Terrain-Adaptive Obstacle Detection

Benjamin Suger

Abstract— Reliable detection and avoidance of obstacles is
a crucial prerequisite for autonomously navigating robots as
both guarantee safety and mobility. To ensure safe mobility, the
obstacle detection needs to run online, thereby taking limited
resources of autonomous systems into account. At the same
time, robust obstacle detection is highly important. Here, a
too conservative approach might restrict the mobility of the
robot, while a more reckless one might harm the robot or
the environment it is operating in. In this paper, we present a
terrain-adaptive approach to obstacle detection that relies on
3D-Lidar data and combines computationally cheap and fast
geometric features, like step height and steepness, which are
updated with the frequency of the lidar sensor, with semantic
terrain information, which is updated with at lower frequency.
We provide experiments in which we evaluate our approach
on a real robot on an autonomous run over several kilometers
containing different terrain types. The experiments demonstrate
that our approach is suitable for autonomous systems that have
to navigate reliable on different terrain types including concrete,
dirt roads and grass.

I. INTRODUCTION

Obstacle detection is a crucial ingredient for autonomously
navigating robots. A sophisticated trade-off between safety
and mobility constitutes the core of the problem. The former
one has to guarantee that the robot does not harm itself or
the environment, including humans and animals. The latter
is not of less importance, because it is in charge to provide
the robot its full capabilities for path planning and execution,
and is therefore responsible whether or not a robot is able
to successfully finish a task. Besides these considerations,
the obstacle detection needs to be updated fast, since the
robot should be able to react as fast as possible to safety-
relevant information. Especially when going from flat indoor
environments to challenging outdoor environments additional
aspects regarding the safe navigation become relevant. In this
work we set the focus on outdoor environments where the
robot needs to navigate on different types of terrain, like
ordinary streets or walkways, grass or meadows and forest
roads or dirt paths. This setting is particularly challenging,
as the question of what corresponds to an obstacle and what
not also depends on the type of the terrain. It is relevant for
different applications of robots, for example in agriculture or
forestry.

Fig. 1 gives an intuition about the difficulties in mixed
scenarios. The main problem is that the flatness assumption
of man-made environments does not hold. Grass of various

All authors are with the University of Freiburg, Institute for Computer
Science, 79110 Freiburg, Germany. This work has been partly sup-
ported by the European Commission under the grant numbers ERC-AG-
PE7-267686-LifeNav and FP7-610603-EUROPA2

Bastian Steder

Wolfram Burgard

Fig. 1. Our robot navigating autonomous in a forest environment. We
need to cope with grass of various heights, small trees and bushes. The
corresponding point clouds need to be dealt with differently depending on
the type of terrain the robot moves on.

heights may easily appear as fake obstacles, because observa-
tions of the same height differences on a street may constitute
a hazardous situation. This means that in mixed terrain
settings there is no fixed threshold or heuristic that applies to
decide about what is an obstacle, because free space on one
type of terrain may look like an obstacle for another terrain
type and vice versa. In this work we tackle this problem
by adding semantic information about the terrain type to
the obstacle detection, while we will rely only on a 3D-
Lidar scanner as perceptual sensor. The choice for the lidar
is that it is more robust to different lighting conditions, while,
e.g., a camera in a forest is highly affected by the varying
lighting conditions. The semantic information allows for a
differentiated interpretation of geometric measures like step
height and steepness, which we calculate directly from the
lidar data as it is delivered.

Our 3D-Lidar sensor is a Velodyne HDL 64, which
provides a full 360° horizontal field of view, returning ~1.3
million points per second with distance and remission infor-
mation that need to be processed. To cope with the resulting
computational challenges, our approach takes advantage of
the special structure of the Velodyne scans. The approach we
present is able to detect traversable regions on medium high
grass, dirt roads and regular streets using two threads on a
quad core CPU 17@3.50GHz with a workload of ~100%
(of 400%) leaving enough computational power for other
modules, like, e.g., path planning and control, the robot may
need.

