
An Approach to Solving Large-Scale
SLAM Problems with a Small Memory Footprint

Benjamin Suger Gian Diego Tipaldi Luciano Spinello Wolfram Burgard

Abstract—In the past, highly effective solutions to the SLAM
problem based on solving nonlinear optimization problems have
been developed. However, most approaches put their major focus
on runtime and accuracy rather than on memory consumption,
which becomes especially relevant when large-scale SLAM
problems have to be solved. In this paper, we consider the SLAM
problem from the point of view of memory consumption and
present a novel approximate approach to SLAM with low memory
consumption. Our approach achieves this based on a hierarchical
decomposition consisting of small submaps with limited size. We
perform extensive experiments on synthetic and publicly available
datasets. The results demonstrate that in situations in which
the representation of the complete map requires more than the
available main memory, our approach, in comparison to state-of-
the-art exact solvers, reduces the memory consumption and the
runtime up to a factor of 2 while still providing highly accurate
maps.

I. INTRODUCTION

Map building and SLAM is one of the fundamental problems
in mobile robotics as being able to learn what the environment
looks like is typically regarded as a key prerequisite to truly
autonomous mobile systems. In the past highly effective SLAM
methods have been developed and state-of-the-art SLAM
solvers are able to achieve accurate solutions in a minimum
amount of time [20, 12, 6]. In this paper we look at the SLAM
problem from an additional perspective and seek for a SLAM
solver that can quickly produce accurate solutions while also
being efficient with respect to the memory consumption. We
regard this aspect as particularly relevant when one has to
solve large-scale SLAM problems or for memory-restricted
systems. In the case of large mapping problems, an algorithm
that is not designed to be memory efficient will eventually
try to allocate more than the available main memory on the
computer. This typically triggers paging mechanisms of the
operating system, during which parts of the memory are stored
to or retrieved from the hard disk, thus largely slowing down
the execution. We are convinced that the memory efficiency is
highly relevant for the development of low-cost robotic systems
where hardware resources are often extremely limited to be
competitive on the consumer market.

Due to the robustness of approaches to robot navigation
and SLAM, the range of autonomous navigation for robots is
rapidly increasing. City-scale autonomous navigation [16] is
already possible and autonomous cars have travelled hundreds
of kilometers through the desert [24] and navigated for hours

All authors are with the University of Freiburg, Institute of Computer Science, 79110
Freiburg, Germany. This work has partly been supported by the European Commission
under the grant no. ERC-AG-PE7-267686.

Fig. 1. The proposed small memory footprint approach is based on a
hierarchical graph partition. In each partition GM

i (same color) we identify
separator nodes VS (squares) and interior nodes VM (circles). This implicitely
partitions the edges into separator edges ES (dashed lines) and interior edges
EM (solid lines). We build the graph of the separator nodes in GS by using
a tree approximation on each subgraph (thick lines). We optimize on each
layer and on disjoint subgraphs, from bottom to top and vice versa. With our
algorithm, we never optimize the entire graph as a whole.

in city-like traffic environments [25]. There are several modern
techniques that address the problem of learning large-scale
maps required by such applications [1, 3, 7, 19]. However,
these approaches mostly concentrate on accuracy and runtime
and the memory consumption has not been their major focus.

In this paper we present a novel algorithm that is able to
solve large mapping problems with low memory consumption.
Our method employs a divide-and-conquer principle to hierar-
chically subdivide the problem in many submaps of small size
with limited dependencies and to solve a fine-to-coarse followed
by a coarse-to-fine least-squares map optimization. At each
level of the hierarchy, we subdivide the graph into subgraphs.
We optimize each subgraph independently from the others and
approximate it coarsely (fine-to-coarse approximation). All the
approximated subgraphs, along with the edges that connect
them, constitute the graph at the next level. We iterate this
process until we reach a desired top level. Then, we carry out
coarse-to-fine map adjustments by traversing the hierarchy
in a top-down manner and performing an optimization at
each level. Our algorithm does not require a specific graph
clustering technique. Rather, every technique that is able to
limit the number of nodes per cluster constitutes a valid
choice. We present extensive experiments in which we evaluate
metric accuracy, memory footprint and computation time. The
results obtained by running the methods on publicly available
datasets demonstrate that our approach yields a precision that
compares to that of other state-of-the-art methods. In addition,
we perform evaluations on large-scale datasets consisting of
hundreds of thousands of nodes and demonstrate that our
method exhibits lower memory consumption than the state-
of-the-art implementations. For memory-constrained systems,

for which the entire data do not fit into main memory, our
approach is able to solve problems 2 times faster.

