Global Outer-Urban Navigation with OpenStreetMap

Benjamin Suger

Abstract— Publicly available map services are widely used by
humans for navigation and nowadays provide almost complete
road network data. When utilizing such maps for autonomous
navigation with mobile robots one is faced with the problem of
inaccuracies of the map and the uncertainty about the position
of the robot relative to the map. In this paper, we present a
probabilistic approach to autonomous robot navigation using
data from OpenStreetMap that associates tracks from Open-
StreeetMap with the trails detected by the robot based on its 3D-
LiDAR data. It combines semantic terrain information, derived
from the 3D-LiDAR data, with a Markov-Chain Monte-Carlo
technique to match the tracks from OpenStreetMap with the
sensor data. This enables our robot to utilize OpenStreetMap
for navigation planning and to still stay on the trails during
the execution of these plans. We present the results of extensive
experiments carried out in real world settings that demonstrate
the robustness of our system regarding the alignment of the
vehicle pose relative to the OpenStreetMap data.

I. INTRODUCTION

Robust navigation is an important pre-requisite for truly
autonomous mobile robot systems. A large class of state-of-
the-art solutions for large-scale navigation uses solutions to
the simultaneous localization and mapping (SLAM) problem
to create an accurate map of the environment. Some of them
generate dense occupancy grid maps plus a topo-metrical
graph from it. The topo-metrical high-level graph is then
used for global path planning purposes and the fine grained
map is loaded dynamically as map tiles for the local vicinity
of the robot. This has the drawback that unknown areas need
to be explored and mapped first and then, at operation time,
an active localization module needs to run online. Moreover,
planning is only possible in areas that have been explored
before and a lot of data needs to be stored.

In this work, we will replace the need of creating a global
map in advance with data from OpenStreetMap' (OSM) and
model the vicinity of the robot online, which enables an
autonomous robot to navigate in previously unseen envi-
ronments. This requires two capabilities: first, we need to
know where the robot is in the OSM and, second, we need t
know how the path should be computed from OSM and be
transformed to project it onto the real trail in case of OSM
erros. Our idea is inspired by the way how humans use maps
provided by cartographic services for global path planning
and navigation purposes. The cartographic data provided by

All authors are with the University of Freiburg, Institute for Computer
Science, 79110 Freiburg, Germany. This work has been partly sup-
ported by the European Commission under the grant numbers ERC-AG-
PE7-267686-LifeNav and FP7-610603-EUROPA2

Uhttps://openstreetmap.org

Wolfram Burgard

i

Fig. 1. Our approach addresses robot navigation in outer-urban environ-
ments and aims to match a path given from OpenStreetMap (red) to the part
in the sensor data that may most likely corresponds to the street (black). It
is particularly designed to cope with map and GPS errors.

OpenStreetMap is based on “Volunteered Geographical In-
formation” (VGI), see Haklay and Weber [5], and is publicly
available under a “Open Database License (ODbL).” The
problem in the context of robotics is that VGI maps have a
limited accuracy and that they cannot be directly compared to
maps acquired by SLAM. To use them for robot navigation,
we need to take several sources of errors into account,
e.g., nodes may be placed in wrong positions by errors of the
contributors, inaccurate GPS estimates (during map creation
and at operation time) and the sparse approximation of trails
by line segments. Interestingly, humans can easily resolve
these inaccuracies. We hypothesize this originates from the
ability to classify tracks and associate them with the map,
instead of relying purely on the GPS estimate.

In this paper, we provide a novel approach to imitate this
human ability and make maps like OpenStreetMap useful
for global path planning in outer-urban environments, to
autonomously navigate on small streets, dirt- and forest
roads. To achieve this, we compare the shape of the trails
from the map with semantic terrain classification and use
a Markov-Chain Monte-Carlo technique to determine the
most likely position of the trail in our local frame. With
this correction it is possible to use data from OSM for global
path planning on a real autonomous robot which sends short-
term subgoals to a local planner that navigates the robot in
its nearby vicinity.