II. RELATED WORK

A comprehensive survey of traversability analysis methods
for unmanned ground vehicles was recently published by

. N7 " oy =t c
Fig. 2. The trajectory of the outdoor experiment on an aerial image. The
trajectory contains regular streets, grass and forest roads.

Papadakis [12]. He categorizes, non-exclusively, the ap-
proaches into proprioceptive and exteroceptive sensor data
interpretation, which can be either geometry- or appearance-
based. Our approach relies purely on exteroceptive sensor
data, perceived with a 3D-Lidar, and we interpret the data
geometry- and appearance-based. Moreover, he points out
that the 2D-digital-elevation-maps [5, 11] are the most com-
mon choice when a 3D-Lidar is employed. The elevation
maps were later used for mapping [13] and were extended
to multilevel surface maps [17] to capture more complex
environments. In this work we also employ a 2D-grid based
map to organize and interpret the sensor data, where each
cell stores features and information about the terrain type as
well as about the geometry.

Most approaches concentrate on a certain terrain scenario,
either structured outdoor urban environments or unstructured
rough off-road terrain, since both environments typically
underlie very different assumptions. In urban environments
it is more important to detect and track dynamic objects, like
cars, pedestrians and cyclists, and doing reasoning about the
street lane or sidewalks [1, 4, 9]. For rough terrain analysis
estimating the load bearing surface seems promising as done
by [18, 19], but those approaches typically have a high
computational burden, e.g., 3D-ray-tracing, and also rely on
different types of sensors. Another way is the estimation of
the step height of cells, calculating the difference in the z-
coordinate of points that fall into the cell, like in [3] where
range-dependent thresholds were applied to determine obsta-
cles. A probabilistic formulation was utilized by Thrun et al..
They eimployed five 2D-Lidar sensors, mounted in different
angles, and perfomed statistical reasoning about the step
height taking also time-differences into account. Manduchi
et al. utilize RGB-D data from stereo-cameras and similar
geometrical considerations like we do [8]. Instead of a grid-
map based approach they reason about the obstacle natures of
points by checking truncated cones that are placed on ground
plane points. Terrain classification is deduced from the RGB-
D information using a mixture of Gaussians. Moreover they
rely on a 2D-lidar sensor for terrain classification analyzing
histograms of distances. In contrast to this, our approach
relies purely on 3D-Lidar data, which is less sensitive to
lighting conditions and typically provides more accurate data.

Adding semantic information about the terrain type can be
very useful, since different terrain types may follow different

rules for different mobile robot platforms. Assuming a pure
forest environment, [10] classifies the ground plane and trees,
estimating the tree center using a least-squares fit on circles
for candidate points, using 3D-Lidar data. A segmentation
of 3D point clouds, classifying the categories scatter, to
represent porous volumes, linear, to capture, e.g., wires
and tree branches, and surface to capture solid objects like
ground surfaces, was presented by Lalonde et al. [7]. A
Gaussian Mixture Model is trained with an expectation maxi-
mization algorithm, and segments are found using connected
component analysis. Besides an online time-of-flight camera
based basic obstacle detection, Santamaria-Navarro et al.
perform an offline terrain classification using a Gaussian
process classification approach [14], while the classification
is only for traversable and not traversable. Wurm et al. use
a tilted 2D-Lidar scanner to distinguish low grass vegetation
from street in structured outdoor environments. The system
utilizes self-supervised classification learning by employing
a vibration classifier (proprioceptive sensor information) to
train a support vector machine [20]. The features applied
for classification are range, incident angle and remission.
Laible et al. employ camera and lidar to distinguish asphalt,
big tiles, grass, gravel and small tiles. In our work, we
utilize distance and remission values from the 3D-Lidar to
compute various features that we employ to determine the
terrain class, where we apply a random forest classifier [2]
to distinguish between regular street, dirt roads and grass.
Finally we combine the semantic terrain class estimate
with geometrical measures like step height and steepness,
calculated from points of single scans, exploring the special
structure of the sensor for efficient computations.

