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Abstract—Robots operating in home environments must be
able to interact with articulated objects such as doors or drawers.
Ideally, robots are able to autonomously infer articulation models
by observation. In this paper, we present an approach to learn
kinematic models by inferring the connectivity of rigid parts
and the articulation models for the corresponding links. Our
method uses a mixture of parameterized and parameter-free
representations. To obtain parameter-free models, we seek for
low-dimensional manifolds of latent action variables in order
to provide the best explanation of the given observations. The
mapping from the constrained manifold of an articulated link
to the work space is learned by means of Gaussian process
regression. Our approach has been implemented and evaluated
using real data obtained in various home environment settings.
Finally, we discuss the limitations and possible extensions of the
proposed method.

I. INTRODUCTION

Home environments are envisioned as one of the key

application areas for service robots. Robots operating in such

environments are typically faced with a variety objects they

have to deal with or to manipulate to fulfill a given task.

In this context, many objects are not rigid since they have

moving parts such as drawers or doors. Understanding the

spatial movements of parts of such objects is essential for

service robots to allow them to plan relevant actions such

as door-opening trajectories. In this paper, we investigate the

problem of learning kinematic models of articulated objects

from observations. As an illustrating example, consider Fig. 1

which depicts two examples for observations of the door of

a microwave oven and a learned, one-dimensional description

of the door motion.

Our problem can be formulated as follows: Given a se-

quence of locations from observed objects parts, learn a

compact kinematic model describing the whole articulated

object. This kinematic model has to define (i) the connectivity

between the parts, (ii) the dimensionality of the latent (not

observed) actuation space of the object, and (iii) a kinematic

function between different body parts in a generative way

allowing a robot to reason also about unseen configurations.

The contribution of this paper is a novel approach for

learning such models based only on observations. Our method

is able to robustly detect the connectivity of the rigid parts

of the object and to estimate accurate articulation models

from a candidate set. It allows for selecting the best model

among parametric, expert-designed transformation templates

(rotational and prismatic models), and non-parametric trans-

formations that are learned from scratch requiring minimal

Fig. 1. Top row: Examples for observations of a moving door of a microwave
oven. Bottom left: Visualization of the kinematic model of the door including
the range of the latent action variable as learned by our approach. Bottom
right: By using the learned model, all other possible door configurations can
be generated.

prior assumptions. To obtain a parameter-free description, we

apply Gaussian processes (GPs) [11] as a non-parametric

regression technique to learn flexible and accurate models. To

find the low-dimensional description of the moving parts, we

furthermore apply a local linear embedding (LLE) [13], which

is a non-linear dimensionality reduction technique. As the

experiments described in this paper demonstrate, our technique

allows to learn accurate models for different articulated objects

from real data. We regard this as an important step towards au-

tonomous robots understanding and actively handling objects

in their environment. Note that the core technique presented in

this paper will also be presented at IJCAI’09 [16]. In the work

here, we additionally report on limitations of our approach and

discuss potential extensions how we plan to overcome these

in the near future. In addition to that, we slightly extended the

experimental section.

Throughout this paper, we consider objects that are a

collection of rigid bodies denoted as “object parts” in the

3D space and that they are articulated, which means that the

configuration of their parts can be described by a finite set

of parameters. The only required input are potentially noisy

observations of the poses of object parts.

This paper is organized as follows. We first discuss related

work in Section II Then, Section III explains our approach to



learn articulation models based on observations including the

LLE for dimensionality reductions and GPs for non-parametric

model learning. Finally, we present the experimental evalua-

tion of our work with a real mobile robot in Section IV and

will discuss limitations and potential extensions of our work.

II. RELATED WORK

Learning the kinematics of robots that can actively move

their own body parts has been intensively investigated in the

past: Dearden and Demiris [5] learn a Bayesian network for a

1-DOF robot. Sturm et al. [14, 15] proposed an approach to in-

fer probabilistic kinematic models by learning the conditional

density functions of the individual joints and by subsequently

selecting the most likely topology. Their approach requires

knowledge about the actions carried out by the robot or

by the observed object—information which is not available

when learning the models of arbitrary, articulated objects from

observations only. Similarly, Taycher et al. [17] address the

task of estimating the underlying topology of an observed

articulated body. Their focus lies on recovering the topology

of the object rather than on learning a generative model

with explicit action variables. Also, compared to their work,

our approach can handle higher-dimensional transformations

between object parts. Kirk et al. [7] extract human skeletal

topologies using 3D markers from a motion capture system.

