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Zusammenfassung

Service-Roboter, die in von Menschen bevölkerten Umgebungen agieren, sind in
den letzten Jahren immer populärer geworden. Es existieren schon eine Reihe von
Systemen, die beispielsweise in Krankenhäusern, B̈urogeb̈auden, Kaufḧausern
und Museen eingesetzt werden. Darüber hinaus sind auch verschiedene Mehr-
robotersysteme entwickelt worden, da einige Aufgaben von einem Team von Ro-
botern schneller und effizienter erledigt werden können als von einem einzelnen
Roboter. Dazu geḧoren unter anderem Reinigungsarbeiten, Auslieferungsaufträge
und das Erkunden von unbekannten Umgebungen.

Immer wenn Teams von mobilen Robotern in der selben Umgebung eingesetzt
werden, m̈ussen ihre Bewegungen koordiniert werden, damit die einzelnen Robo-
ter sich nicht gegenseitig behindern. Außerdem sollte ihre gemeinsame Aufgabe
so schnell wie m̈oglich erledigt werden. Um diese Ansprüche zu erf̈ullen, wer-
den komplexe Pfadplanungtechniken benötigt. Da der gemeinsame Konfigura-
tionsraum der Roboter in der Regel extrem groß ist und exponentiell mit der An-
zahl der Roboter ẅachst, k̈onnen existierende Pfadplanungtechniken für einzelne
Roboter nicht unmittelbar auf Mehrrobotersystemeübertragen werden.

Viele existierende Methoden für Mehrrobotersysteme sind
”
entkoppelt“, was be-

deutet, dass sie zuerst Pfade für die einzelnen Roboter unabhängig voneinan-
der planen. Anschließend̈uberpr̈ufen sie, ob sich die Roboter zu nahe kämen,
wenn sie sich entlang dieser Pfade bewegten. In solchen Fällen werden die Pfade
neu berechnet, um diese Konflikte zu umgehen. Dabei weisen viele entkoppelte
Methoden den einzelnen Robotern Prioritäten zu. Diese geben an, in welcher
Reihenfolge die Pfade neu berechnet werden. Bei der Berechnung des Pfades
für einen Roboter werden dabei die Pfade aller Roboter mit höherer Prioriẗat als
gegeben und unveränderbar angesehen. Auf diese Weise wird der Suchraum ex-
trem eingeschr̈ankt und die Suche nach einer Lösung des kombinierten Planungs-
problems beschleunigt. Die meisten existierenden entkoppelten Ansätze benutzen
dabei ein festes Prioritätsschema, d.h. eine feste Ordnung der Roboter. Die Rei-
henfolge, in der Pfade berechnet werden, hat jedoch einen großen Einfluss darauf,
ob überhaupt eine L̈osung f̈ur das kombinierte Pfadplanungsproblem gefunden
werden kann und darauf, wie effizient diese Lösung f̈ur das gesamte Mehrroboter-
system ist.

Im ersten Teil dieser Dissertation stellen wir einen Ansatz vor, der in dem Raum
aller Prioriẗatsschemata nach einer Ordnung der Roboter sucht, für die eine L̈osung
des Pfadplanungsproblems berechnet werden kann. Dabei nutzt unser Verfahren
Einschr̈ankungen (Constraints) zwischen den Prioritäten der Roboter aus, welche
automatisch von der Aufgabenspezifikation abgeleitet werden. Nachdem ein ge-
eignetes Priorïatsschema gefunden wurde, versucht unser Verfahren dieses mit-



hilfe einer Hill-Climbing-Strategie zu verbessern. Unsere Suchmethode kann für
beliebige entkoppelte Planungsysteme eingesetzt werden. In verschiedenen Expe-
rimenten mit einem realen Mehrrobotersystem sowie in Simulationen zeigen wir,
dass unser Verfahren effiziente Lösungen auch für komplizierte Pfadplanungs-
probleme finden kann.

