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Abstract—Place recognition, i.e., the ability to recognize pre-
viously seen parts of the environment, is one of the fundamental
tasks in mobile robotics. The wide range of applications of
place recognition includes localization (determine the initial
pose), SLAM (detect loop closures), and change detection in
dynamic environments. In the past, only relatively little work
has been carried out to attack this problem using 3D range data
and the majority of approaches focuses on detecting similar
structures without estimating relative poses. In this paper, we
present an algorithm based on 3D range data that is able to
reliably detect previously seen parts of the environment and at
the same time calculates an accurate transformation between
the corresponding scan-pairs. Our system uses the estimated
transformation to evaluate a candidate and in this way to
more robustly reject false positives for place recognition. We
present an extensive set of experiments using publicly available
datasets in which we compare our system to other state-of-the-
art approaches.

Index Terms—Place recognition, SLAM, loop closing, point
clouds, range images, range sensing

I. INTRODUCTION

Place recognition, meaning the detection that a robot

revisited an already known area, is a crucial part in key

navigation tasks including localization and SLAM. The ma-

jority of state-of-the-art place recognition techniques have

been developed for vision- or two dimensional range data.

Relatively few approaches work on three-dimensional laser

range scans and can efficiently calculate the similarity or the

relative transformation between two scans.

In this paper we present a place recognition system oper-

ating on 3D range data. Our approach transforms a given 3D

range scan into a range image and uses a combination of a

bag-of-words approach and a point-feature-based estimation

of relative poses that are then individually scored. Figure 1

shows an example application. It visualizes how the calcu-

lated relative transformations between scans can be used as

edges (loop closures) in a pose graph. This enables us to

apply our approach as a front-end for a graph-based SLAM

system.

This paper builds on the results of our earlier work in

the area of place recognition [16]. This approach had high

recognition rates, but had shortcomings regarding the runtime

and was not fully invariant to the orientation of the individual

scans. Our algorithm described in this paper uses a novel

feature type, an improved sensor model, includes a self-

similarity analysis, and employs a bag-of-words approach

as a preprocessing step to achieve a higher performance.
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Fig. 1. Results from our place recognition system on the Hanover2
dataset. The image shows the graph of the trajectory (black nodes) and
the found loop closures between the scans (blue/gray lines). The z-axis of
the trajectory represents the scan index to make the loop closures more
easily visible. The image in the bottom right shows an aerial image from
Google Earth with the overlaid trajectory of the dataset. The experimental
section provides further details about the dataset and our results.

We tested our approach on different kinds of platforms:

ground robots and flying vehicles. For the ground robots,

we used publicly available datasets to allow comparison with

previous methods. For flying vehicles we acquired a new set

of 3D range scans. For the sake of repeatability, we will

make this data publicly available.

II. RELATED WORK

In the past, the problem of place recognition has been

addressed by several researchers and approaches for different

types of sensors have been developed. Cameras are often

the first choice. Compared to 3D data, vision features are

typically very descriptive and unique. However, spacial ver-

ification is naturally easier in 3D data. One very successful

approach using vision is the Feature Appearance Based

MAPping algorithm (FABMAP) proposed by Cummins and

Newman [7]. This algorithm uses a Bag-of-Words (BoW) ap-

proach based on SURFs [5] extracted from omni-directional

camera images and was shown to work reliably even on

extremely large-scale datasets. We would like to refer the

reader to this paper for a detailed discussion on both vision-

based place recognition and BoW approaches.

An approach that is similar to ours regarding the utiliza-

tion of point features to create candidate transformations is

described in the PhD thesis of Huber [11]. His approach

extracts Spin Images [12] from 3D scans and uses them to

match each scan against a database. Huber reported 1.5 s as

the time requirement to match one scan against another. Even

considering the advances in computer hardware since 2002,



Fig. 2. Example range image from the FreiburgCampus360 3D dataset.
The image pixel positions represent the spherical coordinates of the points.
The gray values represent the measured ranges. Blue points are maximum
range readings and green points are unknown space.

our approach is substantially faster.