II. RELATED WORK

In recent years, publicly available maps like OSM have
gained interest in robotic applications and several authors
have utilized such maps for localization purposes by match-

ing the road network against data observed by the robot. For
example, Floros et al. [3] use the Chamfer-distance to com-
pare chunks of visual-odometry trajectories from the robot
with the network structure of OSM. Mandel and Birbach [8]
fuse GPS and odomtery data for OSM localization. Ruchti
et al. [11] segment single 3D-LiDAR scans into street
and no street areas and match the street segments against
the road-network, while also taking into account the negative
information of no street. Whereas these approaches show
an impressive robustness for global localization, they only
provide limited accuracy with localization errors typically
exceeding several meters, which is not sufficient to align
goal points with the tracks as done by our approach.

Other approaches use maps of geotagged images as a
source for localization and match information retrieved from
images against the images in the map. There are also
feature-based approaches that match panoramas, e.g., from
GoogleStreetView, against the local camera images [1, 14,
13]. However, these approaches assume a rich image-based
map, which is not available everywhere, especially not in
outer-urban and forested environments. Another, camera-
based, approach by Radwan et al. [10] extracts textual in-
formation from images and matches it against georeferenced
text of the map for localization, a source of information that
is sparse in outer-urban environments.

More similar to our approach, Mattyus et al. [9] combine
monocular aerial images with stereo images from a robot,
estimating their pose in OSM and enhancing the map with
semantic information that is derived from deep learning
image classification. The authors assume the error of the
OSM alignment to be perpendicular to the road direction, an
assumption that we use in our approach as well. However,
they furthermore assume that the error is within fixed bounds
of four meters, which seems sufficient for the urban dataset
from KITTI. In our case we cannot restrict the error to fixed
bounds, since in forested environments we face errors of up
to ten meters and more.

Another approach by Irie et al. [7] extracts bound-
aries from the structural representation of GoogleMaps and
projects them to images recorded by the robot. The matching
score is based on squared-loss mutual information between
the image features and projected labels from the map. This
approach is dedicated to urban environments and needs
manual preprocessing for map conversion. An approach for
OSM navigation was recently presented by Hentschel and
Wagner [6] where 3D-LiDAR data is matched against the
rich information of landmarks also provided by the map,
e.g., the compendium of buildings. The approach is par-
ticularly suited for urban environments and cannot directly
be applied to outer-urban environments as they are not
guaranteed to contain a sufficient amount of the required
features.

From the related work, it is clear that the uncertainty
in the quality of OSM is a well-known problem. In the
context of urban environments approaches often assume error
bounds ranging from two to four meters, which is typically
a strong assumption for less frequently used outer-urban

environments. Haklay [4] evaluated the quality of OSM with
a focus on London and England. His analysis shows that
positions recorded by Ordnance Survey (OS) at different
areas in London are on average six meters away from the
corresponding positions in OSM. He also compared the
overlap of smaller roads in OS and OSM with results varying
from 5% to 100%, which indicates substantial errors in such
maps and also provides a clear motivation for our approach.

III. PRELIMINARIES

In this section, we briefly introduce the framework upon
which we build the work presented in this paper. To achieve
a homogeneous system we aim to connect two components,
global planning on OpenStreetMap and the local frame of
the robot, which is represented by semantic classification
of terrain, derived from 3D-LiDAR sensor readings. We will
use the road network from OpenStreetMap as a global metric
topological map in order to provide short term subgoals to a
planner that models only the local vicinity of the robot using
sensor information provided by GPS, IMU, odometry and a
3D-LiDAR sensor.

