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Abstract— Service robots deployed in domestic environments
generally need the capability to deal with articulated objects
such as doors and drawers in order to fulfill certain mobile
manipulation tasks. This however, requires, that the robots are
able to perceive articulated furniture objects such as cupboars,
dishwashers and cabinets. In this paper, we present an approach
for detecting, tracking, and learning 3D articulation models
for doors and drawers without using artificial markers. Our = =
approach uses a highly efficient and sampling-based approach ==—
to rectangle detection in dense depth images obtained from a
self-developed projected texture stereo vision system. The rob
can use the generative models learned for the articulated objest
to estimate their mechanism type, their current configuration,
and to predict their opening trajectory. In our experiments
we demonstrate that (1) we obtain dense depth images in the &
workspace of our robot using our camera system, (2) we are
able to robustly and reliably detect cabinet fronts from depth
images, and (3) are able to learn accurate articulation models
for the observed articulated objects. We furthermore provide
a detailed error analysis based on ground truth data obtained
in a motion capturing studio.

|. INTRODUCTION Fig. 1. Top: A drawer is opened and closed and observed witleracs

. . camera in combination with projected texture. Bottom leftteAfplane
Home environments are envisioned as one of the k%)égmentation, we optimize iteratively the pose of a rectaagtk evaluate

application areas for service robots. Robots operating(um s the model fit_diregtly in the disparity image_. Bottpm right: &ftcombining
environments often have to deal with articulated objecthsu these detections into a track, we fit an articulation models.

as doors or drawers. In the past, several researchers ha\zian . . . . . .
e : with moving objects, making them inconvenient for learning

addressed the problem of estimating and handling dooglsrticulations

and drawers [9], [4], [11], [15]. Most of these approaches, In our concrete scenario, the perception of articulated

however, are either entirely model-free or assume suligtant

knowledge about the model and its parameters. Wheregllrs"’“'vers and dpors in a kitchen en_vwonment requires the
. - accurate detection of rectangular objects in the depth émag
model-free approaches release designers from providing an : . g .
. X . . sequences, see Fig. 1. We present a highly efficient algorith
a-priori model information, the knowledge about objectd an : : .
. . . . that segments the point clouds into planes, and then itera-
their articulation properties may greatly support the estat

estimation and the simulation, planning, and verificatién ot'\/(aly fits rectangles to each plane separately. Our peurept

the actions of the robot. This paper is an extended versic?éggghr?bg?gsb ﬁ Zﬁgv?/;e?otz;'titct%rgpnulj?n“t?;rai)f ?ggg':tlfes
of our recent work presented recently [24], with additional . ) 9

. . detections per frame. We furthermore track rectangles over
experiments on the projected texture system.

We consider the problem of acquiring articulation modelmultlple frames. The individual tracks are then used torlear

. the articulation models. The learning approach instesgiat
of doors and drawers from sequences of depth images .. ) ; .
. : . .~ Multiple candidate articulation models and selects the one
acquired with an active stereo camera also presented in this .
. . . that best explains the data. Once a model has been selected,

paper. This approach has several advantages. First, it d(%ﬁs

b . € robot can use it to predict future configurations of the
not rely on artificial markers attached to objects, and Séponoﬁjects P 9
we do not need to employ expensive range scanners whic Our implementation has been made available within Wil-

have have the additional disadvantage that they poorly deI%{N Garage’s open source robotics repository [23].
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AVERAGE NUMBER OF POINT CORRESPONDENCES WITH AND WITHOUT
THE TEXTURE PROJECTORUSING THE PROJECTOR RESULTS IN A

SIGNIFICANT IMPROVEMENT.
Fig. 2. Positional error of a planar target, observed with ative stereo
system. For a white target, the error stays below 2mm untit &f@ém, then

goes up to about 1cm at 2.5m. For a very dark target, error i<lose up, .
then becomes larger at distance, when the pattern is difficidee. 3D point clouds, HOUgh transforms [27], EM-based algo—