II. RELATED WORK

Over the past years, SLAM has been an enormously active
research area and a variety of approaches to solve the SLAM
problem has been presented. More recently, optimization meth-
ods applied to graph-based SLAM formulations have become
popular. Lu and Milios [17] were the first to refine a map
by globally optimizing the corresponding system of equations
to reduce the error introduced by constraints. Subsequently,
Gutmann and Konolige [9] proposed a system for constructing
graphs and for detecting loop closures incrementally. Since
then, several approaches for minimizing the error in the
constraint network have been proposed, including relaxation
methods [10, 4], stochastic gradient descent [20] and similar
variants [6] as well as smoothing techniques [12]. In a recent
approach, Kaess et al. [11] provide an incremental solution to
the SLAM problem that relies on Bayes Trees.

Closely related to our work presented here are hierarchical
SLAM methods. And several of them perform the optimization
on multiple hierarchies. For example, the ATLAS framework [1]
constructs a two-level hierarchy combining a Kalman filter
and global optimization. Estrada et al. proposed Hierarchical
SLAM [3] as a technique for using independent local maps,
which they merge when the robot re-visits a place. Frese [5]
proposed an efficient strategy to subdivide the map in a tree
of subregions. In the case of an unbalanced tree and when
the leaves contain many poses, his method suffers from high
computational demands. HogMan [7] builds up a multi-layer
pose-graph and employs a lazy optimization scheme for online
processing. The hierarchy generated is always fixed and is based
on special decimation principles. One can modify HogMan so
as to address low-memory situations at the price of performing
optimization only on levels that can be loaded in memory.
A divide and conquer approach has been presented by Ni
et al. in [18], who divide the map into submaps, which are
independently optimized and eventually aligned. This method
was later extended by Ni et al. [19], which turns out to be
the closest approach with respect to technique presented here.
They employ nested dissection to decompose the graph in a
multi-level hierarchy by finding node separators and perform
inference with the cluster tree algorithm.

Kretzschmar et al. [14], apply graph compression using an
efficient information-theoretic graph pruning strategy. They
build a constant size map by actively removing nodes in the
map. After pruning them away, their information can not be
recovered any longer. In contrast with them, our method stores
all the information in the hierarchy. In a visual SLAM context,
Strasdat et al. [23] presented a double window optimization
approach. They perform local bundle adjustment (inner window)
and approximate pose-graph minimization (outer window).
They reduce the complexity of full map optimization but do
not bound the size of the outer window. Our approach can be
seen as a multiple window optimization, where each window
is one level of the hierarchy. Lately, a similar approach to

approximating subgraphs with tree-like subgraphs has been
independently proposed by Grisetti et al. [8]. The condense
local submaps in a set of virtual measurements to improve the
initial estimate for a non-linear minimization algorithm on the
whole graph. Note that the aim of our work is different: we
aim to provide an accurate and efficient solution to large-scale
SLAM problems in situations in which the entire map does
not fit into main memory.

III. MAPPING WITH LOW MEMORY CONSUMPTION

In this paper we consider the SLAM problem in its
probabilistic graph-based interpretation. Let x = [x1, . . . ,xn]

T

be the vector of robot poses, where xi is the pose of the robot at
time i. Let zij and Ωij be the mean and information matrix of a
measurement between pose xi and pose xj . This measurement
can arise from odometry or be the resulting estimate of a
local matching algorithm. Without loss of generality, we only
consider pose-to-pose constraints in this paper. For more
general constraints, virtual measurements [8] can be used.