A. Planning on OpenStreetMap

For efficient planning on the street-network graph, we
use a standard A*-planner to calculate a path to the desired
goal location on the OSM graph. Assuming that the vehicle
is located on a road we deterimine the starting point by
the orthogonal projection of the GPS pose to the closest
street in OSM. To provide incremental subgoals to the local
planner, we sub-sample the subgoals equidistantly along the
path generated by the A* algorithm. Accordingly, we obtain
a sequence of proposed subgoals g, ..., g% in the global
UTM coordinate system. Whenever a subgoal is almost
reached, we send the next one, until the final goal-point is
sent. An example of this sub-sampled path is visualized in
red on the left in Fig. 2 (a). However, this naive approach
itself can not be used directly, due to diverse sources of
errors, such as inaccuracies in the map or the GPS pose
estimate. As Mattyus et al. [9] described, these errors mostly
matter in the direction perpendicular to the road. To correct
this error and thus make the navigation plan useful, our
approach includes a dedicated classifier for the terrain in
the vicinity of the robot to identify the road.

B. Semantic Terrain Information

To integrate the global subgoals consistently into the local
frame of the robot, we will rely on a 3D-LiDAR-based
semantic classification of the terrain type. For this, we use the
same random forest classifier as in our previous work [12],
in which we used a rolling grid map of fixed resolution to
register the 3D-points based on the odometry measurements
for a fixed distance d. Then we compute for each cell
a five-dimensional feature vector, based on the remissions
and the local geometry of the points registered to the cell.
We train a random forest classifier as a fuzzy terrain type
classifier, and integrate multiple measurements assuming a
static terrain map, the independence of individual cells and

(a)

Fig. 2.

(©

Subfigure (a) visualizes the semantic classification, distinguishing street (yellow), dirtroad (brown), grass (green), vegetation (purple) and other

(pink). The red line visualizes the OSM representation without correction and the black line the positions estimated by our approach. Subfigure (b) visualizes
the weighting function, where bright colors correspond to high weights. In subfigure (c), blue markers represent the distribution of the samples for possible

subgoals.

the independence of consecutive observations. Therefore, we
can maintain a probability distribution over the terrain type
given the features f for each individual cell

f)_ P(f | fn)P(t | flv"'afn—l)
3 n - ,r] P(t) 3
with a normalization constant 7 that is independent of the
terrain class ¢ and a prior P(t), which is uniform in our
current implementation. For more details we kindly refer the
reader to Suger et al. [12]. We distinguish between the terrain
classes street, dirtroad, grass, vegetation and other, see Fig. 2
(a) for a visualization of the terrain class map.

P(t] fi,...

(D

IV. SUBGOAL ALIGNMENT

In this section, we explain how our approach combines the
information from the two independent maps. From the global
planner on OSM we receive a series of subgoals gg ooy g8,
which are represented by their UTM-coordinates. We trans-
form the received subgoals to our local odometry frame,
leading to g, ..., g%. With the subgoals in the robot frame,

we calculate the difference GI,; = gkL, — 91571» which we
represent by the orientation 6 = atan2(GE(y), GE(z)) and
the distance dr = ||GEL||2, and model it as values of a

random variable ug. The goal of our work is to find the best
configuration of the local subgoals, taking the observations
from the 3D-LiDAR into account. To achieve this goal, we
derive a probabilistic formulation in Sec. IV-A and provide
details of its components in Sec. IV-B and Sec. IV-C. Finally
to estimate the positions of the most recent subgoals we use
this formulation in a Markov-Chain Monte-Carlo approach
in Sec. V.

A. Probabilistic Formulation

Our goal is to find the most likely arrangement of the local
subgoals g, - . ., gn, such that every subgoal is on the street
given the relative positions u, ..., u, and the observations,
integrated in the terrain class map Z.

gO:n = argmax p(go:n | Z7 ul:n) (2)

This results in a 2(n + 1)-dimensional optimization problem
and to our knowledge no efficient method to directly solve it

exists. Therefore, we aim for a recursive solution in order to
reduce the dimensionality of the problem. By construction
we can assume that the subgoals gg.,,, given ui.,, satisfy the
Markov property and therefore form a Markov-Chain.

p(gn | 90:n717U1:n) :p(gn | gnflaun) (3)

Moreover, we made the assumption that the cells of the
terrain map are independent and therefore, given the subgoals
g; are well separated, the observations zp., made at the
subgoals are independent given the subgoals.

vn) = [[p (2 | 9))

i<n

p(ZO:n | go, - - -

Now we can iteratively apply Bayes rule and combine it with
Eq. (3) and Eq. (4) to derive the following factorization of
the posterior.

