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Abstract— Laser range scanners are commonly used in mo-
bile robotics to enable a robot to sense the spatial configuration
of its environment. In addition to the range measurements, most
scanners provide remission values, representing the intensity of
the returned light pulse. These values add a visual component
to the measurement and can be used to improve reasoning on
the data. Unfortunately, a remission value does not directly tell
us how bright a measured surface is in the infrared spectrum.
Rather, it varies with respect to the incidence angle and the
range at which it was measured. In addition, multiple scanners
typically do not agree upon the values of a certain surface. In
this paper, we present a calibration method for remission values
of multiple laser scanners considering dependencies in range,
incidence angle of the measured surface, and the respective
scanner unit. Our system learns the calibration parameters
based on a set of registered point clouds. It uses a graph
optimization scheme to minimize the error between different
measurements, so that all involved scanners yield consistent
reflection values, independent of the perspective from which
the corresponding surface is observed.

I. INTRODUCTION

Laser range scanners are widely used in mobile robotics
since they provide highly accurate spatial information of the
vicinity of the robot. Typical applications in this context
are mapping, localization, obstacle avoidance, modeling, or
recognition tasks. The underlying principle of laser range
scanners is to send out focused infrared light and measure the
time until the reflected light returns to the sensor to determine
the distance to the surface. Besides the measured range, most
laser range scanners also return remission values, also called
intensity or reflectivity values. These values correspond to the
amount of emitted light that returned to the measuring unit
and can tell us how bright an object appears in the infrared
spectrum used by the sensor. These measurements add a
visual appearance component to the spatial information of
the laser scanner and can be used to improve localization [7],
extrinsic calibration to visual sensors [1], or classification
tasks [13]. Compared to traditional visual camera images,
remission values have the advantage of being independent to
external lighting conditions in typical applications. Further-
more, no extrinsic calibration to the reference frame of the
laser scanner is needed since we measure them at the same
time with the same device.

Unfortunately, the measured remission values are not
purely dependent on the reflectivity of the measured material,
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Fig. 1. Example Scene, corresponding scans and maps obtained with
calibrated and uncalibrated remission values: (a) Observed scene. (b)
Uncalibrated 3D point cloud of one scan from a single tilting Hokuyo UTM
laser scanner. The measurements at the bottom center are brighter, because
of closer ranges and steeper incidence angles. (¢) Calibrated version of the
above. The road shows continuous gray values now. (d) Uncalibrated 3D
point cloud captured using a combination of three different 3D scanners, a
Velodyne HDL-32E, a downwards facing SICK LMS 151, and the tilting
Hokuyo UTM from (b)&(c). The structures are not clearly visible and
remission values on continuous surfaces are not uniform. (e) Calibrated
version of (d), showing better contrast and more uniform gray values.

but also on other factors like the range at which it was
observed, the incidence angle of the measured surface and
the brightness of the specific laser scanner used. See Fig. 1
for example images.

Multi-beam lasers, like the Velodyne range scanners,
should yield consistent intensity values of a certain point
on the measured surface to provide an accurate view of
the true reflectivity attributes of the observed environment.
Furthermore, it seems desirable to calibrate the intensity
values reported by all laser range scanners on a mobile robot.
This is an important prerequisite to perform a classification



on a fused point cloud with the same classifier or to build
a consistent high resolution 3D model with laser intensity
texture.

In this paper, we present a novel method to learn how
the range, incidence angle and the properties of an individ-
ual laser scanner influence the measurements and thereby
provide a calibration procedure to enable a system to better
estimate the reflective properties of an observed structure
without these influences. Our method does not rely on any
special calibration structures or setting. Instead it uses a
collection of registered 3D point clouds, captured by one
or more laser scanners on a moving robot. If the same
spot in the environment is observed by possibly different
scanners from different perspectives and distances, it is the
goal to learn calibration parameters that, when applied to
the measurements, lead to consistent measurements of the
reflectivity in that spot. Our system uses a least square error
minimization technique based on a graph built from cor-
responding observations to learn the calibration parameters
in an unsupervised fashion. Our method directly accounts
for the dependence of measured range, incidence angle and
brightness of the specific laser scanner.

The system described in this paper will be made available
as open source software [11].

