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Abstract—In this paper we address the topic of feature ex-
traction in 3D point cloud data for object recognition and pose
identi cation. We present a novel interest keypoint extraction
method that operates on range images generated from arbitrary
3D point clouds, which explicitly considers the borders of
the objects identi ed by transitions from foreground to back-
ground. We furthermore present a feature descriptor that takes
the same information into account. We have implemented our ; ¥ 3 !
approach and present rigorous experiments in which we analyze ’ — L] AL h
the individual components with respect to their repeatability {’{[- =~ "-'ff}:"—k[j' Q}Ey "-:—_lgr:é-ﬂ-.v (b)
and matching capabilities and evaluate the usefulness for point [ e ';’;f-i- - h gL L e
feature based object detection methods. - P ‘i

I. INTRODUCTION

In object recognition or mapping applications, the ability . ) .
to nd similar parts in different sets of sensor readings is % .*° wLIe . s I (0
a highly relevant problem. A popular method is to estimate ip e e %
featuresthat best describe a chunk of data in a compressed %, .
representation and that can be used to efciently perform
comparisons between different data regions. In 2D or 3D x
perception, such features are usudbigal around a point L ) .;;j;:f“ }
in the sense that for a given point in the scene its vicinity b e
is used to determine the corresponding feature. The entire
task is typically subdivided into two subtasks, namely the

; ; ; ; ; ig. 1. The interest point extraction procedua) Range image of an
identi cation  of appropriate points, often referred to aszf ce scene with two chairs in the front with the extractedrdbers marked.

interest poins or key poing, and the way in which the () surface change scores according to borders and principletare. (c)

information in the vicinity of that point is encoded in anterest values with marked interest points for a suppog eiz20cm. Note
descriptoror description vectar how the corners of the chairs are detected as interest matitiss scale(d)

. . Interest values with marked interest points for a suppoet siz1m. Note
Important advantages of interest points are that theysw, compared to (c), the whole surface of the chair's batkmesntain one

substantially reduce the search space and computation timterest point at this scale.
required for nding correspondences between two scenes an

that thgy furthermore focus the cqmputation on areas tleat ah mind: i) the selected points are supposed to be in position
more likely relevant for the matching process. There haa be here the surface is stable (to ensure a robust estimation
surprisingly little research for interest point extractio raw f the normal) and where there are sufcient changes in

3D data in the past, compared to vision, where this is a Wet}’e immediate vicinity; ii) since we focus on partial views,

:ﬁzedaégzﬁgtc?:e& Most papers about 3D features target O want to make use of object borders, meaning the outer

shapes of objects seen from a certain perspective. The outer

tlr? t:;'IE)S E\ aszfrr\;vr? SC:‘]ZeOrI; i?%ﬁerrgggfa;c;g‘: ash(()al?;altngo ms are often rather unique so that their explicit use & th
\(;Wt is incomolet 9 nd dependent on a view ir,1tWW hnﬁterest point extraction and the descriptor calculatian be
ata IS incompliete a ependent on a viewpoint. Ve Chogg e cted to make the overall process more robust. For this

range images as the way to represent the _data since theQ’r)pose, we also present a method to extract those borders.
re ect this situation and enable us to borrow ideas from th

. o the best of our knowledge, no existing method for feature
vision sector.

. . extraction tackles all of these issues.
We present the normal aligned radial feature (NARF), a . . . . .
Figure 1 shows an outline of our interest point extraction

novel interest point extraction method together with adeat ; : . )
. . . . . procedure. The implementation of our method is available
descriptor for points in 3D range data. The interest poi )
under an open-source licedse
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(>j<traction method has been designed with two speci ¢ goals



The paper is organized as follows. After discussing related Obstacle Hifithiti
work in Section Il, we will introduce our border extraction
method in Section Ill. We then will describe the interest
point extraction in Section IV and the NARF-descriptor
in Section V. We nally present experimental results in
Sections VI and VII.

AN .}%\ o -
IIl. RELATED WORK Fig. 2. Different kinds of border points.