Jo:n = argmax p (go) HP (zi | 9)p(9i | gim1,wi) (5

go:n i

Here, p(go) is the prior distribution, p(z: | g:) is the
observation likelihood and p (g: | g+—1,u¢) is the process
model. Even though each factor can be computed efficiently
now, the search space for a full trajectory remains too large.
Therefore, we use an iterative solution to overcome this.

B. Process Model

We assume that the main source of error occurs perpen-
dicular to the street direction. We reflect this in the modeling
of the process model, which has the form

9k :h(gk_l,Uk,A)7 (6)
with

. dp + Ad cos(0r+A0)
h (gk—huk, A) =gk—1+ m (sin(9:+A0)) ,)

where A is a zero mean Gaussian noise variable.

(Ad, AB) ~J\/<(o, o),(i fe)) @®)

The additional factor (cos(Af)) ™" accounts for the an-
gular deviation and adjusts the distance, unfolding the com-
monly used banana-shaped distributions perpendicular to the
street direction. For the initial distribution we assume that
the direction of the street is known and therefore model

go ~ N (g&,%0) 9)

with an appropriately rotated covariance matrix. The visual-
ization of the sample distribution is shown in Fig. 2(c).

C. Measurement Model

To calculate the observation likelihood we use the terrain
class map, that we derive from the measurements as de-
scribed in Sec. III-B. For a quantification of the semantic
information given a local subgoal g, P(Z | g), we map
the terrain classes to costs, which increase as it becomes
more unlikely to see a class on a road. More precisely,
we define a function f : 7 — R, from the set of
classes T = {street, dirtroad, grass, vegetation, other} to
a discrete subset of the real half-line. Given the mapping
f we can calculate a value for each cell C' € Z using the
results of the fuzzy classification, by calculating the expected
value of the function f over all terrain classes of cell C' as

= 1) (10)

teT

P(t] C),

where P(¢ | C) is maintained by the terrain map, see
Sec. III-B. Now, as we aim to find evidence for a part of
the map belonging to a street, and since our map has a fixed
resolution r, we do not only use a single cell but a square grid
neighborhood with the center cell at the subgoal g, which we
refer to as N (g), of size (2N 4 1) x (2N 4 1). With respect
to this we compute the final costs as an equally weighted
average of f¥ over the cells in N (g).

MN(9) Z fE

CeN

=N (1)

To transform this cost value into a likelihood we use an
exponential distribution with parameter A in our current
implementation, stating the observation likelihood as

P(z] g) ~ Xexp (AN (9)) -

Recall that we used the term of well separated subgoals in
the derivation of Eq. (4), now it is clear that this can be
defined as N (g;) N N (g;) = 0, Vi # j. This also shows
the tight connection of the assumption that observations
are independent given the subgoals and the independence
of the cells in the terrain map Z. Fig. 2(b) visualizes the
observation likelihood for every cell of the map.

(12)

V. SEQUENTIAL MARKOV-CHAIN MONTE-CARLO
SAMPLING

To solve the optimization problem stated in Eq. (5) we
employ a MCMC method for an incremental solution. In
the real world, one of the main problems in our scenario is
visibility. Especially in forested environments, an intersection
is often not observed before the robot actually arrives there.

Z \/
“be errg, S

Mooswald Schaulnsland

Fig. 3. GPS tracks of the datasets we used for evaluation on an aerial
image. Autonomous trajectories are colored in yellow, remotely controlled
trajectories are colored in red. Mooswald datasets are collected nearby our
campus and Schauinsland datasets on a mountain near Freiburg.