Li and Olson [14] create visual images from LIDAR data,

which enables them to use feature extraction methods from

the vision sector to create a more universally usable point

feature extractor. This feature extraction method is usable

in 2D and 3D, although a 2D projection of the points is

performed in the 3D case. Therefore relative poses computed

from feature correspondences will also just be 2D.

Several approaches have been designed especially for 2D

range data. For, example, Bosse and Zlot [6] presented a loop

closure solution that builds local maps from consecutive 2D

scans for which they compute histogram-based features. The

correlation between these features is than used to match the

local maps against each other. Tipaldi et al. [18] perform

place recognition on 2D range scans using the so-called

FLIRT-features (Fast Laser Interest Region Transform). The

features are used to find correspondences between points in

the scans and transformations are extracted using RANSAC.

Granström et al. [8] proposed a machine learning approach

to detect loops in 2D range scans. They extract a combination

of rotation-invariant features from the scans and use a binary

classifier based on boosting to recognize previously visited

locations.

Recently, Granström et al. [9] extended their system to 3D

range scans. Their system only detects the existence of a loop

closure and does not determine the relative transformation

between scans. Magnusson et al. [15] also proposed a system

for place recognition based on 3D data. They utilize the

Normal Distribution Transform as features to match scans.

These features are global appearance descriptors, which

describe the whole 3D scan instead of just small areas as

it is the case for our features. While being very fast, their

system does also not estimate relative poses. In Section IV,

we will compare our algorithm to these two methods. The

results indicate that our approach yields substantially higher

recall rates.

III. TECHNICAL SECTION

In our former work on place recognition [16] we used

point feature correspondences to find candidate transfor-

mations between scans and calculated scores for those

transformations. The main problem was that the runtime-

requirements for this approach were relatively high and that

it was not completely rotationally invariant. The algorithm

presented here is similar regarding the basic functionalities.

However, we introduced several improvements to make the

algorithm more efficient and also more robust. In the remain-

der of this section we will describe the different components

of our new algorithm in detail.

A. Overview

Given a database of 3D scans and a scan as input query,

our algorithm returns a set of scans which are potential

matches with the input. Additionally, it calculates for every

returned scan a transformation and a score reflecting how

certain the system is that the scans actually match.

More formally, let D denote the database of 3D range

measurements and z∗ a query scan. The goal of our ap-

proach is to calculate a set of candidate pairs, C(z∗) =
(〈z1, T1, s1〉, . . . , 〈zn, Tn, sn〉). Here, zi ∈ D, i ∈ {1, . . . , n}
are the potential measurement candidates from the database

which are similar to the current query z∗. Whereas Ti denotes

the estimated transformation from z∗ to zi, si is a score

reflecting the confidence about the match. Our algorithm for

calculating C(z∗) mainly consists of the following four steps.

1) Given a database of 3D range measurements D′ (train-

ing set), calculate a set of features from the 3D scans

and build a dictionary for a bag-of-words (BoW)

approach.

2) Use the BoW approach to get an initial similarity

measure for all scans in the database D with respect

to the query scan z∗. Using this measure, order the

database scans according to their similarity. Let the

resulting ordered set be D̂(z∗) = 〈ẑ1, . . . , ẑ|D|〉.

3) For each pair 〈z∗, ẑk〉, ẑk ∈ D̂(z∗), starting with

k = 1, calculate a set of possible transformations

between z∗ and ẑk by matching point features of the

corresponding scans. Note that this set of features is

not the same as the one used for the BoW approach,

since the parameters for the feature extraction differ.

4) Score each of the possible transformations and get

the transformation Tk with the highest score sk.

If this score is above an acceptance threshold then

〈ẑk, Tk, sk〉 is a candidate for a recognized place, i.e.,

it is added to C(z∗).

The last two steps are repeated until a timeout occurs or

k = |D|. Note that if there are no time constraints, the first

two steps can be skipped so that all scans in D are checked.

Although we work with a database of 3D range scans, we

do not use this data directly. We rather represent each three-

dimensional range scan by its dual, namely a range image

(see Figure 2). If the 3D scan is captured from one point in

space, i.e., the sensor does not move while the 3D points are

generated, the range image contains the same information as

the scan. The advantage of the range image is that it allows us

to model unknown areas as well as maximum range readings

more efficiently.

