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Abstract— Truly autonomous systems require the ability to
monitor and adapt their internal body scheme throughout their
entire lifetime. In this paper, we present an approach allowing
a robot to learn from scratch and maintain a generative model
of its own physical body through self-observation with a single
monocular camera. We represent the robot’s internal model as
a compact Bayesian network, consisting of local models that
describe the physical relationships between neighboring body
parts. We introduce a flexible Bayesian framework that allows to
simultaneously select the maximum-likely network structure and
to learn the underlying conditional density functions. Changes in
the robot’s physiology can be detected by identifying mismatches
between model predictions and the self-perception. To quickly
adapt the model to changed situations, we developed an efficient
search heuristic that starts from the structure of the best explai-
ning memorized network and then replaces local components
where necessary. In experiments carried out with a real robot
equipped with a 6-DOF manipulator as well as in simulation, we
show that our system can quickly adapt to changes of the body
physiology in full 3D space, in particular with limited visibility,
noisy and partially missing observations, and without the need
for proprioception.

I. INTRODUCTION

Autonomous robots deployed in real world environments
have to deal with situations in which components change
their behavior or properties over time. Such changes can for
example come from deformations of robot parts or material
fatigue. Additionally, to make proper use of tools, a robot
should be able to incorporate the tool into its own body scheme
and to adapt the gained knowledge in situations in which the
tool is grabbed differently. Finally, components of the robot
might get exchanged or replaced by newer parts that no longer
comply with the models engineered originally.

Kinematic models are widely used in practice, especially in
the context of robotic manipulation [1, 2]. These models are
generally derived analytically by an engineer [3] and usually
rely heavily on prior knowledge about the robots’ geometry
and kinematic parameters. As robotic systems become more
complex and versatile or are even delivered in a completely
reconfigurable way, there is a growing demand for techniques
allowing a robot to automatically learn body schemes with no
or only minimal human intervention.

Clearly, such a capability would not only facilitate the de-
ployment and calibration of new robotic systems but also allow
for autonomous re-adaptation when the body scheme changes,
e.g., through regular wear-and-tear over time. Furthermore, the

Fig. 1. Upper left: Our 6-DOF robotic manipulator arm learns and monitors
its own body-scheme using an external monocular camera and visual markers.
Upper right: After a different tool is placed in the robot’s end-effector, the
model predictions do not fit the current observations anymore. Bottom: The
current body scheme linking action signals ai and body parts Xj using local
models ∆j→k . Here, a mismatch between the internal model and recent self-
observation has been detected at ∆6→7.

ability to learn a body scheme is important in the context of
tool use scenarios in which a robot has to identify the effects
of its actions on the tool.

In this paper, we investigate how to equip autonomous
robots with the ability to learn and adapt their own body
schemes and kinematic models using exploratory actions and
self-perception only. We propose an approach to learn a
Bayesian network for the robot’s kinematic structure including
the forward and inverse models relating action commands and
body pose. More precisely, we start with a fully connected
network containing all perceivable body parts and available ac-
tion signals, perform random “motor babbling,” and iteratively
reduce the network complexity by analyzing the perceived
body motion. At the same time, we learn non-parametric
regression models for all dependencies in the network, which
can later be used to predict the body pose when no perception
is available or to allow for gradient-based posture control.

One of the major advantages of the approach presented in
this paper is that it addresses all of the following practical
problems that frequently arise in robotic manipulation tasks
in a single framework:
• Prediction: If both the structure and the CDFs of the



Fig. 2. Continued experiment from Figure 1. The robot samples a local
model as replacement for the mismatching component ∆6→7. Left: The first
newly sampled model (∆gp

6→7) has high uncertainty, because of the missing
dependency on action a6. Right: The second sampled model (∆gp′

6→7) is a
more suitable replacement for the mismatching component.

Bayesian network are known, the robot is able to predict
for a given action command the expected resulting body
configuration.

• Control: Conversely, given a target body pose, our ap-
proach is able to generate appropriate action commands
that will lead to this pose.

• Model testing: Given both a prediction and an observati-
on of the current body pose, the robot is able to estimate
the accuracy of its own pose predictions. Model accuracy
can, for example, be defined in terms of a distance metric
or a likelihood function.