Moreover, the process model, given in Eq. (7), models the
incremental, moderate error and cannot resolve a larger error,
which typically occurs at intersections, in a single step. On
the other hand, we are interested in subgoals that are as far
away as possible, which is in favor of the local planner.
Therefore, we do not sample the most recent subgoal only
but a sequence of the most recent K subgoals.

P (Gn—K+1m | Z,01:0) =
/(H p(zilgi)p

i=n—K+1
P(gn—r+1 | 9n—k 3 Un—r)P (Gn-x | Z,U1:m—K) |dgn—K

(9: | gi—hui)'

13)

Unfortunately, this increases the complexity of the distri-
bution and especially in online scenarios computation time
is crucial. Therefore, we need to find a proper trade-off
between accuracy and computational time, which we analyze
in our experimental section. To complete the description
of our approach we briefly state the needed steps, which
are sampling, weighting and resampling. In our case, each
sample G; contains a sample of the most recent K subgoals,
sequentially sampled from the proposal distribution

Gj~

H P(9ij | gi-1,4,ui)- (14)

1=n—K+1
In practice we sample a series of A; from the distribution
given in Eq. (8) and consecutively apply Eq. (6) to sample
hypothesis G;. Furthermore, we calculate the importance
weight for G; as

n
IT pGijlais)-

i=n—K+1

W; X (15)
Both computations can be done efficiently due to the re-
cursive structure. However, the high dimensionality of the
state space requires substantially more samples. After the
weighting we calculate the so-called number of effective
particles neg = (3 w?)"\ If meg is less than half the
number of samples we perform a resampling procedure, in
which we use stochastic universal sampling as introduced

IS

3751 —<— OsM H
3.5 —6— Ours 1,000 [
5'22 | 4— Ours 5,000 ||
= 5 7'5 B —&— Ours 10,000 | |
=50 Ours 50,000 ||
£ 225 B
o i
L:H 1.75 .
S s i
1.25 [
~ N
0.75 |-
0.5
0.25 -
1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Sample sequence length
Fig. 4. Average RMSE over ten instances for our approach (N) and

the uncorrected data from OSM, where N denotes the number of samples.
Our approach achieves similar RMSE for different sample sizes and the
minimum for the sequence length of four.

by Baker [2]. For the current state estimate we use the
expectation of the sampled trajectory.

VI. EXPERIMENTS

We evaluated our approach using real world experiments
with the robot shown in Fig. 1, which was navigated both au-
tonomously and via remote control. First, we give a detailed
overview of our system settings in Sec. VI-A. To measure
the quality of our approach, we need to evaluate whether
or not the subgoals are located on the trails in the local
frame of the robot, such that the robot can follow the desired
path, which was globally planned on OSM. In Sec. VI-B,
we will investigate the influence of the sample sequence
length K and the number of samples use to approximate
the distribution to this measure. Especially in online settings,
runtime becomes important and results concerning this are
discussed in Sec. VI-C. Finally, we reason about limitations
of the approach and discuss cases in which our approach
may fail to find the correct path in Sec. VI-D.

A. System Setting

For all experiments we used data from the same robot,
equipped with a Velodyne HDL-64E 3D-LiDAR sensor,
Gyro sensors, IMU sensors, Kalman-filtered GPS and in-
ternal odometry. The terrain classification accumulates mea-
surements for a driven distance of d = 0.5m between
consecutive feature computations. The resolution of the grid
was set to 0.2m with a size of 300 x 300 to model the
vicinity of the robot, see Sec. III-B. Subgoals were gen-
erated every four meters and the map service we used was
OpenStreetMap. For all experiments we set the neighborhood
size N = 2, which corresponds to a size of 1m x 1m,
and A = 4, see Sec. IV-C. The terrain cost function was
set to {street: 0.1, dirt: 0.2, grass: 0.4, vegetation: 0.8,
other: 1.0}. In the case when a cell without observation
was requested, a default value equal to that of other was
returned. For the evaluation we considered datasets from two
locations, one nearby our campus (Mooswald) and one from
a mountain near Freiburg, the Schauinsland. The GPS-tracks
of the trajectories are visualized on aerial images in Fig. 3.