III. ONLINE OBSTACLE DETECTION

In this section, we describe how we calculate the geometric
measures from the 3D-Lidar data. First, we give a short
technical overview of the sensors characteristics. Then we
explain how we exploit the special structure of the data to
efficiently calculate the geometrical measures.

A. Velodyne Intrinsic

The Velodyne HDL sensors are very popular for au-
tonomous robots. Until recently, there were two versions
with 32 and 64 individual laser beams available. A new
scanner with 16 beams was introduced lately but is not used
in this work. The individual lasers are mounted in the sensor
with different pitch angles, setting the vertical field of view
which ranges from —20° to 20° for the HDL 32 and —24.8°
to 2° for the HDL 64. The data of the sensor is delivered
in spherical coordinates, providing the current azimuth and
elevation angle, the distance, the remission and the id of the
laser. This leads to the typical ring structure of the Velodyne
scans (as, e.g., visible in Fig. 3).

B. Geometric considerations

Utilizing this structure, we can directly arrange the 3D-
points as a matrix F;;, where the azimuth determines ¢
and the elevation j. For every point P;; we search in each

" X
T

Fig. 3. Example for the basic traversability analysis of the Ve

low values, red are high values), visualization of incline (same coloring) and an example of a measurement to explain the calculation of the values. In
this example, the green point is the point that is currently considered and the yellow points mark the local neighborhood for the computations, they are
along the ring and perpendicular to it. The points with blue strokes satisfy our requirements of a minimum distance and are used for the computations.
The two points connected with the dashed line are those with the largest difference in the z-coordinate, whereat the stepHeight is indicated by the red
line of the triangle. Accordingly we take the angle marked in cyan as incline.

direction on the same ring P;1x); and perpendicular to
it Pyjap, with 0 < k < Kand 0 < | < L, for the
first point that has an Euclidean distance larger than z in
3D. This procedure returns at most four neighbors with a
maximum of 2(K + L) + 1 comparisons. From these points
we calculate the step height (stepHeight), as the maximum
absolute difference of the z-coordinates, as well as the
inclination angle (¢ncline) of the line that connects the two
points and the zy-plane, which corresponds to the steepness
between the points. For a visualization and a simple example
of stepHeight and incline see Fig. 3. Due to the finite
number of comparisons and the constant time look-up for the
points, the overall computation of stepHeight and incline
for one point in the scan can be done in constant time. In
our implementation we use K =5, L = 2 and = = 0.05m,
which is more than 20 of the typical sensor noise of the
Velodyne.

Please note that this procedure requires knowledge about
the robot’s current pitch and roll angle, as, e.g., provided by
an IMU on the robot (or in case of the Velodyne HDL 32
its internal IMU).

As a pre-processing step, in order to reduce the influence
of sensor measurement noise, we average close-by neighbor-
ing points along the ring, P;1+); with 0 < k < K, thereby
smoothing the surface structure. We compute this average
efficiently using a sliding window so that the pre-processing
does not break the constant time cost stated above.

In our current C++ implementation we can calculate
stepHeight and incline for every point provided by the
Velodyne with approximately 50% CPU load on a single
core of an Intel i7@3.5GHz PC.

C. Basic Obstacle Detection

In our implementation, we maintain a rolling window,
fixed resolution, grid map that is updated whenever a 3D-
Lidar measurement arrives. The measures explained above in
Sec. III-B are typically sufficient to perform a traversability
analysis for environments like offices, fabric halls, or urban
roads. For such environments one can easily threshold the
geometric measures. Therefore, we choose an appropriate
upper bound for the geometric measures, maxStepHeight
and mazxIncline, taking the capabilities of the robot and
the environment into account. For such environments we

choose maxStepHeight= 0.05 and mazxIncline= 20.5 deg.
When we look at Fig. 3, we see on the middle left image
that stepHeight is a strong indicator for traversability in the
dense areas of the scan (e.g., it shows the lowered sidewalk
but only as a low value) but there are false positives in the
sparser, further away regions of the scan. The incline values,
on the middle right image, behave the other way around
(note, e.g., that the lowered sidewalk has a strong response).
Accordingly, a cell C' is occupied by an obstacle if and
only if stepHeight(C') > maxzStepHeight and incline(C) >
mazIncline. However, in our context, the thresholds largely
depend on the type of terrain the robot operates on. Accord-
ingly, our goal is to dynamically adapt them.