Two of the most popular systems for extracting interegeoint detection and matching, compared to dividing the 3D
points and creating stable descriptors in the area of 28ructure into faces that are then matched individually.
computer vision are SIFT (Scale Invariant Feature Trans- Many approaches compute descriptors exhaustively in ev-
form) [7] and SURF (Speeded Up Robust Features) [2Bry data point or use simple sampling methods ([6], [3],,(8])
The interest point detection and the descriptors are based Giereby introducing an unnecessary overhead. In [4] the au-
local gradients, and a unique orientation for the imagetpatdhors present an approach to global registration usingtate
is extracted to achieve rotational invariance. Our apgroac/olume Descriptors (IVD) estimated at certain interesnpi
operates on 3D data instead of monocular camera imagéd.the data. These interest points are extracted using a self
Compared to cameras, 3D sensors provide depth informatigiimilarity approach in the IVD space, meaning the descripto
and can be less sensitive to lighting conditions (e.g.,rlas€f @ point is compared to the descriptors of its neighbors to
sensors). In addition, scale information is directly aablié. determine areas where there is a signi cant change. While
A disadvantage, however, is that geometry alone is le$Bis method for interest point extraction explicitly takibe
expressive in terms of object uniqueness. While SIFT ar@escriptor into account, it becomes impractical for more
SURF are not directly transferable to 3D scans, many éfomplex descriptors, which are more expensive to extract.
the general concepts, such as the usage of gradients and hwikrishnan [16] presented an interest point extraction
extraction of a unique orientation, are useful there. method with automatic scale detection in unorganized 3D

One of the most popular descriptors for 3D data i®0int clouds. This approach, however, does not consider any
the Spin-imagepresented by Johnson [6], which is a 2DView-point related information and does not attempt to @lac
representation of the surface surrounding a 3D point arifitérest points in stable positions. In [12] we presented a
is computed for every point in the scene. In our previou§€thod for selecting interest points based on thefsistence
work [14] we found that range value patches as featurd8 growing point neighborhoods. Given a PFH (Point Feature
showed a better reliability in an object recognition systenffistogram) space [11], multiple descriptors are estiméted
compared to spin images. The features we propose in tiigveral different radii, and only the ones similar between
paper build on those range value patches and show &RdTi+1 are kept. The method described in this paper is
improved matching capability (see Section VII). Spin irmageby severallorders of magnitude faster in the estimation of
also do not explicitly take empty space (e.g., beyond objediterest points.
borders) into account. For example, for a square plane the!n our previous work we also used interest point extraction

spin images for points in the center and the corners wouf@ethods known from the 2.D computer visionlliterature, such
be identical, while the feature described in this paper Is abas the Harris Detector or Difference of Gaussians, adapted f

to discriminate between such points. range images [14], [13]. Whereas these methods turned out to
An object detection approach based on silhouettes che _robust, they have several_sho_rtcomings. For example, the

tracted from range images is presented in [15]. The featur€§timated keypoints tend to lie directly on the borders ef th

proposed are based on a fast Eigen-CSS method anqolgects or on ot.her positions that have a signi cant change

supervised learning algorithm. This is similar to our workn structure. While these areas are indeed interesting parts

in the sense that the authors also try to make explicit uB€ scene, having the interest points directly there cantea

of border information. By restricting the system to borderdligh inaccuracies in the descriptor calculation sincedfas

only, however, valuable information regarding the stroetu WPically unstable areas, e.g., regarding normal estonati

of the objects is not considered. Additionally, the extiaect 1Ne goal of our work described here is to nd points that

of a single descriptor for the complete silhouette makes € in the vicinity of signi cant changes and at the same
system less robust to occlusions. time are on stable parts of the surface.

Huang et al. [5] developed a system for automatic re- 1
assembly of broken 3D solids. For this purpose the authors o
also extract boundaries on the 3D structures, in this cade Motivation
to detect sets of faces. The method detects cycles of edge©ne important requirement to our feature extraction pro-
based on surface curvature. The detected surface parts eeelure is the explicit handling of borders in the range data.
then matched to nd corresponding fragment parts. In ouBorders typically appear as non-continuous traversals fro
application the border detection nds changes from foreforeground to background. In this context there are mainly
ground to background and uses this outer shape in the interwee different kinds of points that we are interested in