We will now describe the individual components of our

approach in more detail.

B. Feature Extraction

Our approach applies the so-called NARFs (Normal-

Aligned Radial Features) [17] recently developed for robust

object recognition based on 3D scans. These point features

are used to build a dictionary for the bag of words approach

and also to find corresponding regions between two 3D



measurements. Compared to the approach presented in an

earlier work [16], NARFs provide more robust key points

and the feature descriptor is less prone to noise in the data.

There are three parameters needed for the extraction of

NARFs. First, the size of the feature descriptor, second the

maximum number of calculated features, and finally the

support size, which is the size of the area around the feature

point that is used to calculate the descriptor. We chose 36
as the descriptor size. For the BoW approach a high number

of features describing small parts of the environment is most

useful. Therefore we extract 2000 features with a support

size of 1/10 of the average range in database D. However,

when matching a new query z∗ against D, a smaller number

of more distinctive features is needed. Here, we extract 200
features with a support size of 1/5 of the average range

in D. Intuitively, a small support size makes the features

susceptible to noise and less distinctive, whereas a large

support size makes them more expensive to compute and

less robust to partial occlusion and missing data. However,

we found the values above to provide reasonable trade-offs

between those properties.

The descriptors of the features can be compared using

standard norms like the Manhattan distance. The resulting

measure (the descriptor distance) describes the similarity

between the described regions. Here, a high value reflects a

low similarity. Furthermore, NARFs can either be used in a

rotationally invariant version or without invariance regarding

the rotation around the normal. For example, in the rotation-

ally variant case the features distinguish between a top right

corner and a top left corner of a square, whereas they do not

in the rotationally invariant case. This is a useful distinction,

since wheeled robots capturing 3D scans often move with

very little change in their roll and pitch angle. Accordingly,

they do not need the rotational invariance around the normal

vector for the features. The same is the case if the robot is

equipped with an IMU. This can reduce the computational

complexity of the problem since the feature matching with

one degree of freedom less is more robust. A comparison

between the two modes can be found in Section IV-B.

C. Bag of Words

We use a BoW approach as a fast initial method to pre-

order the scans according to their similarity to the given

query scan z∗. BoW approaches are based on the idea

that similar structures in an environment will create similar

distributions of features. The goal is to obtain a general

representation for those feature distributions. We want to

encode each scan in terms of a small set of words (the

dictionary). To learn this set, we use a training database D′

of 3D scans and calculate 2000 NARFs for each scan. For a

database of size n, this leads to n · 2000 feature descriptors

(each of size 36). We then apply k-means clustering to obtain

a total of 200 clusters. Our dictionary is now made of 200
words, each being the averaged descriptor of its cluster. We

found that this size provides a reasonable trade-off between

being able to generalize and being descriptive enough. Given

this dictionary, we can now express each scan zi ∈ D in

terms of the words of the dictionary by selecting the closest

word for every feature descriptor (regarding the Euclidean

distance). For each zi, we obtain a histogram Hi having

200 bins. The number in each bin reflects how often the

corresponding word is present in zi. Given the histogram of

the query scan H∗ (obtained in the same way), we calculate

‖H∗ − Hi‖2 as the distance between the histograms. This

distance is then used as an initial similarity measure to create

the ordered set D̂(z∗), as described in Section III-A

In the next step we calculate a set of candidate transfor-

mations between the scan pairs.

D. Determining Candidate Transformations

Each NARF encodes a full 3D transformation. Therefore,

the knowledge about a single feature correspondence be-

tween two scans enables us to retrieve all six degrees of

freedom of the relative transformation between them (i.e.,

by calculating the difference between the two poses). To

obtain the candidate transformations for each scan pair, we

order the feature pairs according to increasing descriptor

distance (see Section III-B) and evaluate the transformations

in this order. In other words, we calculate a score for each

of these transformations (see Section III-E). In our experi-

ments we stop after a maximum number of 2000 evaluated

transformations when using the rotationally variant version

of the NARFs. In the rotationally invariant case however, we

evaluate up to 5000 transformations due to the bigger search

space introduced by the additional degree of freedom.