IV. TERRAIN ANALYSIS

When the environment is more scattered in its geometry,
like a meadow or forest environments, it is not possible to
rely purely on the geometrical measures, since e.g., grass
may appear as fake obstacles with step heights even larger
than the ground clearance of the robot. On the other hand, a
robot that should not drive on grass may consider a mowed
meadow as traversable ground and drive over it. To avoid
those situations, we use a terrain classification based on
features, extracted from points that are registered into a fixed
resolution rolling window grid-map and feed it to a random
forest classifier to determine the terrain class. We opted for
a random forest classifier since it is fast and not affected
by the extend of individual dimensions of the feature vector.
Yet, in general every multiclass classifier could be employed.
Since we are only interested in the local vicinity of the robot,
we utilize the raw odometry aided by gyroscope data for the
registration of the points. Points from the lidar are mapped
with this pose estimates until the robot has covered a distance
of d meters. Then we compute one feature for each cell of
the map, if more than a predefined value of minPoints are
registered in that cell. Using the inverse sensor model from
the random-forest classifier we can maintain a probability
distribution over the terrain class for each cell.

A. Features

For the feature-based representation of the sensor data
in the terrain classification task, we need to find measures
that represent the relevant aspects of the environment to get

meaningful results. We chose a mixture of the point geometry
as well as additional information, i.e., the remission values of
the laser scanner. More detailed, our five-dimensional feature
consists of the following measures:

e Maximum remission

e Mean remission

o Standard deviation of the intensities

o Roughness

« Slope
The first three dimensions are computed by standard statisti-
cal operations while the latter two are computed using eigen-
analysis of the covariance matrix of the points. As roughness
of a cell we use the smallest eigenvalue and the slope of a
cell is the incident angle of the normal, which is estimated
by the eigen-vector that belongs to the smallest eigenvalue,
and the zy-plane. The first three dimensions represent the
perceptive or appearance-based information that we get from
the intensity values of the 3D-Lidar scanner and the last
two represent characteristic geometric information of the
environment.

B. Classification

In our approach, we apply a random-forest classifier,
as introduced by Breiman [2] with the gini-index as split
criterion for the nodes of the trees. We hand-labeled data
from several scenes that include different environments like
a street, a meadow and some dirt- and forest roads to train
the classifier. For the labeling we apply a custom tool to
determine areas of the corresponding terrain type. All the
labeled data was assigned to one of the following classes:
Street, Grass, Dirt or Other. The first three classes build the
terrain we consider as potentially traversable, the last class is
ideally the union of all kind of possible obstacles. We train
the random forest to model the inverse sensor model, i.e., it
returns a probability estimate P(c | f) for the terrain class
¢ given the feature f.

C. Terrain-Class-Map

The terrain class map is a fixed resolution rolling window
grid-map, where we temporarily store the raw points until
we compute a feature. Then we calculate a probability
distribution over the terrain class based on the probabilities
provided from the classifier. We assume that the cells in the
terrain map are independent from each other and that the
state of a cell is static. Therefore we can maintain the prob-
ability distribution over the terrain class given the registered
features, P (¢ | fi,..., fn), for each cell independent. Since
we want to update the information incrementally as soon
as they are available, we apply Bayes rule twice with the
assumptions stated above to derive

f):np(c|fn)P(c|f177fn—1) (1)
The term 7 is a normalizing constant that summarizes terms
that do not depend on the class c. In our implementation
we use a uniform prior for the class and the inverse sensor
model from the random-forest classifier to compute the

P(C|f]_,...

Fig. 4.
street, green is grass and brown is dirt. Right: Aerial image of the scene.
Our terrain classification accurately classifies different terrain types in urban
and outer urban environments.