However, they assume that all joints are rotational.

Yan and Pollefeys [22] present an approach for learning

the structure of an articulated object from feature trajectories

under affine projections. They first segment the feature trajec-

tories by local sampling and spectral clustering and then build

the kinematic chain as a minimum spanning tree of a graph

constructed from the segmented motion subspaces.

Other researchers have addressed the problem of identifying

different object parts from image data. Ross et al. [12] use

multi-body structure from motion to extract links from an

image sequence and then fit an articulated model to these

links using maximum likelihood learning. There also exist

approaches for identifying humans that assume a known topol-

ogy of the body parts. Ramanan [10] perform pose estimation

of articulated objects from images using an iterative parsing

approach. They seek to improve the feature selection to better

fit the model to the image.

There exist several approaches where tracking articulated

objects is the key motivation and often an a-priori model is as-

sumed. Comport et al. [4], for example, describe a framework

for visual tracking of parametric non-rigid multi-body objects

based on an a-priori model of the object including a general

mechanical link description. Chu et al. [2] present an approach

for model-free and marker-less model and motion capture from

visual input. Based on volume sequences obtained from image

data from calibrated cameras, they derive a kinematic model

and the joint angle motion of humans with tree-structured

kinematics.

Similar to our approach for identifying low-dimensional ar-

ticulation actions, Tsoli and Jenkins [19] presented an Isomap-

based technique that finds a low-dimensional representation of

complex grasp actions. This allows human operators to easily

carry out remote grasping tasks.

Katz et al. [6] learn planar kinematic models for articulated

objects such as 1-DOF scissors or a 3-DOF snake-like toy.

They extract features from a series of camera images, that

they group together to coherently moving clusters as nodes

in a graph. Two nodes are connected in the graph when

they are rigid. Subsequently, rotational and prismatic joints

are identified by searching for rotation centers or shifting

movements. In contrast to their work, we use 3D information

and are not restricted to prismatic and rotation joints. We

additionally can model arbitrary movements including those

of garage doors which are 1-DOF actions that cannot be

described by a prismatic or rotational joint. The approach

of Katz et al. [6] is furthermore focused on manipulation

actions whereas our approach is passive and only based on

observations.

III. LEARNING MODELS OF ACTUATED OBJECTS

In this work, we consider articulated objects consisting of

n rigid object parts, which are linked mechanically as an open

kinematic chain. We assume that a robot, external to the object,

observes the individual parts and that it has no prior knowledge

about their connectivity.

To describe the kinematics of such an articulated object,

we need to reason about (i) the connections of the object parts

(the topology) and (ii) the kinematic nature of the connections.

Our approach seeks to find the topology and the local models

that best explain the observations. We begin with a discussion

of how to model the relationship of two object parts. The

extension towards an entire graph of parts and relations is

then given in Section III-C.

A. Modeling the Interaction between Two Parts

The state of an object part i can be described by a vector

xt
i ∈ R

6 representing the position and orientation of the

part i ∈ 1, . . . , n at time t = 1, . . . , T . We assume that

only their relative transformation ∆ij = xi ⊖ xj is relevant

for estimating the model, where ⊕ and ⊖ are the motion

composition operator and its inverse.

If the two object parts are not rigidly connected, we assume

that the articulation can be described by a latent (not observed)

action variable. Examples for a latent action variable are the

rotation angle of a door or the translation of a drawer. The

goal is now to describe the relative transformation between

the object parts using such a latent variable aij ∈ R
d, where

d represents the intrinsic DOF of the connection between i
and j.
Since we have no prior information about the nature of the

connection, we do not aim to fit a single model but instead aim

to fit a set of candidate template models representing different

kinds of joints. This candidate set consists of parameterized

models that occur in various objects including a rotational

joint (Mrotational), a prismatic joint (Mprismatic), and a rigid

transformation (Mrigid). Additionally, there may be articula-

tions that do not correspond to these standard motions, for



which we consider parameter-free models (MLLE/GP). These

are computed by using a combination of the local linear

embedding (LLE) dimensionality reduction technique and a

Gaussian process. A more detailed description of these models

is given in Section III-D

We use a sequence of T noisy observations z1:T
ij =

z1

ij , . . . , z
T
ij of ∆ij for fitting the candidate models and for

evaluating which model appears to be the best one. This is

done by performing 2-fold cross-validation. In the remainder

of this paper, we refer to Dij as the training data selected

from the observations, where Dij ⊂ z1:T
ij , and to Dtest

ij as the

(disjoint) set of test data.