II. RELATED WORK

In the past, several researchers addressed the problem of
calibrating multi laser setups like the Velodyne HDL or
custom made setups [6], [8], [9]. Those approaches, however,
focus on the extrinsic parameters and also on the time
skew of the lasers but do not account for calibrating the
intensity data of different lasers. Such intensity data has
been proven as useful, e.g., for localizing a vehicle in urban
environments [4] or classifying the terrain [13].

The closest to our work is the approach by Levinson and
Thrun [5]. They describe an unsupervised approach for ex-
trinsic and intrinsic calibration of multi-beam laser scanners.
As part of their work the authors present an expectation
maximization calibration method for intensity values. The
result of this method is a lookup table for every different laser
in the beam array that maps a measured intensity to the most
likely intensity value. In contrast, our method models the
relation between the range as well as the incidence angle and
the perceived intensity value in a global optimization system
to find the maximum likelihood calibration. Note that also
other researchers reported a crucial impact of the incidence
angle on both the range and the intensity [10], [13].

In the context of air vehicles equipped with a laser
Kaasalainen er al. [2] proposed a calibration scheme for
laser intensity values. The authors explicitly model the de-
pendencies between intensity measurement and the range and
incidence angle at which the intensity was measured. Their
approach, however, requires specific calibration patterns with
known reflectance attributes, whereas our method can be
applied to an arbitrary dataset with sufficient variation in
viewpoints from which the individual surfaces in the envi-
ronment were observed.

Fig. 2. This figure shows the Bayesian network of the problem we want to
address in this paper. Each measurement zfc, which is the k-th measurement
of the laser with the index [, depends on the reflectivity of a certain cell
m € M and on the calibration parameters C. It is our goal to determine
the hidden variables C' and M.

III. SYSTEM DESCRIPTION

In this section, we describe the underlying calibration
problem, discuss different independence assumptions as well
as how we include those in our model, and elaborate how
we formulate this as a graph optimization problem which we
iteratively solve using least squares.

A. Problem Definition

The input to our system is a set of registered 3D point
clouds (meaning we can perform mapping with known
poses), captured with a set of one or more laser range
scanners. The point clouds have to include the measured
remission value for every 3D point and also the sensor
position from which the point was observed. Given such
data, it is our goal to determine a calibration function C
that normalizes the measured remission values such that the
values are consistent over the whole dataset. More formally:
Let 2z} € Z! be the k-th measurement captured by the laser
with index [ € L. Each of these measurements contains a
triple of values z} = (i, 7}, al), where il is the measured
remission/intensity value, 7”2 is the measured range value,
and o is the incidence angle at which the laser beam hits
the surface. We added the latter to the measurement for
simplicity. The laser does not directly measure the incidence
angle but we can estimate it from a local neighborhood
around the measured point. Please note that multi-beam laser
scanners, like those produced by Velodyne, contribute to the
set of laser indices L with every individual laser beam they
contain.

It is our goal to calculate the calibrated remission value ii./
for such a measurement:

ik =1, 2h). (1

Fig. 2 visualizes the Bayes Network for the measurements.
The calibration function C' is supposed to normalize the
measured remission values in such a way that measurements
from different perspectives and from different lasers yield the
same value for a certain position in the map M. Assuming
Gaussian noise on the remission measurements, the optimal
guess for the reflectivity of a map cell m € M is the mean
of the calibrated remission values.

In the next section we will present concrete implementa-
tions of the calibration function C.



B. Calibration Parameters

In our system, we implemented different concrete defini-
tions of C' that represent different independence assumptions.
The most general calibration function that we tested, with no
underlying independence assumptions is

Cl(lazllc) :cl(rfwaéc,l) 'iéc’ 2

where ¢! € RT is a factor for the measured remission value.
Under the assumption that the influences of the range and
of the incidence angle are mutually independent given the
laser index, we can choose an alternative calibration function:
C’Q(l,z,lc) 202(7"2,1) -2 (afwl) -iﬁc, 3)

T (03

where ¢2 € RT and ¢2 € RY are individual factors for the
range and incidence angle.

The functions C'' and C? both contain different calibration
parameters for every individual laser. We can go one step
further and add the assumption that lasers of the same type
(e.g., multiple SICK LMS 151, multiple Hokuyo UTM, or
the different beams inside of a Velodyne scanner) behave
similarly regarding the measurement of remission values.
Based on this, we obtain

O3l z) = (i, T()) - caloh, T()) - (1) - i, (4)

T (03

where ¢2 € R*, ¢2 € RT, and ¢ € RT are individual
factors for the range, incidence angle, and the laser index.
The term T'(I) € N* is a type identifier, which assigns the

same number to laser scanners of the same type.