Der zweite Teil dieser Dissertation konzentriert sich auf Roboter, die in von Men-
schen genutzten Umgebungen eingesetzt werden. Diese Systeme können den
Service und ihr Verhalten gegenüber Personen verbessern, wenn sie auf die Ak-
tivit äten der umgebenden Menschen reagieren und nicht mit ihnen interferieren.
Im Gegensatz zu einem Mehrrobotersystem sind die zukünftigen Bewegungen
von Menschen aber nicht bekannt. Deswegen müssen die Roboter in der Lage
sein, die Menschen mittels ihrer Sensoren wahrzunehmen, zu identifizieren und
ihre Intentionen zu lernen, damit sie bessere Vorhersagenüber das Verhalten der
Menschen machen können. In dieser Dissertation stellen wir eine Technik vor,
die typische Bewegungsmuster von Personen aus Sensordaten mithilfe des EM-
Algorithmus’ lernt. Wir beschreiben außerdem, wie die gelernten Muster dazu
benutzt werden k̈onnen, um potentielle zukünftige Bewegungen der Personen
vorherzusagen. Anschließend erklären wir, wie dieses Wissen im Pfadplanung-
prozess eines mobilen Roboters berücksichtigt werden kann. Danach führen wir
eine Methode ein, die aus den gelernten Verhaltensmustern automatisch Hidden
Markov Modelle (HMMs) ableitet. Diese HMMs können von einem mobilen
Roboter benutzt werden, um die Positionen von mehreren Personen vorherzusagen,
auch wenn sie außerhalb seines Sichtfelds sind. Um die HMMs mithilfe von
Kamera- und Laserdaten zu aktualisieren, wenden wir Joint Probabilistic Data
Association Filter an. In der Regel wird ein Roboter unsicherüber die Positio-
nen von Personen, wenn er sie längere Zeit nicht beobachtet. Deswegen unter-
suchen wir auch, wie entscheidungstheoretisch geeignete Beobachtungsaktionen
bestimmt werden k̈onnen, welche ausgeführt werden, ẅahrend der Roboter seine
sonstigen Aufgaben verrichtet.

Praktische Experimente, die wir mit unserem mobilen Roboter durchgeführt haben,
zeigen, dass

• unsere Methode typische Bewegungsmuster von Personen lernen kann,

• das Navigationsverhalten des Roboters verbessert werden kann, indem er
die gelernten Muster benutzt, um Vorhersagenüber die Bewegungen von
Personen zu machen,

• die abgeleiteten HMMs eingesetzt werden können, um zuverlässig einen
probabilistischen Glauben̈uber die Positionen von mehreren Personen zu
behalten, auch wenn sie gerade nicht im Sichtfeld des Roboters sind, und



• unsere Technik effektive Aktionen generiert, welche die Unsicherheit des
Roboters̈uber die Positionen von Personen stark reduzieren.

Unser Ansatz ist n̈utzlich für Serviceroboter verschiedenster Art, da es in vielen
Anwendungen hilfreich ist zu wissen, wo sich die Personen in der Umgebung
aufhalten. Beispielsweise kann ein Roboter persönliche Botendienste effizien-
ter ausf̈uhren, wenn er weiß, wo sich die Personen gerade befinden. Für einen
Putzroboter ist es ebenfalls interessant zu wissen, welche Räume gerade leer sind,
damit er niemanden stört. Dar̈uber hinaus kann ein Haushaltsrobototer sein Ver-
halten verbessern, wenn er weiß, wo eine Person gerade ist oder wo sie hingeht.
Dadurch kann der Roboter sich beispielsweise so bewegen, dass er der Person
nicht im Weg steht und er kann sich strategisch günstig f̈ur Interaktionen posi-
tionieren.

Zusammengefasst präsentieren wir Techniken, welche das Zusammenleben von
Mensch und Roboter sowie deren Interaktion erleichtern.





Summary

Service robots which act in environments populated by humans have become
very popular in the last few years. A variety of systems exists which act for exam-
ple in hospitals, office buildings, department stores, and museums. Furthermore,
several multi-robot systems have been developed for tasks which can be accom-
plished more efficiently by a whole team of robots than just by a single robot.
These tasks include surface cleaning, deliveries, and the exploration of unknown
terrain. Whenever teams of mobile robots are operating in the same environment
their motions have to be coordinated in order to avoid congestions or collisions.
At the same time the robots should perform their navigation tasks in a minimum
amount of time. Thus, sophisticated path planning techniques are needed that
fulfill these requirements. Since the joint configuration space of the robots is
typically huge and grows exponentially with the number of robots, existing path
planning methods for single robot systems cannot directly be transferred to multi-
robot systems.

Many existing path planning methods for multi-robot systems are decoupled,
which means that they first plan paths for the individual robots independently. Af-
terward, they check if the robots would get too close to each other if the paths
were executed. In such a case the paths are recomputed to avoid these conflicts.
Many decoupled methods assign priorities to the individual robots. These prior-
ities define an order in which the paths of the robots have to be recomputed. By
computing the path of a robot, the paths of the robots with higher priority are con-
sidered as fixed. This way, the size of the search space is extremely reduced. Most
of the existing prioritized decoupled methods use a fixed priority scheme (order
of the robots). However, the order in which the paths of the robots are recom-
puted has a serious influence on whether a solution can be found at all and on how
efficient the solution is for the overall multi-robot system.