B. Evaluating a Model

Let Mij be an articulation model p(∆ij | a) describing

the connection between the part i and j and learned from the

training data Dij . To actually evaluate how well an observation

zij can be explained by a model, we have to determine p(zij |
Mij) which corresponds to

p(zij | Mij) =

∫

a

p(zij | a,Mij) p(a | Mij) d a. (1)

The variable a is the latent action variable of the model that,

for example, describes the opening angle of a door.

We assume that during the observations, there is no latent

action state a that is more likely than another one, i.e., that

p(a | Mij) is a uniform distribution. Note that this is an

approximation since in our door example, one might argue

that doors are more likely to be closed or completely opened

compared to other states. This assumption simplifies Eq. 1 to

p(zij | Mij) =

∫

a

p(zij | a,Mij) d a. (2)

To evaluate p(zij | a,Mij), that is, a measure for how well

model Mij parameterized by the action variable a explains

the observation zij of the part transformation ∆ij , we first

compute the expected transform

∆̂ij = EMij
[∆ij | a] = fMij

(a) (3)

using a model-specific transformation function fMij
(a). In

Section III-D, we will specify this transformation function for

all model templates. Note that we reason about the relative

configuration between object parts here and compare the

result to the observed transformation under a Gaussian error

assumption with variance σ2:

p(zij | a,Mij) ∝ exp
(

−||∆̂ij − zij ||
2/σ2

)

(4)

To actually compute p(zij | Mij) using Eq. 2, we need to

compute the integral over the latent action variable a. In this

paper, we solve this by performing Monte-Carlo integration

by sampling multiple instances of the latent variable.

Since this procedure can be rather time-consuming, we also

tested an alternative strategy to approximate the integral. If

we assume that p(zij | a,Mij) is unimodal, we can think of

evaluating it only at the most likely latent action variable and

approximate Eq. 2 by

p(zij | Mij) = max
a

p(zij | a,Mij). (5)

Depending on the realization of the model Mij , we can carry

out the maximization step to compute p(zij | Mij) efficiently.
Finally, we can compute the data likelihood for the test data

set

p(Dtest
ij | Mij) =

∏

zij∈Dtest
ij

p(zij | Mij). (6)

C. Finding the Connectivity

So far, we ignored the question of connectivity and de-

scribed how to evaluate a model Mij representing a connec-

tion between the parts i and j. If we consider the individual

object parts as nodes in a graph and the connections as

edges between nodes, then the set of possible acyclic object

structures that connect all parts is given by all spanning trees of

this graph. The endeavor of explicitly computing, evaluating,

and reasoning with all possible topologies, however, results

in an intractable complexity. We therefore seek to find the

spanning tree M that results in a combined model for all object

parts that both maximizes the expected data likelihood of a

new observation, i.e.,

p(Dtest | M) =
∏

Mij∈M

p(Dtest
ij | Mij), (7)

while at the same time minimizing the overall complexity

of the combined model. The latter is calculated in a fashion

similar as with the Bayesian information criterion. In our case,

we measure the model complexity by the dimensionality of the

latent action space.

To find this topology (that is, the spanning tree of the local

models), we fit for all tuples of rigid parts all models from

the candidate template model set and add for each model a

link to the graph. We then assign to each edge in the graph

the cost of model Mtype
ij that is equal to the negative expected

data log-likelihood plus a complexity penalty of the model:

cost
M

type

ij
= −

1

‖Dtest‖
log p(Dtest | Mtype

ij ) + C(Mtype
ij ) (8)

Then, the task of finding the topology of local models which

minimize this cost function is equivalent to finding the minimal

spanning tree in this graph which can be done rather efficiently.