E. Scoring of Candidate Transformations

The result of the feature matching is a list of relative poses

T̂k = {T̂k1
, . . . , T̂kn

} for the candidate pair 〈z∗, ẑk〉, ẑk ∈
D̂(z∗). Our goal now is to evaluate those candidate transfor-

mations and calculate a score (likelihood) for each T̂ ∈ T̂k

reflecting the confidence of the transformation given a model

of our sensor. Recall that we use 3D range data, i.e., each

measurement z is a set of 3D points. This enables us to

evaluate the candidate transformation T̂ on a point-by-point

basis (i.e., we assume the points are mutually independent).

Let P be a set of validation points from the query scan

z∗. This set P could contain all points from z∗ but we will

only use a representative subset of z∗ as described at the end

of this section. Given a candidate transformation T̂ ∈ T̂k, we

first transform each p ∈ P in the reference frame of z∗ into a

point p′ in the reference frame of ẑk. Since we represent our

scans as range images, we can calculate the pixel position

p′(x, y) in the range image of ẑk in which the point p′ would

fall into as well as the range value r′ the point should have.

Let pk(x, y) ∈ ẑk be the point that is already at this pixel

position (in the range image of ẑk) having the range value

rk(x, y). For each p ∈ P we will now calculate a score

s
T̂
(p) ∈ [0, 1] and a weight w

T̂
(p) > 0 reflecting how good

the prediction r′ is explained by the observation rk(x, y).
The point scores will then be used to calculate the overall

likelihood s(T̂ ) for the transformation T̂ by:

s(T̂ ) =

∑
∀p∈P w

T̂
(p) · s

T̂
(p)

∑
∀p∈P w

T̂
(p)

. (1)



Let ∆r = rk(x, y) − r′ be the difference between the

observed and the predicted range. To evaluate ∆r, we have

to consider the model of the sensor. In the case of a laser

scanner, a pulse of light moves from the sensor’s origin

along a line to the measured point (each range image pixel

represents one such beam). There are several different cases

needed to be considered regarding the interpretation of ∆r:

1) The observation is within a confidence interval

∆rmax > 0 of the prediction, i.e., |∆r| < ∆rmax. In

other words, what we expected to see mostly fits with

what we measured. In this case, we calculate the score

as s
T̂
(p) = 1 − |∆r|

∆rmax

and weight it by w
T̂
(p) = 1,

which represents a triangular distribution. While a

Gaussian would be a more realistic representation, we

chose a triangular distribution, since it is less expensive

to compute.

All the other cases will receive a score s
T̂
(p) = 0.

Thus, the associated weight w
T̂
(p) reflects the confi-

dence about how wrong the transformation T̂ is.

2) The observed range is larger than the predicted one,

i.e., ∆r > ∆rmax. This means that we actually

observed something behind p′ and basically looked

through it. This could be the evidence for a dynamic

or partially transparent obstacle, but in general it is

a strong indicator for a wrong transformation. We

therefore penalize the overall likelihood by a high

weight wT (p) = wseeThrough ≥ 1.

3) The observed range is smaller than the predicted range,

i.e., ∆r < −∆rmax. In this case, there are two more

situations to distinguish:

a) T̂−1 · pk(x, y) exists in z∗. This means that we

could not see p′ in ẑk because of an already

known obstacle. In this case we give a low weight

w
T̂
(p) = wknownObstacle ≤ 1 in order to enable us to

receive relatively high scores even if the overlap

between scans is low.

b) T̂−1 · pk(x, y) does not exist in z∗. This could

be evidence for a formerly unseen or dynamic

obstacle, but in general it is a strong indicator

for a wrong transformation. Similar to case 2,

we penalize this by a high weight w
T̂
(p) =

wunknownObstacle ≥ 1.

4) pk(x, y) is an unobserved point in the range image of

ẑk. This means that p′ could not be observed because

it is outside of the scan. We treat this the same as 3a.