In the first part of this thesis we present an approach which searches in the
space of all priority schemes to find an order of the robots for which a solution
to the path planning problem can be computed. During the search, we utilize
constraints between the priorities of the robots which are automatically derived
from the task specification. After an appropriate priority scheme has been found,
our technique tries to improve it by using a hill-climbing strategy. Our search
method can be used to find and optimize paths generated by any prioritized path-
planning technique. In several experiments with a real-robot system as well as
in simulation we show that our approach produces efficient solutions even for
difficult path planning problems.

The second part of this thesis is focused on robots acting in environments
populated by humans. These systems can improve their behavior if they react ap-
propriately to the activities of the surrounding people and do not interfere with



them. In contrast to a multi-robot path planning system, the future movements of
people are not known. Therefore, the robots have to be able to detect people with
their sensors, to identify them, and to learn their intentions in order to be able to
make better predictions of their future behavior. In this thesis we present an ap-
proach to learn typical motion patterns of people from sensor data using the EM
algorithm. Furthermore, we describe how the learned patterns can be used to pre-
dict future movements of the people. Afterward, we explain how this knowledge
can be integrated into the path planning process of a mobile robot. Finally, we in-
troduce a method which automatically derives Hidden Markov Models (HMMs)
from the learned motion models. These HMMs can be used by a mobile robot
to predict the positions of multiple persons even when they are outside its field
of view. To update the HMMs based on laser-range data and vision information
we apply Joint Probabilistic Data Association Filters. In practice, the robot be-
comes uncertain about the positions of people if it does not observe them for a
long period of time. We therefore propose a decision-theoretic approach to deter-
mine observation actions that are carried out while the robot is executing its tasks.
Practical experiments carried out with our mobile robot demonstrate

• that our method is able to learn typical motion patterns of people,

• that the navigation behavior of the robot can be improved by predicting the
motions of people based on the learned motion patterns,

• that the derived HMMs can be used to reliably maintain a probabilistic be-
lief about the current positions of multiple persons even if they are currently
not in its field of view, and

• that our technique generates effective actions that seriously reduce the un-
certainty in the belief about the positions of people.

Our approach is useful for service robots of various types that are designed to
coexist with humans. In many tasks it is helpful to know the current locations
of the people in the environment. For example, this knowledge enables a robot
to more efficiently carry out personal delivery tasks since the number of detours
is reduced. Also a cleaning robot that knows which rooms are currently empty
can carry out its tasks without disturbing anyone. Furthermore, a home care robot
can improve its behavior by knowing where the person it is providing service to
currently is or where it is going to. The robot can then, for instance, generate mo-
tion actions that avoid interferences with the person. Additionally, this knowledge
allows strategic positioning of the robot for providing personal assistance.

In summary, we present techniques which facilitate the coexistence of robots
and humans in real world environments as well as the interaction between them.
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Chapter 1

Introduction

Service robots are envisioned to coexist with humans and to fulfill various kinds
of tasks. In the last few years there has been a substantial progress in the field
of service robots. A variety of mobile robots that are designed to operate in en-
vironments populated by humans has already been developed. These robots, for
example, have been deployed in hospitals, office buildings, department stores, and
museums. Existing robotic systems are already able to perform various services
such as delivery, education, providing tele-presence, cleaning, or entertainment.
Furthermore, there are prototypes of autonomous wheelchairs and intelligent ser-
vice robots which are designed to assist people in their homes1. Figure 1.1 depicts
four examples of existing robotic systems. The upper left image shows a cleaning
robot which is designed to clean large surfaces, for example in supermarkets or
airports[Hefter, 2004]. The robot in the upper right image has been developed
within the EU project WebFAIR[2004]. The goal of this project is to build an in-
teractive tele-presence system which provides individual access to exhibitions and
trade-fairs by the Internet. The lower left image shows entertainment robots[Sony,
2003] and the lower right image depicts one of the robots installed at Swiss EXPO
2002[Swiss Federal Institute of Technology Lausanne, 2002], which guided the
visitors through a part of the exhibition.