Finding a solution to the SLAM problem is then equivalent
to minimize the negative log-likelihood of the joint distribution

x∗ = argmin
x

(−log (p(x | z)))

= argmin
x

 −log ∏
zij∈z

φzij (xi,xj)


= argmin

x

∑
zij∈z

1

2
‖ẑ(xi,xj)− zij‖2Ωij

(1)

where ẑ(xi,xj) is the prediction of a measurement given
a configuration of xi and xj , the function φ(xi,xj) =

exp
(
− 1

2‖ẑ(xi,xj)− zij‖2Ωij

)
is the pairwise compatibility

function, and z is the set of all measurements. Our idea
is to address the problem of mapping with low memory
consumption by building a hierarchical data structure with
decreasing amount of detail such that, at each level, inference
is always performed on subgraphs of bounded size. Our method
applies the following inference procedure: First, a bottom-up
inference process propagates information from the lower levels
to the upper one (similar in spirit to Gaussian elimination).
Second, a top-down inference procedure solves the top-most
system and propagates the resulting information down to the
lower levels (similar in spirit to back-substitution).

In the remainder of the section and for the sake of simplicity,
we restrict the description of the approach to a two-level
hierarchy. We can deal with multi-level hierarchies by iteratively
applying this approach.

A. Graph Partitioning

Let the whole pose graph be G = (V, E) where V =
{x1, . . . ,xn} denotes the set of nodes and E = {(i, j) | zij ∈
z} denotes the set of edges. Two nodes xi and xj are adjacent
iff there exists a measurement zij ∈ z or zji ∈ z between the
two poses. We partition the set of nodes V into m pairwise
disjoint subsets VI = {VI

1 , . . . ,VI
m} by an edge-cut, such that

VI
i ∩ VI

j = ∅ for 1 ≤ i < j ≤ m and V =
⋃

i VI
i . The node

A
IS

2K
lin

ik

300m

|V| = 15115, |E| = 16727 |V| = 4378, |E| = 4897 |V| = 1200, |E| = 1392 |V| = 323, |E| = 390

E
T

H
C

am
pu

s

100m

|V| = 7065, |E| = 7429 |V| = 2001, |E| = 2118 |V| = 541, |E| = 583 |V| = 137, |E| = 151

In
te

l

10m

|V| = 1728, |E| = 2512 |V| = 542, |E| = 765 |V| = 149, |E| = 213 |V| = 38, |E| = 50

Fig. 2. Hierarchies computed by SMF for different datasets. The picture shows the separator graph at different levels, with the number of nodes and edges.

partition induces a partitioning on the edge set into two subsets:
ES and EM , with EM = EM1 ∪ · · · ∪ EMm and ES ∪ EM = E .
The set EMi contains edges which connect only the nodes in
V I
i and ES is the edge-cut set that connects nodes from two

different subgraphs. Each VI
i is then subdivided in the set of

boundary nodes VS
i and a set of interior nodes VM

i , where
VI
i = VM

i ∪ VS
i , VS

i are those nodes of VI
i which are incident

with at least one edge from ES , and VM
i ∩ VS

i = ∅.
Let xM

n =
⋃

j∈VM
n

xj and xS
n =

⋃
j∈VS

n
xj . We can

decompose the distribution p(z | x) in Eq. (1) according to:

p(x | z) = p(xM ,xS | z)
Bayes
= p(xM | xS , z)p(xS | z)

Markov
=

m∏
n=1

p(xM
n | xS

n , z
M
n)p(xS | z), (2)

where xM =
⋃

n xM
n , xS =

⋃
n xS

n , zM
n = {zij | {i, j} ∈

EMn } and the rightmost part stems from the global Markov
property.

Equation Eq. (2) defines the building blocks of our hierarchy.
The bottom level of the hierarchy consists of the m disjoint
subgraphs GMn induced from the distributions p(xM

n | xS
n , z

M
n).

The top level is the graph of the separators GS and is induced
by the distribution p(xS | z). Figure 1 shows an example of a
two-level hierarchy. Multiple levels are then iteratively built,
considering the previously computed separator graph GS as
the input graph G and performing the decomposition on it.

To design a low-memory-consumption algorithm, we require
that the size of all the partitions on every level is small
enough to fit into memory. In principle, one can use every

partitioning algorithm with this property. Potential candidates
are METIS [13] or Nibble [22]. In our current implementation
we have opted for Nibble because it is a local algorithm and it
is able to generate graph partitions in an incremental fashion.
Accordingly it does not require to store the whole graph in
memory.