rithms [31] and RANSAC-based approaches [21] have been

often have poor depth and spatial resolution, and have nowsed successfully for line and plane fitting.
Gaussian error characteristics that are difficult to des#thwi ~ For this work, we evaluated several of the above ap-
Line stripe systems [7], [19] have the requisite resolutioRroaches w.r.t. their applicability to the depth data fromm o
but cannot achieve 15 Hz operation, nor deal with movingctive stereo camera system. We found that RANSAC-based
objects. Monocular structured light systems [22] can aehie Plane segmentation combined with iterative fitting yielded
reasonable frame rates and can sometimes deal with objét¢ most robust and accurate results in our context.
motion, but still rely on expensive and high-powered projec . . .
tion systems, whilg beingpsensitive to a?nbipent iIIumiF:watJio C. Learning Articulation Models
and object reflectance. Yan and Pollefeys [30] present an approach for learning
Stereo Systems that emp|0y matching a|gorithms to préhe structure of an articulated ObjeCt from feature tra]BeB
duce dense results [6], [13], [28] can be a suitable sensbpder affine projections. Other researchers have addressed
for our application. However, passive stereo suffers from t the problem of identifying different object parts from ineag
problem ofdropouts areas of low texture cannot be matchedlata. Rost al. [20] use multi-body structure from motion
correctly. An interesting and early technology is the use dP extract links from an image sequence and then fit an
stereo with structured light [18], [17]. Unlike structurbght articulated model to these links using maximum likelihood
systems with single cameras, stereo does not depend on @@rming. There exist several approaches where tracking
relative geometry of the light pattern — the pattern justien articulated objects is the key motivation and often an afpri
texture to the scene. Hence the pattern and projector can H@del is assumed. Krainit al.[16], for example, described
simplified, and standard stereo calibration techniquesbean recently an approach for tracking articulated objects sagch
used to obtain accurate and dense 3D measurements. @ manipulator including its hand, using a depth camera with
One variant of this technique, known as Spacetime Sterdotexture projector similar to ours. However, they require a
(STS) [8], [32], varies the pattern over time and integrate@@0ometric model of the manipulator. Kaz al. [12] learn
several frames. It produces outstanding results on staff@nar kinematic models for various articulated objectgln

scenes and under controlled illumination conditions, bu#sing & KLT tracker. Kragiet al.[15] describe an integrated
moving objects create difficulties [32], [29], [26]. navigation system for mobile robots which includes a vision

We have developed a compact projector for active sterdipsed system for the detection of door handles that enables

with a fixed, random pattern [14], using a red high perth® robot to successfully open doors. Anguekeival. [4]
formance LED providing 5 optical Watts. It provides amod_el doors as Ilne_ segments that rotate around a hinge.
texture for stereo that produces excellent error chariatiey EM IS then used to find the model parameters both from 2D

at distances up to 3 meters, even for surfaces with lof*"9€ data and images. _ _
reflectivity, see Fig. 2. In our previous work [25], we learned articulation models

In further experiments, we found that by using the textur&or various objects in full 3D_using artificial_markers. Ingh
projector, we obtain very dense disparity images, see Tabl@aPEr, We present an extension of our previous approadh, tha
for the number of point correspondences with and WithOLﬁ"OWS us to observe object parts |n.3D d'reCt'Y _from de.p.th
projected texture. Depending on the texture on the objects {mages and thus learn t_he_ models W'thOUt. requiring artliicia
the scene, the number of correspondences improved in tﬂ@rkers. we r_ega_rd this is as an essential requirement for
order of one to two magnitudes. real-world applications.

IIl. APPROACH

B. Model-based Detection In this section, we first briefly describe the structured

Locating objects from 2D images has a long history idight approach to obtain dense depth images from stereo. We
computer vision research [5]. Recent approaches for dotiven present our sampling-based rectangle detector fat poi
detection from camera images include [1] and [3]. Foclouds before we illustrate how the individual observagion



kitchen front hand floor cabinet door occluded pixels (hand) unknown pixels (window) correct recognition

Fig. 3. Finding the tree most prominent planes with our RANS#Ged Fig. 4.  Effect of the cost parameter for unknown and occludeels
approach. Left: cost too high (1.0). Middle: cost too low (0.0). Riglyood (0.2).

can be combined into consistent tracks. Finally, we showrocess of plane candidate generation until we find a plane
how articulation models can be learned from such tracks. with a high enough support, or we exceed a given number
. of iterations. We select the plane with the most inliers
A. Dense Depth Images from Stereo and Projected Texturgnd subtract the corresponding inliers from the point cloud
We consider a projector and a standard calibrated sterggbsequently, we apply the same strategy to the remaining
camera configured to be as nearly coincident as possible. Ffidints in the cloud, until no more points remain.
simplicity, the focal length of the projector and camera are For each plane, we create an image makk €
similar, so that at any distance the projected pattern appedin-plane free, occludedunknowr}640%480 with labels for
to be the same size in the camera images. A compact, highe pixels in the depth image, i.e.,
power LED device projects a fixed pattern as a random grid
of black and white squares, in sync with the camera exposure.
When it is seen by a camera, the pattern produces an imagp[(u’v) =
We use a standard block-matching algorithm to compute the
disparity of each pixel [13], that is, the offset betweenldfe
and right images. The algorithm runs at 15 Hz for 640x480
at 128 disparities on a single 2 GHz Pentium core.
We tested the device with a 50 deg field of view, using bot

in-plane  if ||zpandz v 2 DT|| <d
free if  Zpandz y 2 )T >d
occluded if  zpandz y z 1)T < —d
unknown otherwise