• Learning: Given a sequence of action signals and the
corresponding body postures, the Bayesian network and
its parameters can be learned from the data.

• Discovering the network structure: When the structure
of the Bayesian network is unknown, the robot is able to
build it from the available local models which are most
consistent with the observed data.

• Failure detection and model adaptation: When the ro-
bot’s physiology changes, e.g., when a joint gets blocked
or is deformed, or a visual marker is changed, this is
efficiently detected so that only the affected local models
of the Bayesian network need to be replaced.

II. RELATED WORK

The problem of learning kinematics of robots has been
investigated heavily in the past. For example, Kolter and
Ng [4] enable a quadruped robot to learn how to follow om-
nidirectional paths using dimensionality reduction techniques
and based on simulations. Their key idea is to use the simulator
for identifying a suitable subspace for policies and then to
learn with the real robot only in this low-dimensional space.

A similar direction has been explored by Dearden et al. [5],
who applied dimensionality reduction techniques to unveil the
underlying structure of the body scheme. Similar to this work,
their approach is formulated as a model selection problem
between different Bayesian networks. Another instance of
approaches based on dimensionality reduction is the work by
Grimes et al. [6] who applied the principal component analysis
(PCA) in conjunction with Gaussian process regression for
learning walking gaits on a humanoid robot.

In previous work [7], we have presented an approach to deal
with the problem of learning a probabilistic self-model for a
robotic manipulator. This approach, however, neither covered
aspects of failure detection and life-long model revision nor
did it address partial observability of model components. In
this work, we give a more rigorous formulation of the the
body-scheme learning framework, we significantly extend the
model toward life-long adaptation and self monitoring, and we
give experimental results in complex and realistic scenarios.

Yoshikawa et al. [8] used Hebbian networks to discover the
body scheme from self-occlusion or self-touching sensations.
Later, [9] learned classifiers for body/non-body discrimination
from visual data. Other approaches used for example nearest-
neighbor interpolation [10] or neural networks [11]. Recently,
Ting et al. [12] developed a Bayesian parameter identification
method for nonlinear dynamic systems, such as a robotic arm
or a 7-DOF robotic head.

The approach presented in this paper is also related to
the problem of self-calibration which can be understood as
a subproblem of body scheme learning. When the kinematic
model is known up to some parameters, they can in certain
cases be efficiently estimated by maximizing the likelihood of
the model given the data [13]. Genetic algorithms have been
used by Bongard et al. [14] for parameter optimization when
no closed form is available. To a certain extend, such methods
can also be used to calibrate a robot that is temporarily using
a tool [15]. In contrast to the work presented here, such
approaches require a parameterized kinematic model of the
robot.

To achieve continuous self-modeling, Bongard et al. [16]
recently described a robotic system that continuously learns
its own structure from actuation-sensation relationships. In
three alternating phases (modeling, testing, prediction), their
system generates new structure hypotheses using stochastic
optimization, which are validated by generating actions and
by analyzing the following sensory input. In a more general
context, Bongard et al. [17] studied structure learning in
arbitrary non-linear systems using similar mechanisms.

In contrast to all the approaches described above, we
propose an algorithm that both learns the structure as well
as functional mappings for the individual building blocks.
Furthermore, our model is able to revise its structure and
component models on-the-fly.



III. A BAYESIAN FRAMEWORK FOR ROBOTIC BODY
SCHEMES

A robotic body scheme describes the relationship bet-
ween available action signals 〈a1, . . . , am〉, self-observations
〈Y1, . . . , Yn〉, and the configurations of the robot’s body parts
〈X1, . . . , Xn〉. In our concrete scenario, in which we consider
the body scheme of a robotic manipulator arm in conjunc-
tion with a stationary, monocular camera, the action signals
ai ∈ R are real-valued variables corresponding to the joint
angles. Whereas the Xi ∈ R6 encode the 6-dimensional poses
(3D Cartesian position and 3D Euler angles) of the body
parts w.r.t. a reference coordinate frame, the Yi ∈ R6 are
generally noisy and potentially missing observations of the
body parts. Throughout this paper, we use capital letters to
denote 6D pose variables to highlight that these also uniquely
define homogeneous transformation matrices, which can be
concatenated and inverted. Note that we do not assume direct
feedback/proprioception telling the robot how well joint i has
approached the requested target angle ai.