C. Formulation as an Optimization Problem

We can obtain the maximum a posteriori estimate for the
calibration parameters and the map of reflectivity values as

(C,M)* = argmaxp (C,M | Z,L) Q)
C,M

= argmin —logp (C,M | Z, L), (6)
c,M

where p(-) is a probability distribution, C' is the set of
calibration parameters, M = {my,...,m|p} is the map
containing individual cells each with an associated reflectiv-
ity value, Z is the set of all sensor measurements and L is
the set of individual laser scanner indices.

If we assume that the parameters are independent and p(+)
is a Gaussian, we can rewrite Eq. (6) as

(C,M)* =argmin Y [le(zf, M), (D
c.M - k
leL,zjeZ

where |le||2 = eT X 1e is the squared Mahalanobis distance,
which here represents the exponential part of the Gaus-
sian p(-). We solve (7) with the g0 framework [3].

For each cell m; € M the individual lasers should
measure the same reflectivity value. Consequently, the error
function e(-) computes the difference between the calibrated
reflectivity value C(l, z}) of the laser beam 2, falling into
the cell m; and the estimated reflectivity value:

e(z, M) = C(1,z,) — m;. (8)
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Fig. 3.  Graph structure for a single constraint for the three different
calibration modes.

D. Optimization Graph

The vertices in the graph are the individual calibration
factors ¢, as described in Sec. III-B. Each calibration factor ¢
relates to a laser generating a range measurement with a
specific incidence angle. As the number of nodes in the graph
has to be finite, we need to discretize the input parameters for
the calibration. The laser indices are already discrete, so that
we only have to divide the possible values for the ranges
and the incidence angles into cells. We decided to divide
the incidence angles uniformly, since they are in a fixed
interval [0,7/2) and the ranges logarithmically, to better
be able to cope with different scanner types that have very
different maximum ranges. To enforce a smoothness criterion
for the calibration function, we add artificial edges between
neighboring nodes (one step apart in range or incidence
angle). These edges employ the difference of the two values
as the error function, thereby requiring them to be similar.
One can imagine this as a regular grid, connecting all the
nodes in the graph. The stiffness of the grid is determined by
the weight of the edges. The higher the weights, the smoother
the calibration function has to be. This method also ensures
that the complete graph is connected, which is a necessity
for the optimization procedure.

In addition to the vertices representing calibration values,
there are vertices describing the map of the environment. The
map consists of a 3D grid with a fixed cell size and every
occupied cell has one corresponding vertex in the graph.
Each vertex represents the surface reflecting the laser and
we estimate its intensity. The edges represent measurements
from the provided point clouds, which are represented as
constraints in the graph. Such a constraint connects the
corresponding calibration values with the map cell into which
the measurement fell. Fig. 3 visualizes the graph structure for
a single constraint for the three different modes described in
Sec. III-B.

In our concrete implementation we perform two steps that
are supposed to reduce the graph size and the noise in the
edges in advance. First, we average over the measurements
per laser that fall into the same map cell and were observed
from a similar perspective and add them as a single com-
bined measurement. Furthermore, we reject map cells where
individual laser lines already show a high variance in the
remission values, which implies that the surface represented
by this cell is not uniformly colored.



E. Expectation Maximization

One problem we have to approach is that the optimization
system described above has one trivial solution. If both
the calibration parameters and all cell values are zero, the
error will also be zero. To circumvent the optimization
process from converging to this solution, we chose to per-
form the optimization in an Expectation-Maximization (EM)
fashion and alternate between computing M with fixed C
in the expectation step and optimize C' with fixed M in
the maximization step. Levinson et al. [5] used a similar
formulation to circumvent the problem of converging to the
trivial solution.

Since the calibration parameters can be scaled arbitrarily,
we normalize them in each EM-step so that the average
calibrated intensity over the whole map is 1.0.

E Initial Guess

As the initial guess for the calibration parameters we
choose only a constant factor for each individual laser, such
that the average calibrated remission per laser is 1.0 on the
respective dataset.

IV. EXPERIMENTS

We performed experiments on artificial and real data to
analyze the properties of our calibration system. We will first
present the datasets we used, followed by the experimental
evaluation. For all experiments we used 0.5m for the cell
size of the map and divided the incidence angle into 10 cells
(9° per cell) and the range into 60 cells, whereas the range
of cell i is (1.1° — 1) meters.