5) rk(x, y) is a far range reading (i.e., exceeding the max

range of the sensor) in the range image of ẑk. There

are two more situations to distinguish, for which we

need to consider the original range r of p in z∗:

a) The point should actually be closer to the sensor

in ẑk, i.e., r′ ≤ r. In this case it is improbable

that p′ is out of range and therefore we treat this

the same as case 2.

b) The point moved further away from the sensor in

ẑk, i.e., r′ > r. In this case it is possible that p
moved out of range and we give a medium high

weight w
T̂
(p) = wfarRange ≥ 1.

To avoid that slight errors in the estimate of a correct

transformation lead to a very small score, e.g., if the point

lies on an obstacle border and we hit the much further away

neighbor instead, we actually consider not only pk(x, y) as a

correspondence for p′, but also its neighbors in a small pixel

radius e ∈ N (3 in our experiments) around it and select the

point with the least negative influence on the complete score.

Until now we did not say, how the set of validation

points P , from which we select p, is obtained. In principle

it could contain all the points from z∗. However, this would

lead to a high number of points to be tested and thus would

be computationally expensive. We therefore use only a subset

of z∗. A random subset of a fixed size could be used, but it

is better to select points that have some significance in the

scene, or two scans could get a high score, just because

the floor or a big wall is well aligned. Furthermore, the

points should be evenly distributed over the scan in 3D

space to be invariant regarding the non-uniform resolution

of 3D scans. To achieve this, we use the set of key-points P̂
(i.e., the points where the NARF’s are) that we calculated in

the feature extraction process as a base to create the set of

validation points. We add a random point from P̂ to P and

then iteratively add the point p̂i ∈ P̂ that has the highest 3D

distance to all points already in P , until a maximum size is

reached (200 points in our current implementation). This has

the interesting property that each ordered subset 〈p0, · · · , pj〉
of the ordered set P = 〈p0, · · · , p|P |〉 is a subsampled version

of P̂ with mostly equidistant points for every j. This also

means that one can stop the calculation of s(T̂ ) (see Eq. 1)

before handling each point in P if the score is already to low

after a certain minimum of handled points (30 points in our

experiments), since this subset already represents the whole

set quite well.

Since the score s(T̂ ) for the transformation T̂ is not neces-

sarily the same as for T̂−1 (by switching the role of z∗ with

ẑk), we adapt the scoring to s′(T̂ ) = min(s(T̂ ), s(T̂−1)) as

the score for the pair 〈z∗, ẑk〉 with transformation T̂ .

F. Self-Similarity

There are scans that qualify only poorly for the pose

estimation process because of a high self-similarity, e.g.,

corridors with very few distinctive structure. To prevent false

positives (false transformations getting a high score) in those

areas, we calculate a self-similarity score for every scan.

We do this by matching the scan z against itself, using the

procedure described above and consider only transformations

that are not close to the identity matrix. We call the highest

score in this set self (z) and consider it as a measure for

self similarity. We then adapt the scoring and obtain the

final score for a transformation between z∗ and ẑk in the

following way: s∗(T̂ ) = (1−(self (z∗)+self (ẑk))/2)·s
′(T̂ ).

Recall that we perform the steps described so far for each

candidate transformation T̂ ∈ T̂k. If the best score out of

all candidates is above a threshold, ẑk represents a potential

loop closure, i.e., C(z∗) := C(z∗) ∪ 〈ẑk, Tk, sk〉 with Tk =
argmax

T̂∈T̂k
s∗(T̂ ) and sk = s∗(Tk).



G. Implementation details

We perform some additional steps to improve the results.

After an initial scoring of the candidate transformations for

a scan pair 〈z∗, ẑk〉 we first remove transformations with

a very low score. We then cluster the transformations and

identify those describing very similar relative poses, keeping

only the best ones in the candidate list. Next, we perform ICP

to improve the transformation estimate, using only the set of

validation points to speed up this step. Finally, we update

the scores given the corrected transformations and return the

transformation associated with the highest score as the result.

IV. EXPERIMENTS

In this section, we present the real-world experiments

carried out to evaluate our approach. We used four publicly

available datasets of 3D scans, namely two outdoor datasets

and two indoor dataset. In the following we will give an

overview over these datasets and their specific challenges.

A. Datasets

The following datasets were used in our experiments:

• For the first indoor dataset we chose AASS-loop1 [1].