Left: Results of our terrain classification. Pink is other, yellow

class probabilities of individual cells. To save computational
resources, we apply the assumption of the static terrain class,
setting a cell as classified if it has been seen more than
10 times and if the probability of the most likely terrain
class exceeds 0.9. Classified cells are not considered for
updates of the terrain class but keep their state. In order
to counteract cases where the state of the cells may change
from time to time, e.g., a parking car that may start driving,
we reset classified cells every ¢ seconds. The main idea of
our combined approach is to choose proper values for the
thresholds maxzStepHeight and maxIncline, see Sec. IIL.

V. TERRAIN-ADAPTIVE OBSTACLE DETECTION

Our obstacle detection module combines the methods
explained in Sec. III and Sec. IV. In our implementation
we use two asynchronous threads, one that computes the
geometric measures and one that does the terrain analysis.
To circumvent race conditions we maintain two independent
maps, one for the terrain class and one that fuses the
information of our combined approach, which is then given
to a planner. Therefore, the system has critical information
available as soon as it arrives but can still gain from the
slower updates of the terrain class model. This summarizes
the description of our terrain-adaptive approach for collision
avoidance, which utilizing the information over the terrain
type for the correct interpretation of geometric measures in
the range scans. The individual thresholds for the different
terrain types are specified in Tab. I. The maxIncline values
are the same for all terrain classes, since this measure
corresponds to the capabilities of the robot and is therefore
independent of the terrain type. The maxStepHeight for
Street is obviously the same value as in Sec. III-C, while the
values for Grass and Dirt are much higher, corresponding to
our expectation of a reasonable risk for those terrain types.

VI. EXPERIMENTS

We designed our experiments to highlight the different
aspects of the proposed approach. We provide qualitative and

=

s SRS s SR

il £ |

e | 1

Fig. 5. Left: An on-board view of the scene. Middle: The resulting obstacle map blended with the terrain classification of our approach. Right: Resulting
obstacle map of the basic approach. In the top row example our approach guarantees full mobility while the basic approach is trapped by many fake
obstacles induced from the grass. In the lower row example we see what happens if we set the threshold of the basic approach to the same as for grass in
our combined approach. Since our approach can use adaptive thresholds and correctly find the obstacle, the basic approach misses the massive battery in

front of the robot, as marked with the red rectangle.

TABLE 1
TERRAIN CLASS DEPENDENT THRESHOLDS

[Terrain Class [[mazStepHeight [m] | mazIncline [°]]

Street 0.05 20.5
Grass 0.50 20.5

Dirt 0.25 20.5
Other 0.05 20.5

quantitative results about the performance of our approach.
In addition, we present a real world experiment of an
autonomous four km run through challenging terrain. Fur-
thermore we provide a detailed analysis of the computational
requirements, illustrating the economical use of computa-
tional resources by our approach. For all experiments we
used the same parameters and the same random forest, which
consists of six trees. The trees were grown without depth
limit, each split considered two randomly chosen variables,
while the minimal number of features to split a node was
100 and the split criterion was based on the gini-index. The
terrain analysis grid had a resolution of 0.2m, a size of
300 x 300 and d was set to 0.5m. The map that was given to
the planner, which is updated by our combined approach, had
a resolution of 0.1m and a size of 600 x 600. The maximum
speed of our robot was set to 1.2m/s. In order to circumvent
inconsistent lidar data we applied the calibration approach by
Steder et al. [15] for our Velodyne HDL64.

A. Possible — Impossible

If no additional semantic information is available we can
only make a decision based on the values of maxStepHeight
and mazIncline. Therefore we consider the street thresholds
in Tab. I, where we easily run into problems if we are
actually not on a street. In Fig. 5, we show two examples
of situations where the naive approach, without terrain class
considerations, is either blocked by fake obstacles like grass
or misses the detection of real obstacles if a more reckless

threshold is utilized. In the first row of Fig. 5 we use the
street thresholds from Tab. I, the rightmost image shows the
result of the obstacle detection, where the robot is trapped
by grass showing up as fake obstacles all around the robot.
A simple but dangerous fix for the naive approach would
be to raise the thresholds, e.g., to the grass thresholds of
Tab. I, but then, as seen in the second row of Fig. 5, we
may encounter hazardous situations, since on the rightmost
image the battery is not recognized as an obstacle anymore.
In contrast, with our terrain-adaptive classification, we can
classify both scenes correctly, as can be seen in the images
in the middle column of Fig. 5.