Please note that the resulting kinematic tree can be trans-

formed into a Bayes network (BN) by replacing the edges

by connected nodes representing local models M and latent

action variables a and by adding nodes for (absolute) object

part observations and relative observations z. The resulting BN
naturally encodes all independence assumptions made in our

work. Such a BN, however, is complex and hard to visualize.

We therefore stick at this point to a graph-like visualization

as shown in the Fig. 2. Bold arrows indicate the selected

models form the spanning tree structure. The top plot in Fig. 3

illustrates the prediction error of all considered models during



Fig. 2. Learning the kinematic model for a garage door. The fully connected
graph contains instantiations of all possible template models and the selected
models are indicated by bold arrows.
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Fig. 3. Learning the kinematic model for a garage door (continued from
Fig. 2). Top: evolution of the data likelihood of different models over 20 runs
(mean and variance). Bottom: transformation function learned by the LLE/GP
model from 33 training samples (mean and variance).

learning. The bottom image depicts the probability density

function of the model MLLE/GP.

In the remainder of this section, we describe (i) how an

individual articulation model can be learned from a series

of observations, (ii) how a compact kinematic tree can be

recovered from the data, and (iii) how we can use the final

model to generate poses for the rigid parts for previously

unseen latent action configurations.

D. Model Templates

This section explains the instances of the set of candidate

model templates.

1) Rigid Transformation Model: The simplest connection

between two parts is a rigid transformation without any latent

action variable. The model-specific transformation function of

Eq. 3 for the rigid transform model Mrigid from training data

D then reduces to the estimating the mean, i.e.,

f
M

rigid

ij

=
1

‖Dij‖

∑

zij∈Dij

zij . (9)

2) Prismatic Joint Model: For modeling prismatic joints

that can be, for example, found in a drawer, we assume a 1-

DOF latent action variable that describes the motion between

the object parts. Prismatic joints move along a single axis, that

can for example be found using principle component analysis.

Internally, we model the action at
ij as the relative movement

with respect to the first observation z1 in D (therefore a1

ij = 0)
along its principal axis e of unit length. Let trans be the

function that removes all rotational components, we obtain:

ât
ij = e · trans(∆t

ij − ∆1

ij) (10)

The model-specific transformation function for the prismatic

model Mprismatic then becomes

f
M

prismatic

ij

(a) = ae + ∆1. (11)

3) Rotational Joint Model: In the case of a rotational

joint, we compute the latent 1-DOF action variable from

Eq. 5 by taking the first observation as a reference (similar

as in the prismatic joint model). The rotational components

describe a line, whose direction e can be found by principle

component analysis. We computing the angular difference of

all observations relative to the first one

ât
ij = e · angle(∆t

ij − ∆1

ij). (12)

Here, angle is a function that removes all non-rotational

components.

Since our model assumes a 1-DOF latent action variable,

the positions of the observed parts describe a circular arc or a

single point in case the observed object part lies on the axis

of rotation. By standard geometric operations, we estimate the

axis of rotation n ∈ R
3, the rotational center c ∈ R

3, and the

rigid transform r ∈ R
6 carried out after the rotation. Then,

the model-specific transformation function for the rotational

model Mrotational becomes

fMrotational
ij

(a) = [c;n]T ⊕ rotZ(a) ⊕ r, (13)

where rotZ(a) describes a rotation about the Z axis by a and

⊕ is the motion composition operator.

4) LLE/GP Joint Model: Although rigid transformations

in combination with rotational and prismatic joints might

seem at the first glance to be sufficient for a huge class of

kinematic objects, it turns out that many real-world objects

lack a clear shifting or rotation axis. One example for such

objects is a garage door. Therefore, our candidate model

template set contains one non-parametric model that is able to

describe general transformations. This model is based on non-

linear dimensionality reduction via local linear embedding for

discovering the latent action manifold and a Gaussian process

regression to learn a generative model.



Consider the manifold that is described by the observations

of object poses in Dij = ∆1

ij , . . . ,∆
T
ij for the link between

rigid part i and j. Depending on the DOF d of this particular

link, all data samples will lie on or close to a d-dimensional

manifold with 1 ≤ d ≤ 6 being non-linearly embedded in

R
6. There are many dimensionality reduction techniques such

as PCA for linear manifolds or Isomap [18] and LLE [13]

for non-linear manifolds. Our current implementation applies

LLE but is not restricted to this method. LLE first expresses

each data point as a linear combination of its neighbors, here

in R
6, and then computes a low-dimensional representation in

R
d satisfying the identical linear relationships.