17 —— OSM
Ours

£ |
g |
e
o 7 R
=)
m 5
3
1
0
L L L L L L
0 500 1,000 1,500 2,000 2,500 3,000
Subgoal

Fig. 5. Error of our approach compared to uncorrected data from OSM for
every subgoal used in our evaluation set. For our approach we used 1,000
samples and a sequence length of four in this case.

All in all, we evaluated data with an overall trajectory length
of 14km.

B. Performance

First to mention, we successfully applied our approach
to a real robot, navigating autonomously in both areas, see
Fig. 3, with an overall trajectory length of 5.2km, in which
we used 1,000 samples and a sample sequence length of
four. Our approach made the difference between the robot
leaving the road and getting stuck and successfully reaching
its goal. This runs contained challenging situations including
Y-shaped intersections as well as nodes at intersections that
were several meters off. To quantify this qualitative results
we calculate the root mean squared error (RMSE) measuring
the distance of the subgoals to the middle of the street in
the local frame. Due to a lack of ground truth data, we
approximate this error measure utilizing the knowledge that
the robot was driving near the middle of the street most of the
time. Given a sequence of robot poses p1.,, and a sequence
of subgoals g%, corrected with a sample sequence length K,
and assuming a medium street-width s = 3m, we calculate
the RMSE as:

2
’ 0)

For the computation of the RMSE we concatenate the poses
and subgoals of all trajectories. We examine samples sizes
between 1,000 and 50,000 and vary the sequence length from
one to ten. Due to the randomized nature of our approach
we compare the average RMSE over ten instances for each
setting. The results along with the RMSE of the subgoals
from uncorrected OSM data is depicted in Fig. 4. The
sequence length of four achieves the minimum RMSE for all
the sample sizes, ranging from 0.78m for 1,000 samples to
0.72m for 10,000 samples. Compared to the raw subgoals
from OSM, which exhibits a RMSE of 3.6m, our method
yields an error reduction of up to 80%.

In Fig. 5, we compare the errors at each subgoal, corrected
with our approach using 1,000 samples and a sequence length
of four to the errors of the raw subgoals from OSM. The

. K_ _§
2 e il ~ ol 3

RMSEy = (16)

n

110

100 |~ —©-~ Ours 1,000 n
90 |- | —=A— Ours 5,000 N

80 | —H- ours 10.000 |

Ours 50,000
70 - -

Average time in [ms]

Sample sequence length

Fig. 6. Average runtime for calculating an update for our approach N,
where N denotes the number of samples.

errors of OSM exceed ten meters several times, while the
errors of our approach are typically below 1m. Except for
one situation, which we explain in Sec. VI-D, the single
peaks that exhibits a higher error for our approach stems
from intersections, at which the area of possible street points
is large and the trajectory often takes a shortcut relative to
the shape representation in OSM, which is not considered by
our error measurement. Nevertheless, comparing the errors
from our approach to OSM in a single tailed paired student’s-
t-test, the improvement using our approach was significant
(o = 0.05) for all settings and instances.

C. Runtime

Execution time of the approach is important, especially
when deploying it on a real autonomous system. Our ap-
proach is efficiently implemented in C++ and the runtime
was measured for the different settings on a single core of an
Intel(R) Core(TM) 17-2700K CPU @ 3.50 GHz. The terrain
map updates, which are computed every 0.5 m in a separate
thread, took on average 0.3s and are not further included
in this evaluation. For our approach, the runtime is almost
linear in the number of samples and the sequence length, see
Fig. 6. With 1,000 samples and a sequence length of four,
the average update time is 8.3 ms, whereas this increases
to 62ms with 50,000 samples. Our choice of parameters is
fully supported by our runtime and accuracy evaluation. This
setting of the system yields realtime performance which is
integral for autonomous navigation in real world scenarios.