. BORDER EXTRACTION



detecting: object borders which are the outermost visible Let py, be the point at positiox;y in the image. We
points still belonging to an objecshadow borderswhich calculate the average 3D position of some of its neighbors
are points in the background that adjoin occlusions,\aitl on the right as

points which are interpolated points between the obstacle Ko

border and the shadow border. Veil points are a typical ! o 1
. . . . Pright Px+iy s ( )

phenomenon in 3D range data obtained by lidars and treating Mp .,

them properly clearly improves matching and classi cation

i . herem, is the number of points used for the average (3
results. F'gl.”e 2 ShOV.VS an example of the different types ‘:"ﬁ our implementation). We take this average instead of just
(border) points described above.

the neighborpy.1 .y to account for noise and the possible
existence of veil points. Next we calculate the 3D distance

) o ) dright = JiPxy  Prigndi. We then calculate a score based on
There are different indicators that might be useful fognq quotient ofign and  as

the detection of those borders in a range image, like acute
impact angles or changes of the normals. In our practical
experiments, we found that the most signi cant indicator,

which is also very robust against noise and changes ipiq gives us a value if0; 1), with high values meaning a

res_olutlon, IS a change in the dlstance_ between ne'ghbo_”ggbstantial increase between the typical neighbor distanc
points. We will use this feature to classify borders acawydi _ 4 e distance to the points on the right, indicating a
to the following steps. For every image point we look at it%robable border

local neighborhood .ar.1d . _ Next, we apply a smoothing operation on the score values
employ a heuristic to nd the typical 3D distance totg achieve continuous borders and avoid disruptions coming

B. Overview

Sright = max  0;1

)

dright

neighboring points that are not across a border, from sensor noise.

use this information to calculate a score for how likely To determine if a given poinpyy is in the foreground

it is that this point is part of a border, or in the background, we have to check if the range value
identify the class to which this border point belongs(distance to the original sensor position)mf, is lower or
and higher than the range dign.. A lower value indicates an
perform non-maximum suppression to nd the exacppstacle border, a higher value indicates a shadow border.
border position. For all pointspyy that are potential obstacle borders, we

. . ) now search for a corresponding shadow border to the right,

C. The Algorithm in Detail selecting the one with the highest score in a maximum 2D

Please note, that since we are using range images, eveligtance (3 pixels in our implementation). Depending on the
point has a 2D position (the position of the pixel in thescore Sshagow Of this potential shadow border we slightly
image) and a 3D position (the measured position in the worldecreases;ign; according to
coordinate frame). The same applies for distances between o _ . 3 _
points. When we refer to 2D distances we mean the distance Sight = Max(0:9;1 (1 Sshadow”) ~Sright ®)
between the pixels in the image, whereas 3D distance refqs this way, we reduce the score by up to 10% for small
to the Euclidean distance between the 3D points. values ofSporger

At rst, we look at every image point and apply a heuristic  |n a last step, we check ), is above a threshold (0.8 in
to nd out what 3D distance a certain point typically hasoyr implementation) and if it is a maximum regarding 1
to its 2D neighbors, that belong to the same surface. Tgndp,., . If this is the case, we mar, as an obstacle
detect this we use a concept similar to the idea of Bilaterglorder, its counterpart from above as a shadow border, and
Filtering [1]. For each poinp; in the range image we select | pixels in between as veil points. Figure 1(a) displays
all neighboring pointfn;; ;ns2g that lie in the square an example of the output of this procedure. In this gure,

of sizes with p; in the middle. Then we calculate their 3D the different kinds of border points are marked in different
distanceddp; ;ds2g to p; and sort this set in increasing colors.

order to getf dg; ;dgzg. Assuming that at least a certain
numberM of the points lie on the same surface @s we IV. INTEREST POINT EXTRACTION
select = df, as atypical distance t-s neighbors, that do A. Motivation

not include points beyond a(sl::;))rder. In our implementation The detection of interest points is an important step to

we selected =5 andM = == =9, which would be reduce the search space for feature extraction and focus the
the highesM to still get a correct value for a point lying on attention on signi cant structures. We have the following
the tip of a right angle corner. In the next step we calculateequirements for our interest point extraction procedure:
four scores for every image point, describing the probghili i) it must take information about borders and the surface
of having a border on the top, left, right, or bottom. We willstructure into account; ii) it must select positions that bae

only explain the procedure for the direction to the right aseliably detected even if the object is observed from anothe
the other three are carried out accordingly. perspective; and iii) the points must be on positions that



provide stable areas for normal estimation or the descaripto Since we also want to consider the changes on the surfaces

calculation in general. that are not related to borders, we calculate the principal c
vature directions at each point, which gives us the prircipa
B. Overview direction and the magnitude (the largest eigenvalue) of the