(2

Here, “in-plane” indicates that the pixel belongs to the
ﬁ:ane for which the mask/ is computed. In contrast to

white and 5% reflectance black planar targets at differentlat’ free” indicates that the observed pixel lies behinel t

distances. The error is taken to be the standard deviatiom fr P'2'¢ and occludgd that a pixel in front Pf the pIaPe has
been observed which occludes the plane. “Unknown” means

the bestfit plane. From Fig. 2, the system shows very IOW1at no depth information is available for that pixel.

error, even out to 2.5m. For the white target, the error stays In contrast to typical approaches to RANSAC-based plane

below 1 cm throughout this range. Some of the error at the. . . ; .
. . . itting which always assign pixels to one plane, our masks
larger distances comes from calibration, as the reconsttuc . .
allow points to belong to several planes at the same time.

plane will not be perfectly flat. Up to over 1 m, the error '.SThis is useful, as the infinite planes determined via RANSAC

about 2 mm, which is good enough to reconstruct even fin . : L
: . always intersect with the subsequent (less significant)gda
objects. Even with a very dark (5% reflectance) target, th ; . . ;
: . . thereby cutting out points that make detection of contiguou
system gives good results up to 2m, with some increase In o : ;
. rectangles more difficult in the next step of the perception
error at the larger distance.

From our stereo processing system, we obtain in ea&{?:f)?sas;/isualization of the result, see Fig. 3. In this example
frame a disparity imageD € R640x480  that contains for ’ g. o mp

each pixel(u,v) its perceived disparityD(u, v) € R. The our algorithm automatically segmented three planes from a

relationship between 2D pixels in the disparity image angepth image of a cabinet door. . .
3D world points is defined by the projection matrices of 2) Sampling rectanglesThe next step is to find rectangles

the calibrated stereo camera, and can be calculated bymathe segmented planes. A rectangle in 3D space has

. : L : . 8 degrees a freedom: its position, its orientation and its
single matrix multiplication from the pixel coordinatesdan . . .
disparity. dimensions (3+3+2). After the plane segmentation, we have

already fixed 3 DOFs, so that we need to find the remaining

B. Model-based Perception from Depth Images 5 DOFs. We apply an iterative fitting approach here. We start
1) Sampling planes:Our RANSAC-based plane fitting With @ sampled candidate rectangle and optimize its pose and

algorithm samples three pixels from the depth image, confiZe iteratively using an objective functian

then counts the inliers of that plane. We define the plane f@ndom point from the plane, and sample the other DOFs

comprise all pixels that are within a certain distancef the from a prior distribution. The objective functignis based on

plane, i.e., for which the following holds: the average cost of the pixels inside the rectanglg € R®,

T 1
[Zplandz y 2 1)" || < d. 1) 9(Zrect) 1= T pixelszrea) | 0 Z cos(M (u,v)) (3)
In general,d depends on the particular noise level of the PiXelS(Zrect)

camera — in our case, we uséd= 0.02m. We repeat this The parameter: (that we empirically chose around =



Fig. 5. Left: In each plane, we pick a random starting pointrfrwhich
we optimize iterative the pose and size of the candidatenglgaRight: As
our model fitting procedure is greedy, it can get trapped iot@all maxima.

Fig. 6. Observed tracks of a cabinet drawer (left) and a etlaaor (right).