Since some tasks can be carried out more efficiently by a team of robots than
by just a single one, multi-robot systems have become popular. Application ar-
eas for multi-robot systems are for example surface cleaning, delivery tasks, the

1Hospitals:[King and Weiman, 1990, Engelberger, 1993], office buildings:[Horswill, 1993,
Nourbakhshet al., 1995, Asohet al., 1997, Simmonset al., 1997, Arras and Vestli, 1998, Alami
et al., 2000], department stores:[Gross and Boehme, 2000], museums:[Burgardet al., 1999,
Thrun et al., 2000, Siegwartet al., 2003], tele-presence:[Hirzinger et al., 1994, Schulzet al.,
2000, Goldberg and Siegwart, 2001], cleaning:[Endreset al., 1998], entertainment:[Weigel et
al., 2002], autonomous wheelchairs:[Lankenau and R̈ofer, 2000, Klugeet al., 2001], home care:
[Lacey and Dawson-Howe, 1998, Schaeffer and May, 1999, Montemerloet al., 2002a].
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(a) (b)

(c) (d)

Figure 1.1: Various types of service robots: (a) theVARIOTECHcleaning robot,
(b) the interactive tourguide robot Albert, (c) AIBO Entertainment Robots, and
(d) one of the robots installed at Swiss EXPO 2002.

exploration of unknown terrain2 and robotic soccer (a scene from the 4-Legged
League is depicted in Figure 1.1 (c)). Whenever teams of mobile robots are op-
erating in the same environment their motions have to be coordinated in order
to avoid deadlocks and congestions (see Figure 1.2) or even collisions. At the
same time the robots should perform the navigation tasks in a minimum amount
of time. Thus, sophisticated path planning techniques are needed to fulfill these
requirements.

The path planning techniques for single robot systems (see e.g. the book by
Latombe[1991]) cannot be directly transferred to multi-robot systems. Planning
the paths for teams of mobile robots is significantly more complex than the path
planning problem for single robots. This is due to the fact that the search space
of a composite planning problem is typically extremely large. More precisely, the
size of the joint state space of the robots grows exponentially with the number of
robots.

The existing methods for solving the problem of motion planning for multi-

2Cleaning tasks:[Jäger and Nebel, 2002], delivery tasks:[Alami et al., 1998b], exploration
tasks:[Simmonset al., 2000, Burgardet al., 2000].
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goal

1

2

3

Figure 1.2: The situation depicted in the left image shows a deadlock between two
robots which can occur in a narrow corridor. The right image depicts a congestion
with several robots. In the second situation it would be better for robot 1 to make
a detour and choose the way via the upper corridor. These two examples demon-
strate that there is a need for coordinating the motions whenever a team of mobile
robots is deployed in the same environment.

robot systems can be roughly divided into two categories:Centralized approaches
combine the configuration spaces of the individual robots into one composite con-
figuration space which is then searched for a solution for the whole composite
system. Decoupled approachesin contrast first compute separate paths for the
individual robots independently. Then they try to solve existing conflicts based on
the independently computed paths. Conflicts are situations in which robots would
get too close to each other if the paths were executed.

There are two important criteria to evaluate path planning methods:

1. Completeness:Is the path planning system able to compute a solution to
any multi-robot path planning problem for which a solution exists?

2. Optimality: Is the solution as efficient as possible considering the whole
team of robots?

While the general centralized approach, which performs an unconstrained search
in the composite configuration space, is able to find the optimal solution to any
planning problem for which a solution exists, its time complexity is exponential in
the dimension of the composite configuration space. Therefore, it can typically not
be applied to real world systems since those systems have to act under serious time
constraints. In practice it is necessary to use heuristics for the exploration of the
huge joint state space or to constrain the configuration space. As a consequence,
practical centralized approaches cannot ensure completeness and optimality.



4 CHAPTER 1: INTRODUCTION

Many decoupled methods use a priority scheme for the robots. This means
that a unique priority is assigned to each robot. The robots are then processed
in the order implied by these priorities. During path planning for one robot the
paths of the robots with higher priority are considered. This way the size of the
search space is reduced to make the search tractable. Since all decoupled meth-
ods strongly restrict the search space they are generally incomplete and may also
generate sub-optimal paths for the robots.

The order in which prioritized approaches compute the paths of the robots
has a serious influence on whether a solution can be found and on the quality
of the solution. No single prioritization will be sufficient for all possible multi-
robot motion problems. In the first part of this thesis we present an approach to
prioritized decoupled path planning that performs a hill-climbing search in the
space of priority schemes. To find solvable priority schemes3 even for large teams
of robots, constraints derived from the task specification are used to guide the
search. Extensive experiments on real robots and in simulation runs will show that
our approach enables decoupled path planning methods to find efficient solutions
even for complex multi-robot problems.