. i o curvature. Every point in the image gets an associated
Stable interest points need signicant changes of thg,ain directionv, which is the border direction in every

surface in a local neighborhood to be robustly detected iy ger point and the principal direction in every other poin
the same place even if observed from different perspectiveg)| of these directions get a weight that is 1 for every

This.typicalily means, that there are substaqtially differe border point andl (1 )3 for every other point (this

dominant Q|rectlons of the surface changes in the area. E‘?(pression scales the magnitude upwards, while keeping it

capture this, we in [0; 1)). Figure 1(b) shows an example of the valueswof
look at the local neighborhood of every image point and Until now, all the calculations were done on xed 2D pixel
determine a score how much the surface changes at thélius surroundings. From now on, the actual 3D support
position and a dominant direction for this change, alssize will be used. As long as enough points are available
incorporating the information about borders, inside of the sphere with diameter, this will make the
look at the dominant directions in the surrounding ofmethod invariant to resolution, viewing distance and non-
each image point and calculate an interest value thahiform point distributions.
represents i) how much these directions differ from each For every image poinp we look at all its neighbors
other and ii) how much the surface in the point itselffng; ;ny g that are inside of the support size (3D distance
changes (meaning how stable it is), below ) and do not have a border in between. Each of those
perform smoothing on the interest values, and points n; has a main directiorv,, and a weightw,,. To
perform non-maximum suppression to nd the nal get back to 2D direction vectors, which helps us reduce the
interest points. in uence of noise from the normal estimation, we project the

The most important parameter of this process is thdirections onto a plane perpendicular to the direction from

support size , which is the diameter of the sphere aroundN® SENsor t@. This leads us to a one dimensional angle
the interest point, that includes all points whose dominantni -for eachn;. , _— .

directions were used for the calculation of the interesteal  SI"CE€ WO opposite directions do not dene a unique
This is the same value that will later on be used to determifgSition and since the principle curvature analysis dogs no
which points will be considered in the calculation of theProvide a unique direction, we transform the angles in the

descriptor. Choosing the value ofdepends a lot on the size 0llowinggnay:

of the structures that we want to nd. In general, the higher < 2 ( +180) for 90
the value, the more points are used to calculate the feature, °= . 2 for 90 < 90 (4)
which therefore becomes more stable. But in the context of 2 ( 180) for > 90

object recognition it should be smaller than the objectfitse\e furthermore smooth all the weights and angles by apply-
to have some robustness against partial occlusion. We foufiy a bounded Gaussian kernel.

in our experiments, the#5% of the average object size is a e now de ne the interest valugp) of pointp as follows:
reasonable value. For objects of very different sizes ithmig

be necessary to use multiple scales. li(p) = min 1wy, max(d M;o) )
I
s
C. The Algorithm in Detail fn) = W, 1 2 jip  njj % (©)
We start by calculating the directions of the borders we
extracted in the previous step. For each point we know if it I2(p) = max (F(m)f ()@ j cos(n 2D (M)
has a border on its top, right, left, or bottom. Thereby ever ’
b 1 YEEY 1) = 1u(p) 12(p) ®)

border pixel already encodes the direction of the border in
steps of45 . Please note that the estimation of this quantity The Term |, scales the value of downwards, ifp
can be improved by averaging over multiple border pixels ihas neighboring points with high weights (strong surface
a local neighborhood. Please furthermore note, that we uskanges) close by, thereby satisfying our desired property
range images in spherical coordinates, which look distiortgout interest points only on locally stable surface posgion
when visualized in 2D. If the estimation would be doneThe terml, increases the interest value if there is a pair
directly in the range image space, this distortion woulaf neighbors with very different and strong main directions
in uence the calculation of 2D directions in the image ifsel in the vicinity. After | is calculated in every image point,
To prevent this, we perform the calculations on the 3D pointwe perform an additional smoothing of the values over the
corresponding to the pixels, using local normals. We esémaimage.

the normals using PCA on a local 2D neighborhood of In a nal step we now select all maxima df above a
the points, where we disregard neighbors with 3D distancékreshold as interest points. See Figure 1(c,d) for an el@amp
above2 (see Section IlI-C). where the values of for two different values of are



visualized and the interest points are marked. Note, how tl& The Algorithm in Detail

interest points are in the corners of the chairs for a small

support size, whereas they move more to the middle for As previously mentioned, we build on the normal aligned

higher values. range value patches that we used as a descriptor before.