B. Leaves-to-Root Coarsening

The purpose of the leaves-to-root inference is to compute, at
each level of the hierarchy, the marginal distribution p(xS | z)
of the separator graph GS . Exploiting the pairwise nature of
the SLAM graphical model, as been done for Eq. (1), we have

p(xS | z) =
∫
p(xM ,xS | z)dxM

∝
∏

zij∈zS

φzij
(xi,xj)

m∏
n=1

∫ ∏
zuv∈zM

n

φzuv
(xu,xv)dx

M
n . (3)

This decomposition tells us that the marginal distribution of
the separator nodes is composed of the factors coming from the
separator edges, connecting the boundary nodes of two different
partitions, and the factors computed by marginalizing out the
inner nodes of each partition, connecting the boundary nodes
of the same partitions. The process of marginalization may
destroy the original sparseness of the pose-graph, leading to
high computational costs and memory requirements. To avoid
this, we propose to approximate the full marginal distribution
of the boundary nodes with a tree-structured distribution that
preserves the marginal mean.

Chow and Liu [2] showed that the tree-structured distribution
that minimizes the Kullback-Leibler divergence can be obtained

Fig. 3. Example construction of the approximate separator graph for a single
partition. The left image shows the original graph, where the separators are
displayed as squares and thicker lines depict the maximum spanning tree. The
right image shows the resulting separator graph obtained by performing the
depth-first visit.

by computing the maximum spanning tree on the mutual
information graph. Although their proof considers discrete
distributions, the result holds also for continuous densities.
Unfortunately, computing the mutual information between
boundary nodes involves inverting the information matrix
relative to the entire subgraph, resulting in a computationally
expensive operation.

We instead build a maximum spanning tree of the measure-
ment information, where the graph structure is the same as
GMn and the edges are weighted according to det(Ωij). We
build the approximate separator graph incrementally. First, we
optimize the partition without considering the separator edges.
Second, we compute the maximum spanning tree T with one
of the separators as root node and the path Pij on the tree
connecting the nodes i and j. By performing a depth-first visit
on the tree, we select the edges of the graph such that any
separator is connected to its closest parent in T , resulting in
the edge set ET . For each edge (i, j) ∈ ET , we compute a
virtual measurement

z∗ij =
⊕

k∈Pij

ẑk,k+1 (4)

Ω∗−1ij = JΩ−1PijJ
T , (5)

where J is the Jacobian of Eq. (4), ẑk,k+1 = x̂k 	 x̂k+1 is
the transformation between node k and k + 1 in the path,
after optimization, and ΩPij is a block diagonal matrix,
whose diagonal elements correspond to the information matrix
associated to the edges on the path. In practice, we compute
the covariance matrix Ω∗−1ij by propagating the covariance
matrices of the measurements along the compounding path [21].
Figure 3 shows an example construction of the separator graph
for a single partition. We iterate this process of fine-to-coarse
optimization until we reach the top level of the hierarchy. Note
that any nonlinear least-squares optimizer can be used for the
optimization of the subgraphs, in our current implementation
we use g2o [15] for that purpose.

C. Root-to-Leaves Optimization

Once the hierarchy has been built, we obtain a solution for
the top-most separator nodes by solving the corresponding
least square problem. To obtain the final map, we need to
propagate the solution obtained to the leaves of the hierarchy.
In case of linear systems, this propagation is equivalent to back

Fig. 4. One example Manhattan world dataset used in the memory consumption
experiment.

substitution. To overcome the non-linearities of SLAM, we
propose to perform an additional optimization step on each
subgraph, by fixing the separator variables and only minimizing
with respect to the inner nodes. This step corresponds to N
independent minimization problems of limited size, one for
each subgraph GMn . The process is then iterated for each level
in the hierarchy.

The least square minimization algorithm is always applied to
bounded problems. The partitions are bounded by construction,
due to the partitioning algorithm. The separator graph is also
bounded by construction. The number of separator nodes S is
smaller than the number of original nodes, since the separators
are a subset of the nodes of the original graph. The number
of edges is also bounded, since we only consider the edges
between separators from the original graph and the S−1 edges
connecting the separator of a single partition.