Formally, we seek to learn the probability distribution

p(X1, . . . , Xn, Y1, . . . , Yn | a1, . . . , am) , (1)

which in this form is intractable for all but the simplest
scenarios. To simplify the problem, it is typically assumed
that each observation variable Yi is independent from all other
variables given the true configuration Xi of the corresponding
body part and that they can thus be fully characterized by an
observation model p(Yi | Xi). Furthermore, if the kinematic
structure of the robot was known, a large number of pair-wise
independencies between body parts and action signals could
be assumed, which in turn would lead to the much simpler,
factorized model

p(X1, . . . , Xn | a1, . . . , am) = (2)∏
i

p(Xi | parents(Xi)) · p(parents(Xi) | a1, . . . , am).

Here, parents(Xi) denotes the set of locations of body parts,
which are directly connected to body part i.

The main idea behind this work is to make the factorized
structure of the problem explicit by introducing (hidden)
transformation variables ∆i→j := X−1

i Xj for all pairs of
body parts (Xi, Xj) as well as their observed counterparts
Zi→j := Y −1

i Yj . Here, we use the 6D pose vectors X and
Y as their equivalent homogeneous transformation matrices,
which means that ∆i→j reflects the (deterministic) relative
transformation between body parts Xi and Xj . Figure 3
depicts a local model, which fully defines the relationship
between any two body parts Xi and Xj and their dependent
variables, if all other body parts are ignored.

Since local models are easily invertible (∆i→j are homoge-
neous transformations), any set of n − 1 local models which
form a spanning tree over all n body parts defines a model
for the whole kinematic structure.

In the following, we explain (1) how to continuously learn
local models from data and (2) how to find the best spanning

Fig. 3. Graphical model for two body parts Xi and Xj as well as their
dependent variables. A denotes the set of independent action variables that
cause a local transformation ∆i→j . Yi and Yj are the observed part locations,
and Zi→j is their relative geometric transformation.

tree built from these local models that explains the whole
robot. In this work, we consider the single best solution only
and do not perform model averaging over possible alternative
structures.

Please note that in theory, it would be straight-forward to
keep multiple structure hypotheses and to average over them
using Bayes’ rule. Control under structure uncertainty is a
slightly more difficult problem. One would have to average
over all possible structures and assess the individual risks
and gains for possible actions. Then, the one action sequence
should be selected that maximizes the overall gain while
keeping all possible risks low [18].

In practice, we found that considering the most-likely struc-
ture only is sufficient for most relevant tasks. Our approach is
conservative in this respect since it requires a certain minimal
model accuracy from all parts of the body scheme.

A. Local Models

The local kinematic models are the central concept in
our body scheme framework. A local model M describes
the geometric relationship pM(Zi→j | Ai→j) between two
observed body parts Yi and Yj , given a subset of the action
signal Ai→j ⊂ {a1, . . . , an}.

The probability distribution underlying a local model can
be defined in various ways. If an analytic model of the
robot exists from its specifications, it can be used directly
to construct pM(Zi→j | Ai→j). The standard way to describe
a geometric model for robot manipulators is in terms of the
Denavit-Hartenberg parameters [1, 19]. When available, the
advantages of these models are outstanding: they are exact
and efficient in evaluation. In practice, however, such models
need to be calibrated carefully and often require re-calibration
after periods of use.

B. Learning Local Models from Noisy Observations

On the real robotic platform used in our experiments, the
actions ai correspond to the target angle requested from joint
i and the observations Yi are obtained by tracking visual
markers in 3D space including their 3D orientation [20] (see
the top right image of Figure 1). Note that the Yi’s are
inherently noisy and that missing observations are common,
for example in the case of (self-)occlusion.