D. Limitations

The performance of our approach depends on the quality
and correctness of the terrain classification. In the remotely
controlled experiments we encountered a situation, in which
the path was covered by grass and several meters away the
classifier found evidence for a dirt road, accordingly the
estimation of the subgoals drifts towards that region, see the
left image in Fig. 7. Nevertheless, as soon as the path is
distinguishable from the surroundings some meters later, our
approach can successfully recover from that failure, see the
right image in Fig. 7. When navigating autonomously this
means that the robot may deviate from the desired path in
that region and return to it as soon as our method recovers
from its failure.

Fig. 7. An example where our approach fails to find the correct path
(left), due to an ambiguous classification outcome. The path from OSM
(red) matches precisely. Our method (black) estimates the subgoals at an
area that is classified as dirt road, whereas the actual path is classified mostly
as grass. As soon as the classification improves our method recovers (right).

VII. CONCLUSIONS

In this paper, we presented an approach to use publicly
available map data from OpenStreetMap as global map for
autonomous navigation in outer-urban environments. Our
approach relies only on perceptions of the local vicinity of
the robot, as the global map is represented by OSM, and
therefore requires constant memory only. It furthermore is
highly efficient and can operate online on a robot navigat-
ing autonomously in real world settings. The experimental
evaluation shows the robustness of our approach.

REFERENCES

[1] P. Agarwal, W. Burgard, and L. Spinello. Metric localization using
google street view. In IEEE/RSJ Int. Conf. on Intel. Rob. and Sys.
(IROS), 2015.

[2] J. E. Baker. Reducing bias and inefficiency in the selection algorithm.
In Proc. of the Second Int. Conf. on Genetic Algorithms, 1987.

[3] G. Floros, B. van der Zander, and B. Leibe. Openstreetslam: Global
vehicle localization using openstreetmaps. In /EEE Int. Conf. on Rob.
& Aut. (ICRA), 2013.

[4] M. Haklay. How good is volunteered geographical information? a
comparative study of openstreetmap and ordnance survey datasets.
Environment and planning B: Planning and design, 37(4), 2010.

[5] M. Haklay and P. Weber. Openstreetmap: User-generated street maps.
IEEE Pervasive Computing, 7(4), 2008.

[6] M. Hentschel and B. Wagner. Autonomous robot navigation based on
openstreetmap geodata. In Intelligent Transportation Systems (ITSC),
2010.

[7]1 K. Irie, M. Sugiyama, and M. Tomono.
tion approach towards street map-based localization.
Int. Conf. on Intel. Rob. and Sys. (IROS), 2015.

[8] C. Mandel and O. Birbach. Localization in urban environments by
matching sensor data to map information. In European Conference on
Mobile Robots (ECMR), 2013.

[9] G. Mittyus, S. Wang, S. Fidler, and R. Urtasun. Hd maps: Fine-
grained road segmentation by parsing ground and aerial images. In
IEEE Conf. on Comp. Vis. and Patt. Rec. (CVPR), 2016.

[10] N. Radwan, G. D. Tipaldi, L. Spinello, and W. Burgard. Do you see
the bakery? leveraging geo-referenced texts for global localization in
public maps. In /EEE Int. Conf. on Rob. & Aut. (ICRA), Stockholm,
Sweden, 2016.

[11] P. Ruchti, B. Steder, M. Ruhnke, and W. Burgard. Localization on
openstreetmap data using a 3d laser scanner. In IEEE Int. Conf. on
Rob. & Aut. (ICRA), 2015.

[12] B. Suger, B. Steder, and W. Burgard. Terrain-adaptive obstacle
detection. In IEEE/RSJ Int. Conf. on Intel. Rob. and Sys. (IROS),
2016.

[13] A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pajdla. 24/7
place recognition by view synthesis. In IEEE Conf. on Comp. Vis.
and Patt. Rec. (CVPR), 2015.

[14] A. R. Zamir and M. Shah. Accurate image localization based on
google maps street view. In European Conference on Computer Vision.
Springer, 2010.

A dependence maximiza-
In IEEE/RSJ