IV. EXPERIMENTS

We evaluate our approach (SMF) with respect to memory
consumption, runtime on low memory systems and metric
accuracy and compare it to other state-of-the art mapping
approaches, namely TSAM21 [19], GTSAM2 [11], g2o3 [15].
To investigate the properties of our approximation, we com-
pare our method to two other non-exact solvers, which are
HogMan4 [7] and a variant of TSAM2 that does not perform
subgraph relaxation (T2-NOREL). Throughout the experiments,
we limited the maximum submap size to 500 nodes. We ran all
approaches on a single thread and without any parallelization
using Ubuntu 12.04 on an i7-2700K processor running at
3.5GHz. Note that HogMan runs incrementally, while all others
are batch solvers.

A. Memory Consumption

In the first experiment, we evaluated the memory footprint on
large-scale and synthetically generated datasets of Manhattan-
like worlds, see Fig. 4. The corresponding maps have graphs
whose number of nodes ranges between 20,000 and 500,000
and whose connectivities lead to up to two millions edges. To

1We thank the authors for providing their own implementation
2ver. 2.3.1 – https://collab.cc.gatech.edu/borg/gtsam/
3ver. git455 – https://github.com/RainerKuemmerle/g2o
4ver. svn20 – http://openslam.org/hog-man.html

0.1

0.2

0.5

1.0

2.0

5.0

10.0

0 100 200 300 400 500

M
em

or
y

[G
B

] i
n

lo
ga

ri
th

m
ic

 s
ca

le

number of nodes [thousands]

SMF
g2o

GTSAM
TSAM2

T2-NOREL
HogMan

Fig. 5. Memory consumption of modern SLAM solvers compared to our
approach on large-scale graphs. Please note that the y-axis has logarithmic
scale.

1
5

10

20

30

40

0.5 0.75 1

T
im

e
[m

in
]

Memory [GB]

SMF
g2o

GTSAM
TSAM2

T2-NOREL

Fig. 6. Runtime comparison with memory constraints.

investigate the memory consumption, we employed valgrind
and massif in a native Linux environment. Both are open
source tools for process memory analysis.

Figure 5 shows the results of the experiment. The graph
shows two important aspects. First, our approach has the
lowest memory consumption: it is constantly almost one order
of magnitude more memory efficient than TSAM2, up to 2
times more than g2o and GTSAM, and up to 1.3 times more
than T2-NOREL and HogMan. Even though SMF, HogMan
and T2-NOREL have a similar memory footprint, SMF is
substantially more accurate, as shown in Section IV-C. Second,
the approximate methods HogMan, SMF, and T2-NOREL)
have lower memory consumption than the exact methods
TSAM2, g2o, and GTSAM.

B. Runtime on Systems with Restricted Main Memory

This experiment evaluates the computation time on systems
with restricted main memory. For simulating these systems,
we limited the available memory for the Linux kernel. We
evaluated three budgeted memory settings (0.5GB, 0.75GB
and 1.0GB) on 15 synthetic datasets with 200,000 nodes and
varying connectivity. The mean number of edges was 640,000
with a standard deviation of 78,800.

TABLE I
SMALL MEMORY FOOTPRINT MAPPING (χ2 , TIME)

Dataset Method χ2 error time [s]

AIS2Klinik

SMF 471.0 0.86
T2-NOREL 108,977.8 1.00

HogMan 647.0 15.53

TSAM2 172.8 2.85
GTSAM 172.8 1.00

g2o 172.8 0.21

ETHCampus

SMF 38.9 0.36
T2-NOREL 22,457.2 0.50

HogMan 79.3 2.55

TSAM2 25.0 1.15
GTSAM 25.0 0.36

g2o 25.0 0.06

Intel

SMF 53.3 0.11
T2-NOREL 69.0 0.08

HogMan 134.7 0.78

TSAM2 45.0 0.18
GTSAM 45.0 0.06

g2o 45.0 0.02

Manhattan3500

SMF 287.1 0.35
T2-NOREL 733.8 0.21

HogMan 521.9 3.25

TSAM2 146.1 0.54
GTSAM 146.1 0.23

g2o 146.1 0.07

Figure 6 shows the average runtime of all the batch solvers
(g2o, GTSAM, TSAM2, T2-NOREL and SMF). SMF is the
fastest method at the lowest memory setting and comparable to
T2-NOREL at increasing memory setups. All the other methods
are significantly slower. In the lowest memory setup, TSAM2
was frequently killed by the kernel and was successful only 3
out of 15 trials. In the same setting, GTSAM never terminated.