The probability distribution pM(Zi→j | Ai→j) of a local
model M can be learned from a sequence of observations
D = {(Zi→j ,Ai→j)}1:t. If we assume Gaussian white noise
with zero mean on the observations, the sensor model becomes
Yi ∼ Xi + N (0, σsensor ). Note that we can connect the
two body parts Xi and Xj in Figure 3 either by lear-
ning pM(∆i→j | Ai→j) or pM(Zi→j | Ai→j). The link
p(∆i→j | Ai→j) = p(X−1

i Xj | Ai→j) is noise-free. It,
however, requires inference starting from Yi and Yj through
both observation models via the indirect Bayesian pathway
Yi ← Xi → ∆i→j → Xj → Yj . Thus, we propose to learn
the model for pM(Zi→j | Ai→j) = pM(Y −1

i Yj | Ai→j)
directly. As the noise distribution pM(Zi→j | ∆i→j) is
determined by integrating Gaussian random variables along
Xi → Yi → Zi→j → Yj → Xj it can nicely be approximated
by a Gaussian [21].

The problem of learning the probability distribution now
comes down to learning the function fM : R|Ai→j | →
R6, Ai→j 7→ Zi→j , from the training data. A flexible model
for solving such non-linear regression problems given noisy
observations is the popular Gaussian process (GP) approach.
The main feature of the Gaussian process framework is, that
the observed data points are explicitly included the model
and, thus, no parametric form of fM needs to be specified.
Data points can be added to the training set at any time,
which facilitates incremental and online learning. Due to
space constraints, we refer the interested reader to work by
Rasmussen [22] for technical details about GP regression. For
simplicity, we assume independence between all 12 free com-
ponents of fM(Ai→j) and consider the functional mapping
for each component separately. Due to this simplification, we
cannot guarantee that the prediction corresponds to a valid,
homogeneous transformation matrix. In practice, however,
invalid transformations occur only rarely and they lie close to
similar, valid transformations, such that a simple normalization
step resolves the problem.

C. Learning a Factorized Full Body Model

We seek to find the best factorized model according to
Eqn. 3 and, thus, require a suitable optimization criterion. Gi-
ven a training set D of independent, time-indexed actions and
their corresponding observations, D = {(Y t

i , Y
t
j ,At

i→j)}Tt=1,
or, equivalently for our purposes, {(Zt

i→j ,At
i→j)}Tt=1, the data

likelihood p(D | M) under a local model M can directly be
computed from its probability distribution pM(Zi→j | Ai→j)
as

p(D | M) =
t∏

k=1

pM(Zk
i→j | Ak

i→j) . (3)

In practice, this product is highly sensitive to outliers, and
makes the comparison of different classes of models difficult.
We therefore developed an alternative model quality measure
q(D | M) that is proportional to both the prediction accuracy
and a penalty term for model complexity:

log q(D | M) := log(1/εpred(D | M)) + C(M) log θ (4)

Fig. 4. In an early learning phase, the robot knows only little about its body
structure, i.e., all possible local models need to be considered in parallel. From
the subset of valid local models, a minimal spanning tree can be constructed
which, in turn, forms a Bayesian network. This can subsequently be used as
a body scheme for prediction and control.

where C(M) ∈ Z is the complexity of model M and
εpred(D | M) is the prediction error defined as

εpred(D | M) :=
1
|D|

∑
(Zi→j ,Ai→j)∈D

εpred(Zi→j | Ai→j ,M)

(5)

with

εpred(Zi→j | Ai→j ,M) :=
∫

Z

‖Zi→j − Z‖· (6)

pM(Z ′ | Ai→j) dZ . (7)

We define a local model M to be validM(D) given a set
of observations, if and only if its observed prediction error is
below some threshold θ, i.e., εpred(D) < θ. Our experiments
revealed that a good value for θ is 3σ, where σ is the standard
deviation of the sensor model.

1) Bootstrapping: If no prior knowledge of the robot’s
body scheme exists, we initialize a fully connected network
model (see Figure 4), resulting in a total set of

∑m
k=0

(
n
2

)(
m
k

)
local models. Given a set of self observations, the robot can
determine the validity of the local models by evaluating Eq. 7.
Certain ambiguities will, however, remain even after infinitely
many training samples: if, for example, pM1(Z1→2 | a1) has
been determined to be a valid local model, then pM2(Z1→2 |
a1, a2) will also be. Although M1 and M2 might not be
distinguishable regarding prediction accuracy, these models
differ significantly in terms of complexity and therefore in
model quality q(D | M).