In more detail, LLE first finds the k-nearest neighbors of

each data sample ∆t in D (we neglect the indices i and j
for a better readability here). For each data sample, LLE then

computes a vector of weights that best reconstructs the data

sample ∆t from its neighbors. Let W be the weight matrix for

all samples. LLE seeks for the weight matrix that minimizes

the reconstruction error ε given by

ε(W ) =
∑

t

‖∆t −
∑

t′

Wtt′∆
t′‖2. (14)

By normalization, we require that the reconstruction weights

for each data sample t to sum to one over its neighbors,

i.e.,
∑

t′ Wtt′ = 1. Minimizing Eq. 14 can be achieved via

Lagrange minimization in closed form.

After determining the reconstruction weight matrix, LLE

seeks for a point-wise mapping of each data sample ∆t to

a local coordinate at on the d-dimensional manifold. This

mapping has to ensure that the weight matrix W reconstructs

also the local coordinates of the data samples on the manifold.

This is done by searching for the local coordinates a1, . . . , aT

for ∆1, . . . ,∆T so that the reconstruction error Ψ

Ψ(a1, . . . , aT ) =
∑

t

‖at −
∑

t′

Wtt′a
t′‖2, (15)

on the manifold is minimized.

With a few additional constraints, the minimization of

Eq. 15 can be solved as a sparse T × T eigenvector problem.

The local coordinates are then computed based on the eigen-

vectors. For further detail, we refer the reader to the work of

Roweis et al. [13].

The reconstructed latent action values can now be used for

learning p(z | a,M) from the training data D. In our work,

we employ Gaussian process regression, which is a powerful

and flexible framework for non-parametric regression. For the

sake of brevity, we refer the interested reader to Rasmussen

and Williams [11] for details about GP regression.

IV. EXPERIMENTS

To evaluate our approach, we recorded observations from

two typical household objects, a microwave door and a cabinet

with two drawers. To track the poses and orientations of the

parts, we placed the objects in a PhaseSpace motion capture

studio. For each object, we recorded 200 data samples while

manually articulating the object. Additionally, we simulated a

garage door as a typical object that cannot be described using

a prismatic or rotational joint. We also estimated the model

of a table moved on the ground plane to give an example of

latent action variables with more than one dimension.

Our experiments are designed so that we can recover

accurate transformation models for each link between parts

along with the kinematic structure. In addition, we show

that the range of the latent action space can be estimated

and configurations of this range can be generated for visual

inspection.

5) Model Selection: We evaluated the prediction accuracy

and the expected data likelihood for each of the microwave,

the drawer, and the garage door dataset for all models of

out candidate set. For the evaluation, we carried out 10 runs

and in each run, 40 observations were drawn independently

and randomly from the data set, 20 of them were used for

learning and 20 for testing. The quantitative results showing

the prediction error of the models are depicted in Table I. As

can be seen, the flexible LLE/GP model can fit all objects

well.

As can be seen from the table, the rotational model predicts

best the opening movement of the microwave door while the

prismatic model predicts best the motion of the drawer which

is the expected result. It should be noted that the LLE/GP

model is only slightly worse than the parametric models and

is able to robustly predict the poses of the door and the drawer

(1.1mm vs. 1.5mm for the microwave, and 0.7mm vs. 3.6mm

for the drawer).

In the case of the garage door, however, all parametric

models fail whereas the LLE/GP model, designed to describe

general transformations, provides accurate estimates. Here we

evaluated different levels of noise, and found that the LLE/GP

model to be quite robust. Fig. 6 illustrates the motion of the

garage door estimated by the non-parametric model. Note that

our models also encode the range of the latent action variable

a learned from observations.

In Fig. 4 and Fig. 5, the evolution of model fitting is

visualized in more detail for the microwave and the drawer

experiment, respectively. The prediction error of the rigid link

model serves as a baseline for the other models, as it assumes

an unarticulated link between the two rigid bodies. In case

of the microwave, both the rotational and the LLE/GP model

can explain the observed data well, both for the rotational

and translational components of the average prediction error.