Those can be calculated by creating a local coordinatersyste

with zero in the interest point position, theaxis facing

in the normal direction and/ being oriented according

to the upright vector in the world coordinate frame. We

then transform all points within the support radiys(see
Feature descriptors describe the area around an inter&sction IV-B) into this coordinate frame. The resulting

point in a way that makes ef cient comparison regardingandy coordinates de ne the cell of the descriptor in which a

similarity possible. Our goals in the development for thgoint falls, and the minimum over alvalues is the value of

NARF descriptor were i) that it captures the existence ot cell. A cell where no 3D points fall into gets the maximum

occupied and free space, so that parts on the surface ar@lue of5. The normal is calculated using PCA on all points

also the outer shape of an object can be described, ii) thdat will be used to calculate the descriptor to maximize it

it is robust against noise on the interest point positiorg anstability. This size of the image patch should be high enough

iii) that it enables us to extract a unique local coordinatéo keep enough descriptive structure, but low enough to not

frame at the point. Compared to our former work using rangsurpass the typical resolution of the scan. We chose size of

value patches, mainly ii) and iii) needed improvement. Fot0 10 pixels for our experiments. To prevent problems

the latter, the normal vector at the point can be used, whidh areas where the resolution of the original scan is low,

leaves the rotation around the normal to be determined. interpolation between cells or usage of ray tracing may be
While many feature descriptors in 3D are invariant tdecessary. In the next step we put a Gaussian blur onto the

the rotation around the normal (like spin images [6]), oPatch. Then we project a star shaped pattern witheams

even the complete 3D orientation [10], it is helpful toOnto it (see Figure 3(b)), whene will be the size of the

have the information about this orientation available foNARF-descriptor. We chose = 36 for our experiments,

multiple reasons. For one, it might be desirable to be ablee-» 10 between the beams. For each bemwe select

to not use a unique orientation, e.g., if we only search fdhe set of cellfco;  ;cng that lie under it, withco being

correspondences with a xed patch orientation, as in the caghe middle of the patch and the rest ordered according to the

of a wheeled robot searching for correspondences betwe@igtance taco. The value of the-th descriptor celD; will

its map and the environment. An invariance regarding théen be

robot's roll might unnecessarily increase the size of the . .

search space, since the robot will operate at roll angle zero wig) = 2 2 Jig  Coll )

most of the time. On the other hand, in cases where the

unique orientation is used, it enables additional Iterifog P l(w(c,-) (g G))

consistent local coordinate frames between features. The o _ =0 o

NARF descriptor enables us to extract a unique orientation D = P 1 (10)

around the normal. The underlying idea is similar to what is o w(g)

done in SIFT [7] and SURF [2]. Yet, unlike its 2D siblings, ';0

this orientation together with the normal de nes a complete D, = atan2 Di5 5 (11)

6DOF transformation at the position of the interest point. 180

V. THE NARF DESCRIPTOR

A. Motivation

where w(c) is a distance-based weighting factor, that

weights the middle of the patch witBh and decreases to

To compute the NARF descriptor in an interest point, wé towa_rds the outer edges of the patch. The basic intuitic_m

) ] for D?is: the closer to the center a change in the surface is,

calculate a normal aligned range value patch in thg.q the stronger the change is, the more the beam value will
point, which is a small range image with the observegeyiate from 0. The step from? to D; is for normalization
looking at the point along the normal, purposes and scales every cell to [-0.5, 0.5]. Please aemsid
overlay a star pattern onto. this patch, where.each bealﬁﬂgure 3(a,b). At the bottom of (b) the nal descriptor is
corresponds to a value in the nal descriptor, thaysyalized and the arrows mark corresponding beams. Beams

captures hoyv much the pixels under the beam Changﬁ,at lie on a at surface have low values, whereas beams
extract a unique orientation from the descriptor, going over the border have high values.