2) Finding the Network Topology: From the superset of all
valid local models Mvalid = {M1, . . .}, we seek to select
the minimal subset M ⊂ Mvalid that covers all body part
variables and simultaneously maximizes the overall model
fit q(D | M) :=

∏
M∈M q(D | M). It turns out that M

can be found efficiently by computing the minimal spanning
tree of Mvalid taking the model quality measure of the
individual local models as the cost function. Such a body
spanning tree needs to cover all body parts X1, . . . , Xn but
not necessarily all action components of a1, . . . , am. Note
that, in order to connect all n body poses in the Bayesian
network, exactly (n − 1) local models need to be selected.
This yields the astronomical number of #structures =

(
#local models

n−1

)
possible network structures to be considered. In the typical
case, where the robot is composed of 1-DOF joints (arbitrarily



connected), this number reduces to the order of O(n3). In
practice, simple search heuristics allow us to strongly focus
the search on the relevant parts of the structure space, further
reducing this number. Regarding scalability, the observability
of local transformations (from a given camera view point) is
a stronger practical limitation of the system proposed in this
paper than the growth of the search space.

Recall that the quality measure q(D | M) for a local model
is composed of the (data-dependent) prediction accuracy and
a (data-independent) complexity penalty. If we consider two
valid local models, i.e., with εpred(D | M1|2) < θ, then by
the definition of q(D | M), the quality of a model with lower
complexity is always higher compared to a local model with
higher complexity for any D, i.e.,

C(M1) < C(M2)⇐⇒ ∀D : q(D | M1) > q(D | M2) .

Thus, it is sufficient to evaluate only the first k complexity
layers of local models in Mvalid until a minimal spanning tree
is found for the first time. This spanning tree then corresponds
to the global maximum of overall model quality.

D. Prediction and Control

The kinematic forward model is directly available by noting

p(Y1, . . . , Yn | a1, . . . , am)

=
∏

i

p(Yi | parents(Yi))p(parents(Yi) | a1, . . . , am)

= p(Yroot)
∏
M∈M

pM(Zi→j | Ai→j) , (8)

where Yroot is the position of the robot’s trunk, which is
serving as the coordinate origin of all other body parts. In
practice, instead of a probability distribution p(Y1, . . . , Yn |
a1, . . . , am), we rather require the maximum likelihood (ML)
estimate of the resulting body posture given an action signal.
This can be computed efficiently by concatenating the geome-
tric transformations of the individual mapping functions fMi .

Although the inverse kinematic model can in principle be
derived by applying the rules of Bayes,

p(X1, . . . , Xn | a1, . . . , am)

=
p(X1, . . . , Xn)
p(a1, . . . , am)

p(a1, . . . , am | X1, . . . , Xn)

∝ p(a1, . . . , am | X1, . . . , Xn), (9)

it is in general difficult to determine the maximum likelihood
(ML) estimate for the action signal a1, . . . , am that is supposed
to generate a given target body posture X1, . . . , Xn. Since all
individual functions fMi

are continuous, and so is the ML
posture estimate f of the forward kinematic model, we can
compute the Jacobian ∇f(a) of the forward model as

∇f(a) =
[
∂f(a)
∂a1

, . . . ,
∂f(a)
∂am

]T

. (10)

A gradient descent algorithm can then be used to minimize
f(a) and thereby to iteratively control the manipulator to its
target position [7].

E. Failure Awareness and Life-Long Model Adaptation

Until now, we have assumed that the robot’s physiology
remains unchanged during its whole life-time. It is clear, ho-
wever, that in real-world applications, the robot will change in
the course of time. This insight requires that the robot revises
parts of its experience over time, allowing it to discriminate
between earlier and more recent observations. This enables the
robot to detect changes in its physiology by testing the validity
of its local models at different points in time and at different
temporal scales.

