory over

a corresponding aerial image. Each scan covers 360◦ and

contains about 15,000 points. We extracted range images

from these scans with a resolution of 1.3◦ per pixel. The

average distance between the captured scans was about 1.5 m

and the maximum range for the measurements was 30 m.

More information about the dataset can be found on the

corresponding web site [2].

To obtain trajectories close to the ground truth, we used the

graph mapping approach TORO [7]. The edges were created

from the odometry of the robot and from 3D scan matching,

whereas every scan match was verified by a human.

A. Freiburg Campus

Figure 3 gives an overview over the area and the trajectory

obtained by the standard SLAM algorithm. From each scan,

50-200 features were extracted.

For this dataset we calculated the confusion matrix illus-

trated in Figure 4(a). Each scan was matched against all

others and the corresponding cell in the matrix visualizes

the score of the best transformation between the two scans.

We used a score of 0.25 as the acceptance threshold to decide

whether a transformation is considered correct in all our

experiments. The dark areas that are not close to the main

diagonal, mark loop closures. Here the system was able to



Fig. 3. Trajectory of the Freiburg dataset overlayed on a Google Earth
image of our campus. This trajectory was acquired using odometry and hand
checked scan matching as edges in a graph SLAM system. The crosses mark
the positions of the robot where the scans for the localization experiment
were captured.

match scans from different times, where the robot visited the

same area (Compare with Figure 3).

Figure 4(b) gives an overview over the number of true

positives and false negatives and the resulting recall rate as

a function of the distance between scans. On this dataset the

recall rate of our system is above 90% for locations closer

than 15 m. A high recall rate for large distances between

scans is important, since it allows to retrieve the robot’s pose,

even if its position is not exactly on the former trajectory.

Figure 4(c) plots the number of false positives and the

recall rate for a maximum distance of 15 m between scans

as a function of the acceptance threshold. Beyond a score of

0.188 no false positives remain. Thus, our default acceptance

threshold of 0.25 is well in the area containing no false

positives.

To test the ability of our system to localize the robot using

a newly acquired scan, we placed our robot on 20 different

locations on our campus and acquired a scan. From these

scans, 10 were obtained in areas for which there was no

corresponding scan in the database. The other 10 scans were

close to the trajectory taken by the robot while the database

was created (see Fig. 3). Our system correctly identified

all 10 places that were close to places in the database and

also rejected the other 10 scans as unknown. To evaluate

the quality of the transformations between the scans we

compared the output of our system for the best matching

place in the database with the manually verified result of

an ICP based scan matcher. The average translational error

was 0.16 ± 0.05m and the average orientation error was

0.75 ± 0.27◦.

B. Hanover2 Dataset

Figure 5 gives an overview over the area and the trajectory

obtained by the standard SLAM algorithm for this dataset. As

for the other dataset, the trajectory was created using a graph

mapping approach based on the odometry given in the dataset

and manually performed 3D scan matching. Our algorithm

extracted 50-100 features from each scan . The lower number

of features results from the much lower resolution of the

scans. However, relative to the size of the range images, the

Fig. 5. Trajectory of the Hanover2 dataset overlayed on a Google Earth
image. This trajectory was acquired using odometry and hand checked scan
matching as edges in a graph SLAM system.

number of features is higher, since there are more complex

structures in this dataset like trees, which typically increases

the number of interest points.

For this dataset we also calculated the confusion matrix,

which is illustrated in Figure 6(a). Again we used a score of

0.25 as the minimum threshold to decide if a transformation

is considered correct.

Figure 6(b) gives an overview over the number of true pos-

itives, false negatives and the resulting recall rate depending

on the distance between the scans. For this dataset, the recall

rate of our system is above 85% for locations closer than 5 m.

Figure 6(c) shows the development of the false positives

and the recall rate for a maximum distance of 5 m between

scans depending on the score threshold. There are no false

positives starting from a score above 0.235, so our threshold

of 0.25 again guarantees no false positives.

Magnusson et al. [14] used a distance of 10 m as the

visibility constraint for the evaluation of their recall rate of

35.3%. For this distance our recall rate is 58.1%.

C. Timings

The time requirements for a database query are mainly

linearly dependent on the number of scans in the database.

Additionally, there is an overhead for each query that de-

pends on the size of the input scan and the number of features

extracted from the scan. For the two datasets we performed

our experiments on we obtained the following timings on a

2.4 GHz Dual-core Pentium PC, using only a single core.

For the Freiburg dataset the calculations necessary for

every scan (creation of the range image and feature extrac-

tion) took 1.02 s on average. The calculation of the complete

confusion matrix took 151 s, which means that we need about

1.96 s to match a scan against the database. Thereby, the

feature matching took about 180 ms. Therefore, the pairwise

comparison of two scans (disregarding feature extraction and

matching) took 23 ms. Note that for our robot, the time

requirements to match a scan against the database is minor

compared to the time it takes to capture a scan.

For the Hanover dataset the calculations necessary for

every scan (creation of the range image and feature extrac-

tion) took 0.48 s on average. The calculation of the complete
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Fig. 4. (a): The confusion matrix of the Freiburg dataset. 77 3D scans were acquired and the matrix shows the scores of the pairwise comparisons that
were above 0.25. (b): The number of true positives, the number of false negatives, and the resulting recall rate for different maximum distances between
scans to consider them overlapping for the Freiburg dataset. (c): Number of false positives and the recall rate for different minimum scores for the Freiburg
dataset. There are no false positives starting from a score above 0.188. The recall rate is determined regarding a maximum distance of 15 m between scans.
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Fig. 6. (a): The confusion matrix of the Hanover2 dataset. A total number of 923 3D scans were acquired and the matrix shows the scores of the
pairwise comparisons with a score larger or equal to 0.25. (b): The number of true positives, the number of false negatives, and the resulting recall rate for
different maximum distances between scans to consider them overlapping for the Hanover2 dataset. (c): Number of false positives and the recall rate for
different minimum scores for the Hanover2 dataset. There are no false positives starting from a score above 0.235. The recall rate is determined regarding
a maximum distance of 5 m between scans.

confusion matrix took 4 h 39 min, which means that we

needed about 18.14 s to match a scan against the database,

of which the feature matching took about 1.1 s. Therefore,

the pairwise comparison of two scans (disregarding feature

extraction and matching) took 18 ms.

V. CONCLUSIONS

In this paper we presented a robust approach for 3D

place recognition using range images, that also produces

highly accurate relative pose transformations between two

scans. Our system employs a novel interest point extractor

specifically designed for range images. The obtained interest

points are applied to extract features and to score candidate

transformations. We evaluated our approach on real world

data acquired on our campus and also on one freely available

dataset. While our computational requirements are higher

than those of other state-of-the-art systems, our recall rate

on the considered datasets is substantially higher. In future

work, we plan to substantially reduce the computational cost

of our method by introducing fast pre-selection methods for

the scan candidates, e.g., using a bag-of-words approach like

Cummins and Newman [5] or by using the approach of

Magnusson et al. [14] with a high difference threshold as

a preprocessing method.
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