and shift the descriptor according to this value to make Until now, the descriptor was not invariant to the rotation

it invariant to the rotation. :
around the normal. We now try to nd one or more unique
The last two steps are optional, as explained above. orientations for the descriptor. For this purpose we disee
Please consider Figure 3(a,b) for a visual example of thtbe possible360 into a number of bins and create a
process. histogram. The value for a histogram cell corresponding to

B. Overview



armchair cart cup of ce chair Pioneer robot stapler teddgrbe

Fig. 4. Objects used for the experiments. For each of theszisbjve obtained a complete point cloud model.

different views with additional noise on the point positon
(see Figure 5(c) for example views with marked interest{poin
positions). We then compare the interest point positions on
the rst set of views with each view of the other set.

We calculate the repeatability of the interest point extrac
tion according to the method proposed in [16], which is a 3D
extension of a commonly used method in the computer vision
literature [9]. For every interest poimf in one view of the
object, we search for the closest interest pojnin another
view and calculate the ratio of the intersection between the

, © (o) _two spheres with radius = - around them as:
Fig. 3. (a): A range image of an example scene with an armchair in
the front. The black cross marks the position of an intereshtpgb):
Visualization how the descriptor is calculated. The topveha range value s=1 §9 + i
patch of the top right corner of the armchair. The actual desur is A4 16
visualized on the bottom. Each of the 20 cells of the desaripporesponds

to one of the beams (green) visualized in the patch, with twathef \where d is the 3D Euclidean distance between the two
correspondences marked with arrows. The additional (redyvgpointing to . : :

the top? right shows the extracted dominant orientat(o(m.TthdescrﬁJtor mtgres'F points. For this p‘ﬂrpose' we On_ly take L_mO,CC|Ud_ed
distances to every other point in the scene (the brighterhigger the —POINts into account, meaning we check if the point itself is
value). Note that mainly top right rectangular corners get leelues. in uenced by self occlusion regarding the current pair of

Best viewed in color views, and reject it if this is the case.

d *

angle is Figure 5(a) shows the result of the cross comparison
1 1 j 2 of the positions of the interest points of all the objects.

h() = Z+ = D; 1 1) ; (12) The scores are shown dependent on the angular viewpoint
2. i=1 180 change and the difference in observing distance (leadirgg to

where ; is the angle corresponding to ttieh descriptor plifference in_scale in the range ir_nag_es). While a high.change
cell. We select the histogram bin with the maximum as th# Scale obviously has a negative in uence on the interest
dominant orientation of the patch. If there is another celPoint stability (see the different plots for different ses),
with a value above 80% of the maximum, we create a secod$ in uence seems minor compared to angular changes,
feature with this orientation. We can now shift the desaript Which is why we will omit changes in scale from now on to
to create the rotationally invariant version. save space. The dashed black line shows how many samples
The resulting descriptors can now easily be comparefjere available for the calculation of the averages. Thisezal
using standard distance functions. We chose the ManhattA@furally decreases with the angle, since increasinglefew
distance divided by the number of cells in the descriptoPOints are actually visible from both perspectives. Thedsol
which normalizes the distance to valueq0n1]. Figure 3(c) black line close to the _bottom represents the repeatability
visualizes all the descriptor distances to the selectedtoi Valué for a random point on the object surface, thereby

the range image. de ning a minimum value below which the results are not
meaningful anymore. This plot shows, that the interesttpoin
VI. EXPERIMENT - INTEREST POINT STABILITY extraction is relatively stable over a wide area of viewpoin