In the second part of this work we focus on robotic systems operating in en-
vironments populated by humans. Such systems can improve their service if they
react appropriately to the activities of the people in their surrounding and do not
interfere with them. In contrast to path planning for a team of mobile robots the
intentions and future trajectories of people are not accessible. Therefore, it is
necessary that the robots can locate and track people using their sensors. Fur-
thermore, the robots need to be able to identify and potentially learn intentions of
people so that they can make better predictions about their future actions. In the
past few years various approaches have been presented to track the positions of
people and to predict their short-term motions. All these approaches assume that
motion models of the people are given. A lot of research has already been focused
on the problem of learning and recognizing behaviors or plans of humans. Ad-
ditionally, systems have been developed to detect atypical behaviors or unusual
events.

In this thesis we present an approach that, in contrast to the previous ap-
proaches, enables a mobile robot

• to learn typical motion patterns of people from sensor data,

• to adapt its navigation behavior by predicting trajectories of people, and

• to utilize the learned motion patterns to maintain a belief about where the
people are.

3We denote a priority scheme as solvable if collision-free paths for all robots can be found if
the paths of the robots are planned in the order implied by the priority scheme.
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Such capabilities can be useful in various kinds of situations. For example, they
allow a robot to reliably predict the trajectory of a person so that it avoids blocking
the path of that person. Furthermore, a home care robot can more robustly keep
track of the person it is providing service to and this way increase the time it stays
in the vicinity of the person, for example to support interactions[Chatilaet al.,
2002]. Thus, the knowledge about motion patterns of a person is quite useful
for various tasks such as collision avoidance, strategic positioning, and verbal
assistance.

The remainder of this thesis is organized as follows: In the following chapter
we consider the problem of planning the paths for teams of robots. We present
our approach to prioritized decoupled path planning that searches in the space of
priority schemes. After this we focus on environments populated by humans and
describe in Chapter 3 how to learn typical motion patterns of people from sensor
data. In Chapter 4 we demonstrate how a mobile robot can use the learned motion
patterns to improve its navigation behavior. In Chapter 5 we explain how to derive
Hidden Markov Models (HMMs) from the learned motion patterns. These HMMs
are used to estimate the positions of multiple persons and are updated based on
observations made by a mobile robot.

Parts of thesis have been published in the following articles, conference and work-
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• G. Cielniak, M. Bennewitz, and W. Burgard. Where is ...? Learning and
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ings of the International Joint Conference on Artificial Intelligence (IJCAI),
2003.
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Using Motions Patterns of People. In:Proceedings of the International
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haviors of Persons with Mobile Robots. In:Proceedings of the International
Conference on Intelligent Robots and Systems (IROS), 2002.
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Chapter 2

Multi-Robot Path Planning

2.1 Introduction

Path planning is one of the fundamental problems in mobile robotics. As stated by
Latombe[1991], the capability of effectively planning its motions is “eminently
necessary since, by definition, a robot accomplishes tasks by moving in the real
world.”

The problem of coordinating multiple mobile robots has received considerable
attention in the robotics literature. Whenever several robots are deployed in the
same environment there is the need for coordinating their movements. Trajectories
for the individual robots have to be computed such that collisions between the
robots and static obstacles as well as between the robots among themselves are
avoided. Especially in the context of multi-robot systems different undesirable
situations can occur, such as congestions or deadlocks. As an example, consider
the situation with three robots depicted in Figure 2.1. The starting positions of the
robots are indicated by large circles whereas the small dots correspond to the goal
locations. The lines are the individual optimal paths for the robots. Assuming that
the corridors are too narrow to allow two robots to pass by, no path can be found
for robot 1, if robot 3 enters the corridor before robot 1 has left it. In that case
robot 3 blocks the way of robot 1 such that it cannot reach its designated target
pointG1. This example shows that there is the need of coordinating the motions
whenever teams of robots are operating in the same environment.

The existing methods for solving the problem of motion planning for mul-
tiple robots can roughly be divided into two major categories[Latombe, 1991]:
the centralizedand thedecoupledtechniques. In the centralized approach the
configuration spaces of the individual robots are combined into one compos-
ite configuration space which is then searched for a path for the whole com-
posite system[Schwartz and Scharir, 1983, Tournassoud, 1986, Barraquand and
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Figure 2.1: Path planning problem with three robots. The lines are the individual
optimal paths for the robots between their current positions (indicated by large
circles) and their goal locations (indicated by small dots).

Latombe, 1990, Barraquandet al., 1992, McHenry, 1998]. Because the size
of the joint configuration space grows exponentially with the number of robots,
this approach, in general, suffers intrinsic scaling limitations. The major alter-
native are decoupled approaches[Erdmann and Lozano-Pérez, 1987, O’Donnell
and Lozano-Ṕerez, 1989, Liuet al., 1989, Buckley, 1989, Warren, 1990, Chu
and EiMaraghy, 1992, Chaiet al., 1995, Souccar and Roderic, 1996, Azarm and
Schmidt, 1996, Ferrariet al., 1998, Leroyet al., 1999]. Decoupled path planning
systems first compute an individual path for each robot independently. Subse-
quently, they apply heuristics for resolving conflicts between the paths of differ-
ent robots. Conflicts are situations in which the robots attempt to occupy the same
location at the same time or in which they would get too close to each other.