We deal with the problem of local maxima by starting from

005) makesg S||ght|y favor |arge|’ rectang|es over Sma”erseveral rectangle candidates. In this sense, our algorithm

ones. is probabilistically complete, as we would find any visible
Finding a good cost metric cost, in particular for occludedectangle in the limit with probability 1. In practice, weade

and unknown pixels, is non-trivial. If chosen too low, thea fixed numbern of samples per plane.

greedy search converges on too large rectangles, while a tgo

high cost increases the amount of local maximg iand in - Tracking
turn leads to the detection of partial rectangles in thegires In the remainder of this paper, we drop the subscript
of occlusions (see Fig. 4). in zect = z to improve readability. The rectangle detector

In each iteration, we now individually optimize every DOFdescribed in the previous section gives us per frame between
of the rectangle. We apply a small set of discrete changgsro andn - m observations of rectanglesn( rectangles
to each DOF, and evaluate the objective functionzfyp. If  in n planes), which need to be integrated into consistent
9(2Zlect) > 9(Zrect), We continue with the improved parametertracks. Checking whether two rectangles and z; are
set. When this greedy search converges (or we reach thignilar requires to take the ambiguity in the representatio
maximum number of iterations), we need to evaluate thito account: the same rectangle can be described by eight
quality of the found match. In preliminary experimentsdifferent parameter vectors (depending on the choice of the
we found that the value of the objective function was nocorner of origin, and the choice of the front or back side
sufficient for discrimination of false and true positives. of the rectangle). A track is an integrated sequence bf
Therefore, we decided to evaluate the rectangle candidagctangle observations* = z!, ... z* that were collected
Zrect USING twO measures, that are inspired from statisticadntil time ¢ representing the trajectory of a single moving
classification theory and that have a natural interpretatiopart.
First, we evaluate the precisiomecision Of the rectangle ) ) )
candidate as the ratio of detected pixels and all pixels iH- L&arning Models of Articulated Objects
the found rectangle. Second, we evaluate the recall; as Our approach for learning models of articulated objects
the ratio of pixels in the found rectangle versus the pixelaims at estimating the kinematic nature of the observettsrac
in the selected plan&pane FOr both measures, we usedof objects in the scene and consists of the following parts:
our cost functions to weight occluded and unknown pixels 1) Training Template Models for the Observed Tracks of

accordingly. Object Parts: Since we have no prior information about the
Y pels(mmeny 1= COS(M (u,0)) nature of the connection between object parts, we do not aim
T'precisior Zrect) := [pixels(zrect)| ) to fit a single model, but instead fit a set of candidate teraplat
FrecallZrect) = 2 pixels(zgeqp) 1~ COSIM (u,v)) 5) Mmodels representing different kinds of links. This cantéda
recall\Zrect) - T—cos(M (u,v))

Pixels(zpiane) set consists of parameterized models that occur in various

Empirically, we found that a good condition for thresholglin objects including a rotational linkAg™®@in3) g prismatic
is to require that both ratios are abo¥e, which removes link (MP™Ma)and a rigid transformationA¢"9d). All
most of false positives. models excepi\9¢ have a latent variable that describes

An example of the iterative pose fitting is given in the leftthe configuration of the link. For a door, the varialldor
image of Fig. 5: the rectangle candidate started in the lowexample describes the opening angle of the door.
left of the door, and iteratively converged to the correctgpo  Let us consider a track. To train the candidate models
and size of the door. The candidate is accepted, because bfththis track, we have a sequence /ofnoisy observations
ratiosrprecision 2Ndrrecanl have high values. The greedy searche'* acquired by the tracker. Each candidate template model
however can get stuck in local maxima. In the exampléas its own training or estimation procedure from the track
depicted in the right image of Fig. 5, the hand is als@bservationg!**. For example, for a rotational joint model,
part of the drawer front plane and the candidate rectangiee need to estimate the rotation axis and the radius. For
converged to a rectangle that fits to some extend the harfdrther details, we refer the reader to [25].
Our algorithm then rejects this candidate rectangle becaus 2) Evaluating a Model:Besides training each model tem-
it does not contain the majority of pixels in the plane, i.e.plate, we need to evaluate its performance to subsequently
rrecall takes a low value. select the model that explains the data best.



1
. rigid ——
g 0.75 prismatic 7
g 05 rotational -------- i
g 025 . _
ol
= e k)
= error in position 5
e 0.05 - -~~~ €error in orientation------- 410 &
¢ 004r N 18 2
S 003F 16 &
= 0.02fF SelRacmndiins] 408
2  0.01}=2 2 &
i i i . . I8 0 Il Il Il Il Il 0 g
Fig. 7. Left: Articulation model learned from observing awes Right: 10 20 30 40 50 60 °
Same for a door. number of observations (door)

drawer person  background
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For selecting the model, we assign to each learned artic-
ulation model a cost that is equal to the negative expected
data log-likelihood plus a complexity penalty of the model:

1
COShqvpe = —W log p(D | MYP®) + C(MYP%).  (11)
Fig. 8. The blue rectangle shows the ground truth locatimiobd with ~ Then, we select for each track individually the model that
a motion capturing studio, while the green rectangles shavestimates.  has the lowest cost. This articulation model then expldies t

data of the observed track best while considering at the same
Let M be the articulation model describing the observatime also the model complexity.

tions D = z''¥ = z', ..., z* of a trackt. To evaluate how
well a single observatiom can be explained by a model, we IV. EXPERIMENTS
have to determine A. Recognition Capabilities
To evaluate the performance of our sampling-based per-
p(z | M) = /p(z | ¢, M) p(g| M) dg. (6) ception approach, we obtained ground truth pose informatio
! from a motion capturing studio. Tracking LEDs were added
Under the assumption that no latent configuration sfaie  to an unmounted drawer, and a log file containing 19,412

more likely than another one, this simplifies to stereo images including pose information was recordedrunde
a large variety of different poses (see Fig. 8).
p(z | M) = /p(z | ¢, M) dgq. @ As a first result, we found that the drawer was correctly

detected in more than 75% of the images up to a distance
To evaluatep(z | ¢, M), that is, a measure for how well of 2.3m from the camera.We also found that the number

mode|M parameterized by exp|ains the Observatim we of Signiﬁcant p|aneS identified via RANSAC that need to be

first compute the expected transform searched increases almost linearly with the distance fhem t
camera. This is an expected result since the drawer appears
z=Emlz|q] = fm(q) (8) smaller in the depth image the further it is away.

The average position error of the estimator was on average
using a model-specific transformation functign(z) that pelow 1.5 cm. It also was almost independent of the actual
computes the expected pose of the object giyefhe trans-  distance to the camera. The same holds for the orientation
formation functions for all template models are describegrror, that was on average below 3 deg.

in [25] Under a Gaussian error assumption, the observationm Comparison with our previous results [25], the accuracy

likelihood then becomes of our sampling-based perception on active stereo images is
R 9, 9 approximately five times higher than with the marker-based
p(z ] g, M) < exp (|2 —2||*/o7) () tracking system [10].

Furthermore, we validated our approach on large number
f different doors and drawers in two different kitchenss@|l
p(D | M) = H p(z | M). (10) Wwe successfully tested the detector on a small office pddesta

with three drawers of different size, a fuse door and a fire

extinguisher door in the wall.
3) Model SelectionWith the above mentioned approach,

we can estimate for each track a set of actuation modés Learned Articulation Models
Mrigid | pqprismatic A qrotational gng the corresponding observa- For evaluating the robustness of our articulation model
tion likelihood using Eq. 10. learner, we recorded detailed logfiles of both a door (39.5 cm

and finally, we can compute the marginal data likelihood ag

z€D



x 58 cm) and a drawer (39.5cm 12.5cm) of a typical [10]
kitchen interior that were repeatedly opened and closed. 181]
recorded a total of 1,023 and 5,202 images. From these logs,
we sampled uniformly around 100 images for 50 times, and
ran our detector and tracker as described in Sec. Ill on ealf!
of these 50 down-sampled logdfiles. For the resulting tracks,
we trained the three articulation models and evaluated the
outcome of the model selection process (see Fig. 9 (top) &l
the door dataset). [14]

For both datasets, we found that roughly for the first 10
observations, mostly the rigid model was selected, as no sub
stantial motion of the drawer or door was yet detected. Th%S]
more observations are added to the track, the higher the erro
between the (rigid) model predictions and the observatione]
becomes. As a result, the prismatic and rotational models
are selected more frequently. After 30 observations, model
selection has converged in all cases to the true model. For
the drawer model we reach a predictive accuracy of 1cm aﬁg]
7 deg; for the door we measured a predictive accuracy of 1 cm
and 3.5deg (see Fig. 9 (bottom)). Model fitting and selectiok8]
takes on average 7ms, and thus can be easily computed[liQ
real-time on a mobile robot.

V. CONCLUSION

. . n[20]
In this paper, we presented an approach for learning
articulation models for doors and drawers without reqgirin
artificial markers. Instead, our approach detects and drack!]
doors and drawers in depth images obtained from a self-
developed projected texture stereo vision system. It eysplo[22]
a highly efficient approach to detect and track rectangleg<3
in sequences of depth images and uses the resulting tra é
to learn accurate articulation models for the correspandin
objects. We evaluated our algorithm in extensive experimen

also including ground truth data. 124
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