Our goal for this experiment was to analyze how stable thehanges. For changes beld®® the interest points share
position of the interest points is relative to changes idescaabout70% of their support size on average and abb&%o
(distance to the object) and viewing angle. For this purpoder changes belovB0 .
we selected seven object models in the form of complete Figure 5(b) shows the same analysis, but for every model
point clouds. These models represent very different kindadividually. The cup shows an unusual behavior compared
of objects and include furniture-sized objects and talpletoto the rest. This results from the fact that it is rotatioyall
objects (see Figure 4 for a list of the models). To be able t®symmetric over a wide range, making the interest point po-
evaluate objects of very different sizes together, we sicalle  sition much more dependent on the viewpoint. The increase
the models to a bounding sphere with a diameter of 1.0 nm value betweerl00 and160 is caused by interest points
As support size we used 0.25m, which is large enough tn the left border of the cup again being extracted when
cover most of the signi cant structure of the models, but lonseen from the other side on the right border. The cart, the
enough to account for partial occlusions. For each of thesdair and the pioneer robot models have higher values for
objects we simulated 50 noiseless views from differentesgl the dashed lines. This mainly indicates that a higher number
and distances around the object. Then we simulated 1@ interest points was extracted on these models, leading to
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Fig. 5. (a): This graph shows how repeatable the interest point detedsi regarding differences in the viewpoint angle (x axeg) differences in the
scale between two views of the object (the ve solid plots).séale of 1:1 means the object was seen at the same distance, dn@ atedouble the
distance. The dashed line shows how many samples were aeaitabhveraging. The number goes down with increased angte $ass and less pairs
of points are actually visible from both perspectives. Thidsblack line follows from the average distance of a randeomt on the models surface to
the next interest point, giving a minimum value for the repleiitg, below which the value is meaningles&): Same as (a), but per object model. The
dashed lines with constant value correspond to the solickliae in (a).(c): Examples of the simulated views used to create (a) showingvtewss of
the backside of an of ce chair and two views of a cup. The iesépoints extracted on the views are marked in the images.  Best viewed in color

‘ ~ ’ plot marked NARFs all pointsis for our NARF feature
' s 3 ! descriptors extracted at every image point, without usieg t
‘ - - ‘ interest points. The plot markeédARFs int. pointshows the
| , performance of the NARF features together with the interest
_ . points. The plot markedNARFs(ri) int. pointsis for the
Fig. 6. Examples for the created scenes. From left to rightedicene  rotational invariant version of the NARF descriptor. Thetpl
with armchair, of ce scene with teddy bear, tabletop scenéhvgtapler, . . .
tabletop scene with cup. markedRVPs int. pointss using the range value patches that
o ) we used in our former work [14], [13] as feature descriptors.
the situation that random points on the surface on averagg can be seen, the interest points are a de nite improvement
are closer to the interest point positions. compared to random point positions. Additionally, the rota
VIl. EXPERIMENT 2 - MATCHING CAPABILITY tionally invariant ve_:rsion and the rotationally varia_nn's;ien _
. . . of the NARF descriptor outperform the RVP descriptors with
In this experiment we wanted to test the capability of OUT o rest points
NARF-descriptors to match features from an object model P " )
To evaluate if the system can be used for object recog-

to the features in a scene containing the model. For this

purpose we collected 10 scenes with a 3D laser range nd8ftion, we used the extracted feature matches to actually

in a typical cluttered of ce environment and 10 scenes with &2/culate object poses. Since every feature encodes a local
stereo camera system of tabletop scenes. Then we artjcialfPOF coordinate frame, one feature maich is enough to

added our models (including noise on the 3D point position§)a|C“|ate an object position and orientation. We calcdlate

to these scenes - the armchair, cart, chair, robot, and tR8S€ for every match with a descriptor distance below 0.05.

teddy bear to the of ce scenes and the stapler and the Ctlflbgure 7(b) shows the average number of correct poses versus

to the tabletop scenes, thereby creating 70 scenes with dqéS€ POSes for one object and one scene. An object pose was
known object in each. In this process, the objects coulff@SSi ed as correctif its error compared to the true poss wa
appear in an arbitrary yaw and x,y positions, while the higmelow 0:3 times the object radius in translation and below

was restricted to the oor/tabletop and roll and pitch ware i 12 N rotation. For angular differences bel®@ there are
their natural orientations. The latter were chosen to be abfyPically 2 correct poses versuk false poses. It would be