This dataset was also used in the related work [8], [15],

which makes a comparison easier. Its main challenge is

that it contains some highly ambiguous areas in long

corridors.

• For the second indoor dataset we captured 3D scans

with a flying Quadrotor robot, equipped with a 2D

laser scanner [10]. This dataset [4] is challenging be-

cause of a higher noise level and the existence of

highly similar scans from different poses in a corridor

environment.

• For the first outdoor dataset we chose FreiburgCam-

pus360 3D [2]. We already used this dataset in our

prior work on place recognition [16]. It contains high

resolution, 360◦ scans and its main challenge is the

large distance between consecutive scans, stressing the

system’s ability for translational invariance.

• For the second outdoor dataset we chose Hanover22 [3].

This dataset was also used in previous work [8], [15],

[16], which makes a comparison easier. This is a chal-

lenging dataset, since it contains a high number of very

sparse scans and the robot traverses different areas with

very similar structure.

All datasets apart from the Quadrotor dataset were recorded

with 2D laser scanners mounted on pan/tilt units. We ac-

quired SLAM trajectories using the provided odometry and

manually verified scan matching as edges in the graph SLAM

system g2o [13]. These trajectories were used to evaluate

false/true positives and false/true negatives in our system. In

the Quadrotor dataset the helicopter occasionally captured

a 3D scan by flying downwards and upwards again while

hovering around the same spot. Here, the trajectory was es-

timated using the quadrotor’s navigation system as described

1Courtesy of Martin Magnusson, AASS, Örebro University, Sweden
2Courtesy of Oliver Wulf, Leibniz University, Germany

in [10]. Please refer to Figure 3 for more information about

the datasets.

In all experiments we used wseeThrough = 25, wknownObstacle = 0.5,

wunknownObstacle = 15, and wfarRange = 5 as the parameters for the

scoring function (as defined in Section III-E).

B. Confusion Matrices

We calculated the confusion matrices for the datasets

(see Figure 4(a)) by matching each scan with every scan

in the database and returning the score of the best found

transformation. The dark areas that are not close to the main

diagonal mark loop closures. Here the system was able to

match scans from different points in time where the robot

visited a previously visited area (see also Figure 3).

To evaluate if a match is a false positive, we compared

the ground truth transformation between the scans with our

found transformation and check if it exceeds an error value.

Please note that this is a harder condition than used in related

work [15], [9], where no relative pose is estimated and only

the distance between the scans is considered.

Figure 4(b) gives an overview over the number of true

positives and false negatives and the resulting recall rate as

a function of the distance between scans, using the minimum

acceptance threshold for which no false positive was found.

Figure 4(c) plots the number of false positives as a func-

tion of the acceptance threshold. The recall rate for a man-

ually set maximum distance between scans is also shown.

For AASS-loop we used 1.0m as the distance to consider

two scans a match (this is the same as in previous work [15],

[9]). The minimum acceptance threshold for which we re-

ceived no false positive is 0.09. Above this value we have a

recall rate of 0.938. The equivalent values for the Quadrotor

dataset are 2.0m / 0.25 / 0.75, for FreiburgCampus360 3D

10.0m / 0.05 / 0.958, and for Hanover2 3.0m / 0.19 / 0.925
respectively.

Our evaluations do not include the diagonal elements of

the confusion matrices (where the scans are matched against

themselves). Since Granström and Schön [9] used a machine

learning algorithm based on boosting they had to split their

dataset into learning and test sets for the cross validation and

therefore did not evaluate the complete confusion matrix at

once. They reported rates of 0.53± 0.14 (min 0, max 0.88)

for the AASS-loop dataset and 0.63 ± 0.6 (min 0.28, max

0.76) for the Hanover2 dataset.

Magnusson et al. [15] evaluated their system in a SLAM

scenario, where only scans that are at least 30 scans apart

are evaluated. In this scenario they got 0.7 as the recall

rate for AASS and 0.47 for Hanover2, respectively at 100%

precision. With the same setting we got 1 (0.08 acceptance

threshold) for AASS and 0.911 (0.19 acceptance threshold)

for Hanover2.

C. Timings and Influence of the BoW approach

The values given so far are the results we receive, when

we do not restrict the time requirements of our system.