It might even be useful for the robot to maintain multiple
body schemes at different time scales. Consider, for example,
a robot that uses an accurate pre-programmed model over a
long period of time, but simultaneously is able to create and
use a short-term model that takes over as soon as the body
structure of the robot changes occur (which could be as little
as the displacement of one visual marker). From a formal point
of view, time is simply another dimension in the model space
which can be included in the definition of local models.

A temporal local model MT describes the geometric re-
lationship pT

M(Zi→j | Ai→j , T ) between two observed body
parts Yi and Yj , given a subset of the action signal Ai→j ⊂
{a1, . . . , an} and a particular time interval T .

However, the size of the learning problem in the boot-
strapping case now grows exponentially in time yielding the
immense upper bound of

∑m
k=0

(
n
2

)(
m
k

)
2|T | local models to be

considered. As it would be practically infeasible to evaluate
all of these local models even for small periods of time, three
additional assumptions can be made such that an efficient
algorithm for real-time application can be devised:

1) Changes in body physiology can be assumed to be
relatively rare events.

2) Changes in physiology most probably happen incremen-
tally.

3) Whatever local models were useful in the past, it is likely
that similar (or maybe even the same) local models will
be useful in the future.

Because of the first assumption it is not necessary to
consider new local models as long as the current body scheme
still yields a high prediction accuracy. Only when one of the
local models of the current body scheme becomes invalid,
incremental learning (assumption 2) has to be triggered. Then,
according to assumption 3, it is reasonable to begin the search
for new models that are similar to previously useful models.
To incorporate these assumptions in the quality measure for
local models, we first define the concept of relative complexity
of a local model M2 given a previously used model M1 as

C(M2 | M1) := d(M2,M1),

where d(·, ·) is a (data-independent) similarity metric between
two local models and C(M2 | M1) ∈ Z. In practice,
d(·, ·) can for example be defined as the ratio of shared
nodes between two local models in the Bayesian network. The
refined version of the model quality measure q2(D | M1,M2)
of some recent observations D given a newly sampled model
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Fig. 5. At t = 100, a joint gets blocked, which causes the initial local
model pengineered (Z6→7 | a4) to produce substantially larger prediction
errors. At t = 126, the robot samples a new local model plearned (∆6→ 7)
as replacement.

M2 as a replacement for an invalidated previous model M1

can then be defined as

log q2(D | M1,M2) := log(1/errorprediction(D))
+ C(M2 | M1) log θ
+ log |TM2 | . (11)

Please note that, by construction, the quality measure of
two local models with different relative complexity have no
overlapping ranges in model quality independently of the
observation data D, i.e.,

C(M1 | M3) < C(M2 | M3))
⇐⇒ ∀D : q(D | M1) > q2(D | M2) . (12)

It is, like in the static case, sufficient to sample and evaluate
only the first k complexity layers of local models until a
minimum spanning tree is found. By definition of the quality
function, this minimum spanning tree is then by construction
the global maximum of overall model quality.

IV. EXPERIMENTS

We tested our approach in a series of experiments, both on
a real robot and in simulation. The goal of our experiments
was to verify that

1) physiological changes are detected confidently (blocked
joints / deformations),

2) the body scheme is updated automatically without hu-
man intervention, and

3) the resulting body scheme can be used for accurate
prediction and control.

The robot used to carry out the experiments is equipped
with a 6-DOF manipulator composed of Schunk PowerCube
modules. The total length of the manipulator is around 1.20m.
With nominal noise values of (σjoints = 0.02◦), the reported
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Fig. 6. The absolute prediction error of the combined kinematic model
p(Z1→7 | a1, . . . , a4) of our 6-DOF manipulator. This model is composed of
6 individual local models of which one is replaced by a newly learned model
at t = 126 (cmp. Figure 5). As can be seen from the plot, the prediction
accuracy recovers quickly after each of the three external events.

joint positions of the encoders were considered to be suffi-
ciently accurate to compute the ground truth positions of the
body parts from the known geometrical properties of the robot.
Visual perception was obtained by using a Sony DFW-SX900
FireWire-camera at a resolution of 1280x960 pixels. On top
of the robot’s joints, 7 black-and-white markers were attached
(see Figure 1), that were detectable by the ARToolkit vision
module [20]. Per image, the system perceives the unfiltered
6D poses of all detected markers. The standard deviation of
the camera noise was measured to σmarkers = 44mm in 3D
space, which is acceptable considering that the camera was
located two meters apart from robot.