to test our descriptor also without the rotational invacian UP t0 @ Spatial veri cation step to reject those false posti
For the tabletop scenes, the table plane itself was removed Figure 7(c) shows the true poses per used object model.
as it is often done in tabletop object recognition. Figure @he armchair performs best, since it mostly consists oflarg
shows some examples of the created scenes. rectangles, that do not change much with moderate changes
To match the objects against the scenes, we sampled po#eshe viewpoint. The cup model performs worst, which is
from our models that differed from the ground truth posegue to the low number of interest points on the model and
between0 and50 . additionally the rotational symmetrical structure. Yetet
The resulting numbers of true positives and false positive@osition of the cup, disregarding the orientation, canl stil
are summarized in Figure 7(a) as ROC (Relative Operatirfgg found, as the plot labelexip wrong rotshows.
Characteristic) curves. Please note the logarithmic scale We also tested, at which position in the set of matches
which show the interesting part of the plot, the bottom(ordered by descriptor distance) the rst correct objecsgo
left corner, better. The absolute number of false positivetypically occurs. Table | gives an overview per object de-
is much higher than the absolute number of true positivepending on the viewpoint angle difference (a:armchair,
which makes areas with a high ratio of false positives lessa:cart, cu:cup, oc:of ce chair, pr:pioneer robot, s:&tap
useful. The thicker plots mark areas, where the numbdb:teddy bear). Whereas the rst number in the table tells the
of true positives to false positives is lower than 1:10. Thaverage position in the set of matches (ordered by descripto



1 - 12 ; : ; 9 ‘ -

= true poses (meam—— armchair

: false poses (meany)------ 8 cart

) wor T ) cup
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2 & & cup (wrong rot)
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= 2 25 stapler

8 T 67 g teddy bear
a g g 4

(4] . 0 173
E i 53
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, , (a) (b) o _ (c)
Fig. 7. (a): This graph shows ROC curves for feature matches where tlesttbid for the descriptor distance increases from the imol&dt to the top

right. Please note, that the axes are logarithmic. The highiee in this graph, the better is the performance. The pdrtiseoplots that are printed thicker
mark the areas, where the ratio between true positives ase faisitives, in absolute numbers, is better than 1(11)0.The average number of true/false
poses extracted from the feature matches for all objécisThe average number of true poses extracted from the featuighesaper object. To account
for the symmetry of the cup, the plot markedp (wrong rot)gives the number of poses that are correct regarng; z )-position, but not necessarily

regarding orientation.

TABLE |
POSITION IN THE SET OF MATCHES WHERE THE FIRST CORRECT OBJECT

Best viewed in color

by the European Commission under contract numbers FP7-

231888-EUROPA and FP7-248258-First-MM.

POSE TYPICALLY OCCURS AND THE SUCCESS RATE

a cu oc pr

0 : 1: 1:3=1 1:2=0:9 1:9=1

5 2 1:5=0:8 1:6=0:8 1:6=0:7

10 1 2=0:5 1:7=0:9  1:2=0:8 [1]
15 2 1=0:3 1:1=0:8 2:9=0:8

20 3 1:5=0:2 1:2=0:9 4:2=0:6

25 1 3 2=0:2 3:3=0:6 1:5=0:6

30 3 6 =0 2=0:6 5=0:6 0:

35 4: =0 2:2=0:4 6:4=0:5 0: [2]
40 2 2 6=0:1 3=0:3 2:7=0:3 0:

45 3 5 =0 1:5=0:2 5:5=0:2 0:

50 5: =0 2:5=0:2 2:3=0:3 =0 [3]

distance) where the rst correct object pose occurs, the

second is the rate with which a correct position was found !
As can be seen, for viewpoint changes be@W, the rst
correct pose can typically be found withtrials in the80%
where a correct pose could be found.

(5]

VIII. TIMINGS el

The average timings for range image creation, border de[-7]
tection, interest point extraction and feature descrip&icu-
lation werel81=22:9=27:2=2:86ms respectively for of ce  [8]
scenes from point clouds of size 115061 and range image res-
olution 0:4 with 104 features per scene. The same numbers
for the tabletop scenes we?€.4=5:41=6:85=0:989ms for  [9]
tabletop scenes from point clouds of size 88395 and range
image resolution0:2 with 48 features per scene. Thesgig
values were obtained on an Intel I7 quadcore.

IX. CONCLUSIONS [11]

In this paper we presented NARF: a novel approach to
feature extraction in range images. NARFs are generatil%]
at points where the surface is mostly stable but changes
signi cantly in the immediate vicinity. It furthermore mak
explicit use of border information. In practical experirteen [13]
we demonstrated that NARFs give better matching results
than the features we used in our earlier work on obje¢t4]
recognition, which in turn outperformed the well known
spin images. All the software and datasets used for thes
experiments are available as open source.
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