A. Datasets

For our experiments, we used two different robot plat-
forms. Our robot called Obelix is shown on the left side of
Fig. 4. It is equipped with a multitude of laser scanners,
including a downwards facing SICK LMS 151 that accu-
mulates 3D data while driving, a tilting Hokuyo UTM and
a Velodyne HDL-32E (a multibeam 3D laser scanner with
32 individual lasers). The second robot is called Viona (see
Fig. 4 right) and it is equipped with a Velodyne HDL-64E
(a multibeam 3D laser scanner with 64 individual lasers).
All scanners, which we considered in our experiments, work
with 905 nm infrared light.

We captured an outdoor dataset with each robot. Fig. 5
shows the trajectories on aerial images. A good dataset for
calibration purposes contains measurements of the same area
from different perspectives, meaning from different viewing
angles and ranges. This can, e.g., be achieved by driving a
robot towards a uniformly colored wall from a far distance,
then driving along the wall within a short distance.

From the Obelix-dataset we extracted about 680,000 and
from the Viona-dataset about 500,000 constraints for the
optimization procedure.

We used the graph-based SLAM system described in our
earlier work [12] to create a globally consistent trajectory to
register the point clouds to each other.

[#—-Velodyne HDL-32E

i‘»ﬁlnng Hokuyo UTM

Downwards facing
SICK LMS 151

Fig. 4. Left: The robot “Obelix” is equipped with three laser scanner
types from different manufacturers, with altogether 34 individual lasers.
Right: The robot “Viona” is equipped with a Velodyne scanner containing
64 individual lasers.
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Fig. 5. The trajectories taken by the robots to acquire the datasets, overlaid
on aerial images (©Google). With the robot Obelix on the left and with
the robot Viona on the right.

B. Artificial Remission Values as Ground Truth

To show that our system is able to recover correct cal-
ibration parameters given a dataset, we first performed an
experiment with artificial remission data on a real 3D dataset.
We used the Velodyne points from the Obelix dataset and
replaced the remission values of all 32 beams (numbered
0-31) by the following arbitrarily chosen function:

C(l7 lec) = C(’/‘L, a;w l) : ch (9)
(01-7L +1)-(ak +1)2 7

where we perturb it = N(1,02) with Gaussian noise (o =
0.05).

Fig. 6 shows the results of our calibration procedure
in comparison to the ground truth. Please note that the
calibration result can always differ by a constant scaling
factor on the remission values. Hence, we always normalize
the calibration to return an average remission of 1.0 on
the learning dataset. The plots in Fig. 6 are appropriately
equalized to not differ by such a factor. One can see that
our method was able to accurately recover the calibration
function with a remaining median error on the dataset of
0.009.

C. Real Datasets

As second experiment, we applied our method on the two
datasets described above. We evaluate the three different
modes for the optimization as described in Sec. III-B with
different independence assumptions. The error distributions
before and after optimization for both datasets can be seen
in Fig. 7.

One can see that the optimization procedure substantially
improves the error compared to the initial guess. For an
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Fig. 6. These plots visualize the found calibration parameters and the

ground truth curves for the simulated dataset. The ground truth values are
the reciprocal of the corresponding part in Eq. 9, since the purpose of these
factors is to revert the influence.
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Fig. 7. This plot visualizes the error distribution before and after calibration
for the different calibration modes on the Obelix dataset (top) and the Viona
dataset (bottom).

average intensity of 1.0, the initial guess provides a median
error for the Obelix dataset of 0.164, whereas the median
error after optimization is 0.069 (mode 1), 0.081 (mode 2),
and 0.101 (mode 3). For the Viona datset, the initial error is
0.066 and after optimization decreases to 0.031 (mode 1),
0.032 (mode 2), and 0.05 (mode 3). One aspect we can
observe in Fig. 7 is that the error increases drastically in the
last 20%. This can mainly be attributed to non-uniformly
colored, noisy cells in the map, as visible in Fig. 8, where
we show the calibrated map for the Obelix dataset and
visualize the remaining error. The high remaining error on
the lawn does not necessarily imply a bad calibration, just
that the assumption for our error metric (uniformly colored
flat surface) is not properly fulfilled. The middle image of
Fig. 8, as well as the example images in Fig. 1, show the
final calibration result for the Obelix dataset. One can clearly
distinguish vegetation from concrete and see road markings

in the obtained data. The much smaller final error for the
Viona dataset is due to a much friendlier environment for
the dataset, with more planar, uniformly colored structures.
Besides the expected noise in the measured remission values
and the above-mentioned structural issues of real world
environments there are additional sources for the remain-
ing errors. These are among other: extreme values for the
measured remission (values close to zero and close to the
maximum remission are unreliable), the discretization of the
returned remission values from the lasers (e.g., only 256
different values for the Velodyne), errors in the registration
of the point clouds, and errors in the normal extraction step.