B. Terrain Classification Accuracy

To evaluate the performance of the terrain classification
we evaluated scenes like shown in Fig. 4. We used partially
labeled scenes from urban environments taken from our
campus as well as from data in the forest. All in all ~100K
labeled cells were evaluated, since only cells for which
we could doubtless determine the class were labeled. The
resulting confusion matrix is shown in Tab. II, which presents
the results of our cell-wise integrated classification, see
Eq. (1), as well as the most likely class per feature, which is
given in brackets. Our classifier can reliably distinguish the
four classes from each other, but there are some confusions
with street and dirt as well as with dirt and grass. One
reasons for this is probably, as we observed, that often the
streets are covered with a little bit of dirt from construction
site machines or agricultural machines, which has a high
influence on the remissions of the lidar. Also the remissions
on dirt seem very similar to those of grass, depending on
its composition. It can also be seen in Fig. 4 on the top left
image, where grass and dirt are mixed in some regions, but
the aerial image on the right indicates that it may not be
totally clear what the correct labeling should be. Neverthe-

TABLE I
TERRAIN CLASSIFICATION CONFUSION MATRIX

[Class] Street [Grass | Dirt] Other |
Street 0.79 (0.64) 0.06 (0.15) | 0.14 (0.19) | 0.01 (0.004)
Grass 0.02(0.005) | 0.91 (0.86) | 0.05 (0.13) | 0.02 (0.002)
Dirt 0.02 (0.10) 0.18 (0.18) | 0.78 (0.72) | 0.03 (0.002)
Other || 0.04 (0.06) | 0.10 (0.10) | 0.10 (0.03) | 0.76 (0.82)

less, classifying grass reliable is important since most fake
obstacles appear in grass and the false classifications of grass
did no harm as far as we could observe, since they are rather
isolated.

C. Real World with Computational Analysis

In this experiment we evaluate the capabilities and the
computational economy of our approach in a real world
scenario. The trajectory was four km from our campus to
a nearby forest, see the GPS-track in Fig. 2. Furthermore,
during this experiment we measured the time the different
tasks took. Our algorithm was evaluated using a Intel(R)
Core(TM) i17-2700K @ 3.50GHz with four physical cores.
We used a global planner that gives local goalpoints to a
local planner that planned a path based on the obstacle map
of our approach. The robot was driving autonomous during
the experiment. In Fig. 6 we visualized the CPU percentages
of the components of our approach in a pie-chart. The whole
run took about 4400s which in return results in an average
speed of 0.9m/s, while the maximum speed of the robot
was limited to 1.2m/s. The overall processor clock time
was 7760s, where also path planning, collision checking,
motion control, a GUI and the message management was
included, which leads to an overall average processor usage
of about 180%. For the terrain classification, including the
feature computation, the system used on average about 33%
of its processing power, while for the high frequent geometric
measures, including the obstacle grid map update, it needed
about 68%. This underlines the economic of our approach,
since on our quadcore CPU more than half of the processing
power was available when our navigation software was
running. Moreover, we showed that our approach can be
applied in real-world and online on an autonomous robot for
safe navigation in forested and outer urban environments.

VII. CONCLUSION

In this paper, we presented an approach for online obstacle
detection adapted according to semantic terrain informa-
tion. Our method combines low frequency terrain analysis
and high frequency basic obstacle detection and provides
a reliable obstacle classification with a moderate usage of
computational power. In our experiments we identified situ-
ations where a naive approach, without the terrain adaptation,
would yield suboptimal results for safety or mobility reasons.
Moreover, we demonstrated that our approach is economical
with computational power, fast enough to run onboard and
capable to control an autonomous robot along a challenging
four km track including different terrain types like grass, dirt
roads and regular streets.