A centralized path planning method which searches in the unconstrained com-
posite configuration space is able to find the optimal solution to any planning
problem for which a solution exists. Its time complexity, however, is exponential
in the number of robots[Reif, 1979, Schwartzet al., 1987]. Practical centralized
approaches therefore either use heuristics to explore the huge joint state space, or
constrain the configuration space to make the search feasible. As a result, they
are typical neither complete nor optimal. Which means that they may fail to find
a solution even if there is one and that the solution they generate may not be the
optimal one.

As explained before decoupled planners first determine the paths of the indi-
vidual robots independently and then employ different strategies to resolve possi-
ble conflicts. To deal with the still large search space it is common practice to as-



2.1 INTRODUCTION 9

G1 G2
S1

S2 S2

G2G1
S1

G1 G2

S2

S1

Figure 2.2: Independently planned paths for two robots (left image), sub-optimal
solution if robot 1 has higher priority (center image), and more efficient solution
which results if the path for robot 2 is planned first (right). As can be seen, then
robot 1 has to move aside in order to let robot 2 pass by.

signpriorities to the individual robots[Erdmann and Lozano-Pérez, 1987, Buck-
ley, 1989, Warren, 1990, Azarm and Schmidt, 1996, Ferrariet al., 1998]. The
replanning step is then performed in accordance with these priorities. Thus, in the
case of conflicts, prioritized approaches try to compute a new collision-free path
for each robot given the paths of the robots with higher priority. Priority schemes
provide an effective mechanism for resolving conflicts that is computationally
extremely efficient. Since they strongly restrict the search space, all decoupled
techniques are also incomplete and generate potentially sub-optimal solutions.

For decoupled methods the order in which prioritized approaches compute
the paths are planned has a serious influence on whether at all a solution can be
found and on how long the resulting paths are. To illustrate this, let us consider
two examples. Figure 2.1 shows a situation in which no solution can be found if
robot 3 has a higher priority than robot 1. Since then the path of robot 3 is planned
without considering robot 1, it will enter the corridor containing its target location
(markedG3) before robot 1 has left this corridor. Because the corridors are too
narrow to allow two robots to pass by, robot 3 will block the way of robot 1 so
that it cannot reach its target pointG1. However, if we change the priorities and
plan the trajectory of robot 1 before that of robot 3, then robot 3 considers the
trajectory of robot 1 during path planning and thus will wait in the hallway until
robot 1 has left the corridor.

Another example is shown in Figure 2.2. The left image depicts the optimal
paths of two robots. As can be seen, if the path of robot 1 is planned first without
considering robot 2, then the collision-free path of robot 2 includes a large detour
(see center image of Figure 2.2). This is because robot 1 blocks the upper corridor.
However, if the path of robot 2 is planned first and after that the path for robot 1
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is planned taking into account the path of robot 2 we obtain a much more efficient
solution (see right image of Figure 2.2).

These two examples illustrate that the priority scheme, which specifies the
order in which the paths of the robots are computed, has a serious influence on
whether a solution can be found and on the quality of the solution. Moreover, it
suggests that no single prioritization will be sufficient for all possible multi-robot
motion problems.

In this chapter, we present a technique that searches in the space of all priority
schemes while solving complex multi-robot planning problems. Our approach
performs a randomized hill-climbing search in the space of priority schemes.
Since each change of a scheme requires the computation of the paths for many
of the robots, it is important to focus the search. Our method achieves this by
utilizing constraints between the different robots, which are derived from the task
specification. This has two serious advantages. First, it reduces the time required
to find a solution, and second, it increases the number of problems for which a
solution can be found in a given amount of time. Additionally, our algorithm is
able to reduce the overall move cost once a solution has been found. It has any-
time characteristics, which means that the quality of the solution depends on the
available computation time.

This chapter is organized as follows. In the next section we present related
work to multi-robot path planning emphasizing on prioritized decoupled meth-
ods. In Section 2.3 we introduce the two prioritized decoupled path planning
techniques that are used throughout this work. Section 2.4 describes our approach
to searching for solvable priority schemes during planning. Finally, in Section 2.5,
we present systematic experimental results illustrating the capabilities of our ap-
proach to finding and optimizing solvable priority schemes.