We averaged the prediction error over a test set of the latest
|Dtesting | = 15 data samples. New local models were trained
with |Dtraining | = 30 succeeding training samples after the
model was instantiated. In order for a local model to be valid,
its translational and rotational error on the test set needed to be
below a threshold of θtrans = 3σtrans = 150mm and θrot =
3σrot = 45◦, with σtrans and σrot as the standard deviation of
the translational and rotational observation noise, respectively.
New local models were only sampled when no valid spanning
tree could be constructed for |Dtesting | succeeding time steps,
as this is the time it takes to replace most if not all (because
of possibly missing observations) data samples of the test set.
Note that otherwise it could happen that available local models
cannot be selected because the test set temporarily consists of
data samples partly observed just before and partly after a
change in physiology.

A. Evaluation of Model Accuracy

To quantitatively evaluate the accuracy of the kinematic
models learned from scratch as well as the convergence be-
havior of our learning approach, we generated random action
sequences and analyzed the intermediate models using a 2-
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Fig. 7. Prediction and control errors for a kinematic model that is learned
from scratch. Already after 7 samples, the average prediction error is lower
than the average localization error of the visual markers.

DOF robot of which the kinematic model is perfectly known.
Figure 7 gives the absolute errors of prediction and control

after certain numbers of observations have been processed. For
a reference, we also give the average observation noise, i.e.
the absolute localization errors of the visual markers.

As can be seen from the diagram, the body scheme con-
verges robustly within the first 10 observations. After about
15 training samples, the accuracy of the predicted body
part positions even outperformed the accuracy of the direct
observations. The latter is a remarkable result as it means that,
although all local models are learned from noisy observations,
the resulting model is able to blindly predict positions that
are more accurate than immediate perception. The figure also
gives the accuracy of the gradient-based control algorithm.
Here, we used an additional marker for defining a target
location for the robot’s end effector. We learned the full body
scheme model from scratch as in the previous experiment and
used the gradient-based control algorithm to bring the end
effector to the desired target location. The average positioning
error is in the order of the perception noise (approx. 50mm, see
Figure 7), i.e. slightly higher than the prediction error alone.

B. Scenario 1: Joint stuck

We generated a large sequence of random motor commands
〈a1, . . . , am〉. Before accepting a pose, we checked that the
configuration would not cause any (self-)collisions, and that
the markers of interest (X6 and X7) would potentially be
visible on the camera image. This sequence was sent to the
robot and after each motion command, the observed marker
positions 〈Y1, . . . , Yn〉 were recorded. In the rare case of a
anticipated or a real (self-)collision during execution, the robot
stopped and the sample was rejected. Careful analysis of the
recorded data revealed that, on average, the individual markers
were visible only in 86.8% of the time with the initial body
layout. In a second run, we blocked the robot’s end-effector
joint a4, such that it could not move, and again recorded a log-

file. Note that we allow arbitrary 3D motion (just constrained
by the geometry of the manipulator) and thus do not assume
full visibility of the markers.

An automated test procedure was then used to evaluate the
performance and robustness of our approach. For each of the
20 runs, a new data set was sampled from the recorded log-
files, consisting of 4 blocks with N = 100 data samples each.
The first and the third block were sampled from the initial body
shape, while the second and the fourth block were sampled
from the log-file where the joint got blocked.

Figure 5 shows the prediction error of the local models
predicting the end-effector pose. As expected, the prediction
error of the engineered local model increases significantly after
the end-effector joint gets blocked at t = 100. After a few
samples, the robot detects a mismatch in its internal model
and starts to learn a new dynamic model (around t = 130),
which quickly reaches the same accuracy as the original,
engineered local model. At t = 200, the joint gets repaired
(unblocked). Now the estimated error of the newly learned
local model quickly increases while the estimated error of the
engineered local model decreases rapidly towards its initial
accuracy. Later, at t = 300, the joint gets blocked again in the
same position, the accuracy of the previously learned local
model increases significantly, and thus the robot can re-use
this local model instead of having to learn a new one.