To evaluate the statistical significance of the results, we
performed a paired sample t-test with a significance level
α = 0.05. The test shows that SMF is 2 times faster than g2o
on 0.5GB, 1.6 times on 0.75GB, and 1.7 times on 1GB. With
respect to TSAM2, SMF is 8 times faster on 0.75GB and 10
times faster on 1GB, where on 0.5GB no significant result
can be given due to the limited amount of successful trials.
SMF is also 7.2 times faster than GTSAM on 0.75GB and 3.7
times faster on 1GB. The timing performance of T2-NOREL
is very similar to SMF, with SMF being 1.4 times faster on
0.5GB settings. Note, however, that SMF is substantially more
accurate than T2-NOREL as shown in the next section.

C. Metric Accuracy

In these experiments, we quantified the metric precision
of all the SLAM solvers and the time required to provide a
solution without constraining the amount of available memory.
Here, we run the solvers on several publicly available datasets:
AIS2Klinik (15,115 nodes, 16,727 edges), ETHCampus (7,065
nodes, 7,429 edges), Intel (1,728 nodes, 2,512 edges) and
Manhattan3500 (3,500 nodes, 5,542 edges). These datasets
have been selected because they are good representatives of
different environments (indoor and outdoor), simulated and
real-data.

TABLE II
SMALL MEMORY FOOTPRINT MAPPING (RPE)

Dataset Method mean [m] std [m] maxErr [m]

AIS2Klinik
SMF 0.0045 0.0110 0.41

T2-NOREL 0.0148 0.2454 10.59
HogMan 0.0100 0.0300 2.12

ETHCampus
SMF 0.0016 0.0031 0.08

T2-NOREL 0.0061 0.1496 7.73
HogMan 0.0030 0.0070 0.15

Intel
SMF 0.0026 0.0037 0.05

T2-NOREL 0.0038 0.0071 0.13
HogMan 0.0090 0.0150 0.16

Manhattan3500
SMF 0.0147 0.0161 0.25

T2-NOREL 0.0153 0.0434 1.85
HogMan 0.0330 0.0350 0.44

Tab. I summarizes the results with respect to the χ2 error
and runtime. Bold numbers indicate the best result among the
approximate methods. Out of the approximate solvers, SMF has
the lowest error and the lowest runtime in all the datasets but
Intel and Manhattan3500, where T2-NOREL is slightly faster.
SMF is more accurate than T2-NOREL: from 500 times on the
ETHCampus dataset to 1.3 times on the Intel one. Compared
to HogMan, SMF is up to 2 times more accurate and up to 10
time faster. With respect to the exact solvers, SMF achieves
comparable accuracy in all the datasets, being slightly slower
than GTSAM and g2o and slightly faster than TSAM2.

In order to precisely assess the quality of map reconstruction,
we have also computed the reprojection error (RPE) between
every edge of the optimized graph and the ground truth map
computed using an exact solver – g2o in our case.

Tab. II summarizes the results of the evaluation, showing
the RPE mean, standard deviation and maximum error. SMF
is more accurate than T2-NOREL and HogMan in all datasets.
This is particularly evident on the two large outdoor datasets
AIS2Klinik and ETHCampus where SMF is 3 times more
accurate than T2-NOREL with respect to the mean error and
more than an order of magnitude with respect to the maximum
error. SMF is also up to 3 times more accurate than HogMan
for the mean error and up to 4 times with respect to the
maximum error. From a robot navigation standpoint, maximum-
errors are indicators of how far some parts of the map are
misaligned. Large values of this error may render the map
unusable because, e.g., paths could not be computed: this
happens with T2-NOREL in datasets AIS2Klinik (≥ 10m) and
ETHCampus (≥ 7m). In those datasets, SMF instead achieves
maximum-error of 0.4m and 0.08m.