2.2 Related Work

As already mentioned the idea of centralized methods is to consider the composite
configuration space of all robots and to search for a solution for the whole com-
posite system. To make centralized methods applicable in practice good heuristics
for the exploration of the composite configuration space are needed or, the search
space has to be constrained, thereby loosing completeness and optimality.

Many centralized methods use potential field techniques to guide the search
[Tournassoud, 1986, Barraquand and Latombe, 1990, Barraquandet al., 1992].
These techniques apply different approaches to deal with the problem of local
minima in the potential function. Other methods restrict the motions of the robots
to reduce the size of the search space. For example, LaValle and Hutchinson[1996]
and Sveska and Overmars[1995] restrict the trajectories of the robots to lie on
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independent roadmaps. The coordination is achieved by searching in the Carte-
sian product of the separate roadmaps. The individual roadmaps are constructed
beforehand by randomly generating collision-free configurations and connecting
them using some local planner. Kavrakiet al. [1996] presented a similar ap-
proach for robotic systems with many degrees of freedom. They directly build
a probabilistic roadmap (PRM) for the whole system. Once a roadmap has been
learned it can be used to get collision-free paths for different configurations of the
robots as long as the environment does not change. Bohlin and Kavraki[2000]
proposed a variant which reduces the number of collision checks for the sampled
configurations. Their goal has been to speed up the roadmap construction phase
to efficiently answer single planning queries. The latter two roadmap methods,
however, are not feasible for path planning problems with many robots. For this
purpose the authors suggest to use a prioritized variant.

Decoupled planners, in contrast, first compute paths for the individual robots
independently and then try to solve possible conflicts between these paths. A pop-
ular decoupled approach is planning in the configuration time-space[Erdmann
and Lozano-Ṕerez, 1987], which extends the configuration space of the robot by
a time axis. Techniques of this type assign priorities to the individual robots and
compute the paths of the robots based on the order implied by these priorities.
Thereby, they incorporate the paths of the robots with higher priority into the
configuration time-space of the robot under consideration. The method presented
by Warren[1990] uses a fixed order and applies potential field techniques in the
configuration time-space to avoid collisions. The approach proposed by Ferrari
et al. [1998] also uses a fixed priority scheme and chooses random detours for
the robots with lower priority. A further approach to decoupled planning is the
path coordination method which was first introduced by O’Donnell and Lozano-
Pérez[1989]. This approach is based on scheduling techniques for limited re-
sources[Yannakakiset al., 1979]. The key idea of this technique is to keep the
robots on their individual paths and let the robots stop, move forward, or even
move backwardon their trajectoriesin order to avoid collisions (see also[Kant
and Zucker, 1986, Bien and Lee, 1992, Changet al., 1994, Leeet al., 1995a]).

Unfortunately, the problem of finding the optimal schedule for the path coor-
dination method is NP-hard. To see this, we notice that the NP-hard Job-Shop
Scheduling problem with the goal to minimize maximum completion time with
unit processing time for each job[Martin and Shmoys, 1996, Lawleret al., 1989]
can be regarded as a special instance of the path coordination method. To reduce
the complexity in the case of large teams of robots Leroyet al. [1999] presented
a technique to separate the overall coordination problem into sub-problems. This
approach, however, assumes that the overall problem can be divided into very
small sub-problems, a serious assumption which, as various examples described
below demonstrate, is often not justified. In general, therefore, a prioritized vari-
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ant has to be applied.
Sánchez and Latombe[2002] presented experiments using a probabilistic road-

map planner to compare centralized and decoupled planning methods. They com-
pared the performance in finding solutions to path planning problems using three
different techniques: centralized planning, path coordination with global coor-
dination and path coordination with pairwise coordination using some random
priority scheme. In their experiments it came out that the implemented decoupled
planning techniques are substantially incomplete for applications “which require
tight robot coordination”.

As explained in the introduction of this chapter for the prioritized decoupled
approaches the order in which the robots’ paths are recomputed has a serious
influence on whether a solution can be found at all and on how long the resulting
paths are. The prioritized methods described above leave open how to assign the
priorities to the individual robots. In the past, different techniques for selecting
priorities were used. Buckley[1989] proposed to apply a heuristics which assigns
higher priority to robots which can move on a straight line from the starting point
to their target location. In the work presented by Azarm and Schmidt[1996]
all possible assignments are considered. Due to its exponential complexity this
approach has only been applied to groups of up to three robots.