The results for 20 reruns of this experiment are given in
Figure 6. The hand-tuned initial geometrical model evaluates
to an averaged error at the end-effector of approx. 37mm.
After the joint gets blocked at t = 100, the error in prediction
increases rapidly. After t = 115, a single new local models
gets sampled, which already is enough to bring down the over-
all error of the combined kinematic model to approximately
51mm. Training of the new local model is completed at around
t = 135.

Later at t = 200, when the joint gets un-blocked, the error
estimate of the combined kinematic model increases slightly,
but returns much faster to its typical accuracy: switching back
to an already known local model requires much fewer data
samples than learning a new model (see Table I). At t = 300,
the same quick adaption can be observed when the joint gets
blocked again.

TABLE I
EVALUATION OF THE RECOVERY TIME REQUIRED AFTER BEING EXPOSED

TO DIFFERENT TYPES OF FAILURES. IN EACH OF THE 4× 20 RUNS, FULL

RECOVERY WAS AFTER EACH EVENT ROBUSTLY ACHIEVED.

Visibility Failure Recovery time after
rate type failure repair same failure

91.9% Joint blocked 16.50 0.45 0.65
± 1.20 ± 0.86 ± 1.15

79.0% Limb deformed 20.20 11.10 12.10
±1.96 ± 0.83 ± 1.64



Fig. 8. The manipulator robot with a deformed limb has to follows the blue
target trajectory. With a static body model, it suffers from strong derivation
(red trajectory). By using our approach, the body scheme is dynamically
adapted, and the trajectory is very well approached (green trajectory).

C. Scenario 2: Deformed limb

In a second experiment1, we changed the end-effector limb
length and orientation and applied the same evaluation proce-
dure as in the previous subsection. This was accomplished by
placing a tool with an attached marker in the robot’s gripper
at different locations (see Figure 1).

Although the overall result closely resembles the case of a
blocked joint, there are a few interesting differences. After the
tool gets displaced at t = 100, on average two local models
need to be sampled because the first one is not sufficient.

Also note that it takes much more training samples for the
GPs to learn and validate the underlying probability distribu-
tion p(Z6→7 | a4) (see Table I). The prediction accuracy of
the whole system closely resembles the levels as in the case
of the blocked joint: On average, we measured after recovery
an accuracy of 47mm.

D. Controlling a Deformed Robot

Finally, we ran a series of experiments to verify that dy-
namically maintained body schemes can be used for accurate
positioning and control. The experiments were executed on a
4-DOF manipulator in simulation.

We defined a 3D trajectory consisting of 30 way-points
that the manipulator should approach by inverse kinematics
using its current body scheme, see Figure 8. When the initial
geometric model was used to follow the trajectory by using
the undamaged manipulator, a positioning accuracy of 7.03mm
was measured. When the middle limb was deformed by 45◦,
the manipulator with a static body scheme was significantly
off course, leading to an average positioning accuracy of
189.35mm. With dynamic adaptation enabled, the precision
settled at 15.24mm. This shows that dynamic model adaption
enables a robot to maintain a high positioning accuracy after
substantial changes to its body physiology.

V. CONCLUSION

In this paper, we presented a novel approach to life-long
body scheme adaptation for a robotic manipulation system.
Our central idea is to continuously learn a large set of

1A demonstration video of this experiment can be found on the in-
ternet at http://www.informatik.uni-freiburg.de/˜sturm/
media/resources/public/zora-7dof-demo.avi

local kinematic models using non-parametric regression and to
search for the best arrangement of these models to represent
the full system.

In experiments carried out with a real robot and in simu-
lation, we demonstrated that our system is able to deal with
missing and noisy observations, operates in full 3D space, and
is able to perform relevant tasks like prediction, control, and
online adaptation after failures. Challenging topics for further
investigation include developing an active exploration strategy,
learning from marker-less observations, point-like features, or
range observations and learning for fully unobservable parts
of the robot.
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