V. CONCLUSIONS

In the past, solutions for solving the SLAM problem mostly
focused on accuracy and computation time. In this paper, we
also considered memory constrained systems and presented
a novel hierarchical and approximated SLAM technique that
produces accurate solutions thereby requiring only a small
memory footprint. Our solution is particularly appealing for
solving large-scale SLAM problems or for setups with limited
memory. Our experimental results suggest that our approach

uses significantly less memory than state-of-the-art systems and
is significantly faster on systems with restricted main memory.
At the same time, it yields an accuracy that is comparable to
that of state-of-the-art solvers.

REFERENCES

[1] M. Bosse, P. Newman, J. Leonard, and S. Teller. An ATLAS framework
for scalable mapping. In IEEE Int. Conf. on Rob. & Aut. (ICRA), 2003.

[2] C. Chow and C. Liu. Approximating discrete probability distributions
with dependence trees. IEEE Tran. on Inf. Theory, 14(3), 1968.

[3] C. Estrada, J. Neira, and J. Tardós. Hierachical SLAM: Real-time accurate
mapping of large environments. IEEE Trans. on Rob., 21(4), 2005.

[4] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm
for simultaneous localisation and mapping. IEEE Tran. on Rob., 21(2),
2005.

[5] U. Frese. Treemap: An O(log n) algorithm for indoor simultaneous
localization and mapping. Aut. Rob., 21(2), 2006.

[6] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint network
optimization for efficient map learning. IEEE Tran. on Intel. Transp.
Sys., 10(3), 2009.

[7] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg.
Hierarchical optimization on manifolds for online 2D and 3D mapping.
In IEEE Int. Conf. on Rob. & Aut. (ICRA), 2010.

[8] G. Grisetti, R. Kümmerle, and K. Ni. Robust optimization of factor
graphs by using condensed measurements. In IEEE/RSJ Int. Conf. on
Intel. Rob. and Sys. (IROS), 2012.

[9] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. In IEEE Int. Symp. on Comp. Intell. in Rob. and Aut.,
1999.

[10] A. Howard, M. Matarić, and G. Sukhatme. Relaxation on a mesh: a
formalism for generalized localization. In IEEE/RSJ Int. Conf. on Intel.
Rob. and Sys. (IROS), 2001.

[11] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert.
iSAM2: Incremental smoothing and mapping using the Bayes tree.
Int. Jour. of Rob. Res., 31, 2012.

[12] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Fast incremental
smoothing and mapping with efficient data association. In IEEE
Int. Conf. on Rob. & Aut. (ICRA), 2007.

[13] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for
irregular graphs. Jour. of Par. and Distr. Comp., 48, 1998.

[14] H. Kretzschmar and C. Stachniss. Information-theoretic compression of
pose graphs for laser-based slam. Int. Jour. of Rob. Res., 31, 2012.

[15] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A general framework for graph optimization. In IEEE Int. Conf. on
Rob. & Aut. (ICRA), 2011.

[16] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard. A
navigation system for robots operating in crowded urban environments.
In IEEE Int. Conf. on Rob. & Aut. (ICRA), 2013.

[17] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Aut. Rob., 4(4), 1997.

[18] K. Ni, D. Steedly, and F. Dellaert. Tectonic SAM: exact, out-of-core,
submap-based slam. In IEEE Int. Conf. on Rob. & Aut. (ICRA), 2007.

[19] K. Ni and F. Dellaert. Multi-level submap based slam using nested
dissection. In IEEE/RSJ Int. Conf. on Intel. Rob. and Sys. (IROS), 2010.

[20] E. Olson, E. Leonard, and S. Teller. Fast iterative optimization of pose
graphs with poor initial estimates. In IEEE Int. Conf. on Rob. & Aut.
(ICRA), 2006.

[21] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial
realtionships in robotics. In Aut. Rob. Vehicles. 1990.

[22] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In ACM
Symp. on Th. of Comp., 2004.

[23] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige. Double
window optimisation for constant time visual slam. In Int. Conf. on Com.
Vis. (ICCV), 2011.

[24] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, et al. Stanley: The robot
that won the darpa grand challenge. Jour. of Field Robotics, 23(9), 2006.

[25] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan,
D. Duggins, T. Galatali, C. Geyer, et al. Autonomous driving in urban
environments: Boss and the urban challenge. Jour. of Field Robotics, 25
(8), 2008.