In contrast to that, the rotation of the cabinet drawer is well

predicted by all models including the rigid model; as obviously

the rotation of the drawer does not change substantially while

the drawer is opened. However, by regarding the translational

error component, only the prismatic and the LLE/GP model

perform well. Note that the data likelihood that is used

for model selection both depends on the rotational and the

translational prediction errors. From these plots, it can also be

seen that the rotational and prismatic model can estimate the

link parameters already from 2 observations only, while the

LLE/GP model needs at least 5 observations before we can

determine the neighborhood relations in the data space and
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Fig. 4. Evaluation of the microwave door experiment. Average prediction
errors of the individual models with increasing number of training samples
when observing the microwave door. Top: Rotational error. Bottom: Transla-
tional error.

use LLE to recover the latent manifold. Using parameterized

models can therefore be advantageous if only few data samples

are available for training.

These experiments show that our system takes advantage

of the expert-designed parametric models when appropriate

while keeping the flexibility to also learn accurate models for

unforeseen mechanical constructions.

6) Structure Discovery: A typical articulated object consist-

ing of multiple parts is a cabinet with drawers as illustrated

in the left image of Fig. 7. In the experiment, we obtain

pose observations of three rigid parts x1, x2, and x3. First,

we opened and closed only the lower drawer. Accordingly,

a prismatic joint model is learned for link ∆13 (see top left

image of Fig. 7). When also the upper drawer gets opened

and closed, the rigid transform at ∆12 is replaced by a second

prismatic joint model Mprismatic, resulting in a kinematic tree.

Note that it is not required to articulate the drawers one after

each other. This was done only for reasons of visualization.

As a second multi-part object we present a yard stick,

consisting of four consecutive elements with three rotational

links, as depicted in Fig. 8. These experiments demonstrate

that by using the data likelihood for selecting the minimum

spanning tree we are able to infer the correct kinematic

structure.

7) Multi-dimensional Latent Action Spaces: To illustrate

that our approach is also able to find the models with a higher-
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Fig. 5. Evaluation of the cabinet drawer experiment. Top: Rotational error.
Bottom: Translational error.

Fig. 6. Motion of a garage door predicted by our non-parametric model. Left:
Model after the first few observations. Right: after processing all observations.

dimensional latent action variable, we let the robot monitor

a table that was moved on the ground plane. The robot is

equipped with a monocular camera tracking a marker attached

to the table. In this experiment, the table was only moved

and was never turned, lifted, or tilted and therefore the action

variable will have 2-DOF. Fig. 9 shows four snapshots during

learning. Initially, the table is perfectly explained as a rigid

part of the room (top left). Then, a prismatic joint model best

explains the data since the table was moved in one direction

only (top right). After moving sideways, the best model is a 1-

DOF LLE/GP that follows a simple curved trajectory (bottom

left). Finally full planar movement is explained by a 2-DOF

LLE/GP model (bottom right).