Geometric Features

and Map Update Terrain Analysis

Plan and Control Overhead

Fig. 6. CPU usage of our approach during the real world experiment.

In future work, we would like to extend our method to
a probabilistic approach that can also take the uncertainty
about the terrain classification estimates into account.

REFERENCES

[1] P. Babahajiani, L. Fan, and M. Gabbouj. Object recognition in 3d
point cloud of urban street scene. In Computer Vision-ACCV 2014
Workshops, 2014.

[2] L. Breiman. Random forests. Machine learning, 2001.

[3] T. Chang, T. Hong, S. Legowik, and M. Abrams. Concealment
and obstacle detection for autonomous driving. In Proc. of the Intl.
Association of Science and Technology for Development-Robotics and
Application, 1999.

[4] R. Kiimmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard.
Autonomous robot navigation in highly populated pedestrian zones.
Journal of Field Robotics, 2014. doi: 10.1002/rob.21534.

[5] 1. Kweon and T. Kanade. High resolution terrain map from multiple
sensor data. In IROS, 1990.

[6] S. Laible, Y. N. Khan, K. Bohlmann, and A. Zell. 3d lidar-and
camera-based terrain classification under different lighting conditions.
In Autonomous Mobile Systems 2012. 2012.

[7]1 J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert. Natural
terrain classification using three-dimensional ladar data for ground
robot mobility. Journal of Field Robotics, 2006.

[8] R. Manduchi, A. Castano, A. Talukder, and L. Matthies. Obstacle

detection and terrain classification for autonomous off-road navigation.

Autonomous robots, 2005.

J. Maye, R. Kaestner, and R. Siegwart. Curb detection for a pedestrian

robot in urban environments. In IEEE Int. Conf. on Rob. & Aut., 2012.

[10] M. W. McDaniel, T. Nishihata, C. A. Brooks, P. Salesses, and
K. Iagnemma. Terrain classification and identification of tree stems
using ground-based lidar. Journal of Field Robotics, 2012.

[11] K. E. Olin and D. Y. Tseng. Autonomous cross-country navigation:
an integrated perception and planning system. [EEE expert, 1991.

[12] P. Papadakis. Terrain traversability analysis methods for unmanned
ground vehicles: A survey. Engineering Applications of Artificial
Intelligence, 2013.

[13] P. Pfaff, R. Triebel, and W. Burgard. An efficient extension to elevation
maps for outdoor terrain mapping and loop closing. Int. Jour. of Rob.
Res., 2007.

[14] A. Santamaria-Navarro, E. H. Teniente, M. Morta, and J. Andrade-
Cetto. Terrain classification in complex three-dimensional outdoor
environments. Journal of Field Robotics, 2015.

[15] B. Steder, M. Ruhnke, R. Kiimmerle, and W. Burgard. Maximum
likelihood remission calibration for groups of heterogeneous laser
scanners. In [EEE Int. Conf. on Rob. & Aut., 2015.

[16] S. Thrun, M. Montemerlo, and A. Aron. Probabilistic terrain analysis
for high-speed desert driving. In Robotics: Science and Systems, 2006.

[17] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for
outdoor terrain mapping and loop closing. In IEEE/RSJ Int. Conf. on
Intel. Rob. and Sys. (IROS), 2006.

[18] C. Wellington and A. Stentz. Online adaptive rough-terrain navigation
vegetation. In IEEE Int. Conf. on Rob. & Aut., 2004.

[19] C. Wellington and A. Stentz. Learning predictions of the load-bearing
surface for autonomous rough-terrain navigation in vegetation. In Field
and Service Robotics, 2006.

[20] K. Wurm, R. Kiimmerle, C. Stachniss, and W. Burgard. Improving
robot navigation in structured outdoor environments by identifying
vegetation from laser data. In IEEE/RSJ Int. Conf. on Intel. Rob. and
Sys. (IROS), 20009.

[9

—