For the AASS-loop dataset it takes us 881ms to extract

interest points, features and validation points per scan and
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stop&go #scans #points #farRanges res traj dist µ−range maxRange

AASS yes 60 80873 n/a 0.7◦ 111.4 m 1.89 m 2.81 m 67.1 m

Quadrotor no 23 171608 95515 1.0◦ 79.1 m 3.6 m 1.9 m 6.1 m

Freiburg yes 77 155562 56451 0.45◦ 723 m 9.51 m 8.9 m 50 m

Hanover no 923 12959 3622 1.3◦ 1247.8 m 1.35 m 7.18 m 29 m

Fig. 3. Top: SLAM trajectories and ground truth confusion matrices for the used datasets. For the indoor datasets the trajectory is plotted on a 2D
projected laser map and for the outdoor datasets it is overlaid on a Google Earth aerial image. The gray values in the confusion matrices represent the
amount of overlap between the scans given the true relative pose. Bottom: Overview over the properties of the used datasets: stop&go=scans captured in
stop and go fashion, #scans=number of scans, #points=average number of points per scan, #farRanges=average number of far range readings per scan,
res=usable angular resolution for range images, traj=trajectory length, dist=average distance between consecutive scans, µ−range=average measured range
value, maxRange=maximum range value

585ms to match a scan against the database, meaning 10ms

for each scan pair. The equivalent values for the Quadrotor

dataset are 305ms, 102ms, and 4ms, for the FreiburgCam-

pus360 3D dataset 1107ms, 838ms, and 11ms, and for the

Hanover2 dataset 316ms, 4132ms, and 4ms respectively. All

experiments were performed using an Intel I7 quad-core PC.

When using the BoW approach, there is an additional

overhead for the creation of the histograms (including feature

extraction), which is 894ms for AASS-loop, 276ms for

Quadrotor, 730ms for FreiburgCampus360 360, and 246ms

for Hanover2.

Using the BoW pre-ordering of the potential correspond-

ing scans, we can define a timeout for the database query.

Please refer to Figure 4(d) for an overview, how the re-

call rates (for the respective minimum acceptance threshold

and maximum scan distance) evolve for increasing timeout

values. It can be seen that the additional overhead for

the histogram calculation is only justifiable for the biggest

dataset, namely Hanover2. Here, a recall rate of close to

80% can already be reached after one second per database

query. In the same plots there is also a comparison between

the rotationally invariant and non-invariant version of the

NARFs. It can be seen that the additional degree of freedom

introduced by the rotational invariance increases the typical

runtime to achieve a certain recall rate and that the maximum

achievable recall rate is lowered. But overall, the recall rates

are still above the values of the other state-of-the-art systems

in the related work.

Please note that we used the Freiburg dataset to learn the

dictionary for the BoW approach. Therefore this result (see

Figure 4(d)) might be overconfident.

V. CONCLUSIONS

In this paper we presented a robust approach to 3D place

recognition that simultaneously computes relative pose esti-

mates between the involved 3D range scans. Our approach

is computationally more efficient compared to our previous

work while still receiving recall rates that compare favorably

to alternative approaches. Additionally, the application of the

recently developed normal-aligned radial features enabled us

to overcome the limitations regarding rotational invariance

of our former approach. We also presented a novel sensor

model. A carefully carried out evaluation revealed that our

new approach yields a more robust scoring of relative pose

estimates.
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(a) (b) (c) (d)
Fig. 4. First row: Results AASS-loop Second row Results Quadrotor Third row: Results FreiburgCampus360 3D Fourth row: Results Hanover2
(a): Confusion matrices created by our system. (b): The number of true positives, false negatives, and the resulting recall rate for different maximum
distances between scans to consider them overlapping. Respectively for the minimum acceptance threshold that did not return any false positives. (c):
Number of false positives and the recall rate for different minimum scores. The recall rate is determined regarding a maximum distance of 1.0m / 2.0m
/ 10.0m / 3.0m (from top to bottom) between the scans. (d): The recall rate dependent on the maximum time the system has to match a scan against the
database, using the BoW approach. The two graphs represent the recall rate with and without the rotational invariance in the NARFs.
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