8) Simplified Likelihood Computation: To evaluate the like-

lihood of a model one has to integrate over the latent variable

a (see Eq. 2) which is done via Monte-Carlo integration. If

we instead use the approximation shown in Eq. 5, we only

need to evaluate one single action variable. In our current



dataset error of Mrotational error of Mprismatic error of MLLE/GP

microwave 1.1mm 0.1◦ 65.9mm 23.1◦ 1.5mm 0.2◦

±0.2mm ±0.1◦ ±13.7mm ±2.2◦ ±1.7mm ±0.2◦

drawer 67.2mm 1.6◦ 0.7mm 0.9◦ 3.6mm 0.6◦

±24.4mm ±0.4◦ ±0.1mm ±0.1◦ ±6.2mm ±0.1◦

garage door (no noise) 1059.4mm 0.0◦ 382.3mm 25.1◦ 8.5mm 0.4◦

±147.4mm ±0.0◦ ±265.0mm ±3.9◦ ±9.2mm ±0.4◦

garage door (noise .1σ) 1052.6mm 0.2◦ 507.7mm 25.0◦ 18.2mm 0.9◦

±146.1mm ±0.0◦ ±353.1mm ±3.7◦ ±27.1mm ±1.3◦

garage door (noise 1σ) 1108.3mm 2.6◦ 555.9mm 26.5◦ 47.9mm 2.8◦

±126.6mm ±1.0◦ ±387.4mm ±3.4◦ ±49.2mm ±2.2◦

garage door (noise 10σ) 934.4mm 27.4◦ 510.5mm 28.9◦ 248.3mm 16.5◦

±289.4mm ±11.8◦ ±239.2mm ±1.8◦ ±24.1mm ±1.8◦

TABLE I

AVERAGE PREDICTION ERROR AND STANDARD DEVIATION OF LOCAL MODELS ON TEST DATA OVER ALL RUNS. THE MICROWAVE DATA IS BEST

EXPLAINED BY THE ROTATIONAL MODEL, WHILE THE DRAWER DATA IS MATCHED BY THE PRISMATIC MODEL. THE MORE FLEXIBLE LLE/GP MODEL

CAN FIT ALL OF THESE ARTICULATED OBJECTS WELL. IN ORDER TO EVALUATE THE NOISE ROBUSTNESS OF THE LLE/GP MODEL, WE ADDED GAUSSIAN

NOISE WITH σ = (10MM, 1◦) TO THE GARAGE DOOR DATA.

Fig. 7. Estimating a model of two drawers of a cabinet. Top: initially, only the
lower drawer is opened and closed and the corresponding kinematic structure
is inferred. Bottom: both drawers are opened and closed independently.

implementation, this speeds up the required computation time

by a factor of 100 while both approaches select the same

model. Even though the actual values for the likelihood differ

slightly, we were unable to produce a dataset in which both

strategies select different models.

V. DISCUSSION

In this paper, we presented a novel approach for learning

kinematic models of articulated objects. Our approach infers

the connectivity of rigid parts that constitute the object in-

cluding the articulation models of the individual links. To

model the links, our approach considers both, parameterized as

well as parameter-free representations. It combines non-linear

dimensionality reduction and Gaussian process regression to

find low-dimensional manifolds that best explain the observa-

Fig. 8. Top left: Simulated yard stick consisting of 4 consecutive elements.
Top right: The learned model for the yard stick can be used to generate other
possible articulations. Bottom: Model selection correctly reveals the sequential
chain of a 4-part yard stick.

tions. Our approach has been implemented and tested using

real data. In practical experiments, we demonstrated that our

approach enables a robot to infer accurate articulation models

for different everyday objects.

Despite these encouraging results, there is space for further

improvements. First, our approach is currently restricted to

objects that resemble open kinematic chains. Even though

most real world objects a robot deals with in the context of

domestic service robotics are open kinematic chains, it would

be interesting to model closed kinematic chains as well. One

possibility to achieve this, is to replace the minimal spanning

tree by a graph which consists of edges that describe local

models which are consistent with the observations.

Second, it might be helpful to group markers which are

rigidly connected and considering them as a single ’super

marker’. This does not change the approach itself but would



Fig. 9. Learning a model for a table moving on the ground plane. Arrows
indicate the dimensions of the latent action.

lead to more intuitive topology models. Furthermore, this can

help to reduce ambiguities in the topology of the objects. Ad-

ditionally, all markers on the same rigid body could contribute

to learning the articulated link models to the neighboring rigid

bodies.

A further extention towards applications in real domestic

settings is the need to avoid artificial markers attached to

objects. This requires to robustly track natural object parts

with 6 DOF from image data only. This is a challenging

problem [21] and no general solution exists at the moment.

One possibility to address this issue could be the extraction

of features (e.g., SIFT [9] or SURF [1]) and to cluster feature

tracks that are moving coherently together in the scene. To find

such sets of feature tracks in the image data, one might apply

a RANSAC-like procedure similar to [3]. We however believe

that for a robust tracking in practice, additional geometric

assumptions about the objects and the environment need to

be made – like assuming planar surfaces and good lighting

conditions.

On the technical side, we also see possibilities for improve-

ment. Our implementation of the parameter estimators for

the parameterized models could be made more robust against

outliers by using a RANSAC-like approach to find an initial

parameter set that has high support in our noisy data, and then

use bundle adjustment to refine these parameters among the in-

liers. Further, we think that the parameter-free LLE/GP model

could be replaced by more advanced (non-linear) dimen-

sionality reduction techniques, such as Lawrence’s GPLVM

(Gaussian Process Latent Variable Model) [8] or Maaten’s t-

SNE (t-Distributed Stochastic Neighbor Embedding) [20].
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