One aspect we can learn from the results in Fig. 7 is that
the error difference between mode 1 and mode 2 is minor and
can probably be attributed to overfitting in mode 1, meaning
that the underlying independence assumption seems to be
justified. This means that the influence of the range onto
the measured remission is independent to the influence of
the incidence angle of the measurement and can therefore
be estimated individually. Mode 3 returned the worst result,
as expected. While it is still pretty close to the other
optimization setups, there seem to be slight differences in
the behaviors of the individual laser sensors, even if they are
of the same type. Yet, since the risk for overfitting and the
needed number of datapoints decreases substantially from
mode 1 to mode 3, we decided to use the result of mode 2,
whereas we use the result of mode 3 as the initial guess for
the optimization procedure.

Fig. 9 shows the found calibration parameters for the
laser scanners in our experiments. One can see that most of
the scanners behave as expected, with increasing correction
factors for increasing ranges and incidence angles. Yet, the
Velodyne HDL-32E shows mostly constant factors for differ-
ent ranges. We believe that the sensor already normalizes the
remissions with respect to the measured range. This shows
one of the advantages of our methods compared to a physical
model for the behavior of the sensor, since we do not need
any knowledge of how the measurements are done and what
kind of normalizations are already done internally on the
sensor. The SICK LMS 151 shows very little influence of
the incidence angle. This might be related to the strength
of the used laser or an internal calibration procedure. Yet,
most likely our dataset did not contain enough evidence
for the different angles, since the scanner is mounted in a
fixed position on the robot. Therefore the data might have
been ambiguous regarding the distribution of the error onto
the range influence or the angles influence. The bottom
plot shows the individual calibration factors per laser beam.
Please note the logarithmic scale in this plot. Here one can
see that the uncalibrated remission values have very different
value margins.

It remains to show that the learned calibration parameters
are not only applicable to the dataset we learned them on.
Therefore we captured another dataset with the Obelix robot
on our campus in an area that does not overlap with the
original dataset, learned calibration parameters on it with
mode 2 and applied the learned calibrations crosswise onto



Fig. 8.

Aerial image (©Google) of the area where we collected the Obelix dataset (left), the calibrated remission map (middle) and the remaining

variances of the measurements per cell, whereas darker values represent lower errors (right). Flat, uniformly colored areas like the street or building walls
have very low remaining errors, while the lawn, e.g., still has a high variance, resulting from non-uniform colors and noisy 3D structure.
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Fig. 9. These plots visualize the found calibration parameters for the

two datasets we used. Even though mode 3 returned the worst result, it
is better to visualize. In comparison, showing 98 individual plots (one for
each individual laser beam) would be impractical. The top plot shows the
calibration factors per range for each laser type, the middle plot shows the
calibration factors per incidence angle for each laser type and the bottom
plot shows the calibration factor for each individual laser, with the same
colors as in the plots above. Please note the logarithmic scale on the third
plot.

the datasets. The resulting error distributions are shown in
Fig. 10. It can be seen that the errors are similar, and
mainly differ in the high-error areas, meaning the outliers.
This implies that the learned calibration parameters can be
generalized to other datasets.

In all our experiments it took less than 15 minutes to get
the final calibration parameters given the point clouds on the
hard drive, using one thread of a standard Intel 17 PC.

V. CONCLUSIONS

In this paper, we presented an approach for the unsuper-
vised calibration of remission values of a set of heteroge-
neous laser scanners, based on a dataset of registered point
clouds. Our system minimizes the squared error for mea-
surements falling into the same 3D cell to best correspond
on the reflectance value of the cell even for different lasers,
ranges and incidence angles. We presented experiments with
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Fig. 10. Error distributions of calibrations learned on two different datasets
and applied crosswise to each other.

multiple and different types of laser scanners, showing that
after calibration with our system, the lasers can all be
used together to create consistent remission maps of the
environment.
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