Since no single priority scheme will be sufficient to solve all multi-robot path
planning problems and since the complexity of the search problems is too high
to try all possible orders one has to find sophisticated strategies to explore the
search space in order to end up with a solution. Therefore, we present an ap-
proach to optimize priority schemes for arbitrary decoupled path planning meth-
ods. Our approach performs a randomized hill-climbing search in the space of
priority schemes. We thereby interleave the search for an optimal priority scheme
with the planning of the paths of the robots. To guide the search, our algorithm
utilizes constraints between the robots that are derived from the task description.
As a result, our approach seriously reduces the time needed to find a solution (if
one exists) for a given path planning problem. Once a solution has been found, our
algorithm is able to optimize the priority scheme in order to minimize the overall
move cost.

In addition to the literature reviewed so far, there exist techniques that do not
fall in the two presented categories. For example, Alamiet al. [1995] proposed
an approach in which the robots merge their plans incrementally. Whenever a
robot receives a new goal it tries to coordinate its elaborated plan with the plans
of the other robots (see also[Alami et al., 1998a]). Since there is the potential
for deadlocks Qutubet al. [1997] presented a method to detect and solve them.
Their approach assumes that most conflicts can be solved locally which is not
guaranteed in general. In the worst case their method switches to a centralized
planning system. Gravot and Alami[2001] extended the system in order to be
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able to handle different priorities of the involved robots.
Lumelsky and Harinarayan[1997] and Chunet al. [1999] use reactive ap-

proaches for real-time motion planning. In these approaches each robot plans its
path towards its target dynamically based on its current position and sensory feed-
back. J̈ager and Nebel[2001] and Clarket al. [2003] also presented more reactive
techniques. Whenever a collision between two robots is anticipated Jäger and
Nebel try to solve this problem by inserting idle times between certain segments
of the pre-computed trajectories of the robots (similar to the path coordination
method). If this does not lead to a solution alternative trajectories have to be
planned. Clarket al. use a combination of centralized and decentralized planning
for robots which have only incomplete world models. The authors assume that the
robots have a limited communication range and build communication networks
whenever they get close enough. A centralized PRM planner is used to compute
collision-free trajectories for all robots which are involved in the network. All
these approaches, however, tend to fail or to produce sub-optimal solutions espe-
cially in narrow environments since there is a high possibility of deadlocks.

Finally, some authors proposed techniques based on heuristics like traffic rules
to resolve conflicts[Grossman, 1988, Wang and Premvuti, 1995, Leeet al., 1995b].
These techniques are only applicable if the environment is modeled as a route net-
work and can easily lead to deadlock situations.

2.3 PrioritizedA∗-based Path Planning and Path Co-
ordination

In this section we introduce the two prioritized decoupled approaches we apply
our search algorithm to.

The basic search algorithm to compute paths for the individual robots that is
used throughout this chapter is the popularA∗ procedure, which is introduced
first. Afterward, we present the prioritized decoupled path planning approach and
describe how theA∗ procedure can be utilized to plan the motions of a team of
robots in a prioritized manner.

2.3.1 A∗-based Path Planning

Our system applies theA∗ procedure[Nilsson, 1982] to compute the cost-optimal
paths for the individual robots.A∗ addresses the problem of finding an optimal
path according to a given cost function from an initial state to a goal state in a
graph. To search efficiently, theA∗ procedure takes into account the accumulated
cost of reaching a staten from the initial statestart as well as an estimate for



14 CHAPTER 2: MULTI -ROBOT PATH PLANNING

the cost of reaching the goal stategoal from n. The estimated cost is also called
heuristics. A typical implementation of theA∗ algorithm uses a priority queue
which contains the already “visited” nodes along with their associatedA∗ costs.
TheA∗ costf(n) of a noden are the accumulated costscost from start [n] for
reachingn from the initial state plus the estimated costh(n, goal) for reaching
the goal state fromn. In each iteration the element with the minimumA∗ cost is
extracted from the priority queue. If necessary its neighbors’ costs are updated by
taking into account the cost between two neighbor states. These costs are given
by the functionc. The completeA∗ procedure is shown in Algorithm 1.

By using a good heuristics for the cost of reaching the goal state,A∗ tends to
focus the search in parts of the state space most relevant to the problem of finding
a cost-optimal path. This property makesA∗ an efficient search algorithm and has
given it an enormous popularity in the robotics community. To ensure that the
algorithm computes the optimal path the heuristics has to be admissible (see for
example[Russell and Norvig, 1995]), which means that it does not overestimate
the true cost to reach the goal.

It should be mentioned thatA∗ requires a discrete search graph, whereas the
configuration space of a robot is continuous. Furthermore, each state needs to have
a finite number of successor states. In our case we assume that the environment is
readily represented by a discrete occupancy grid map – which is common in the
mobile robotics literature. Occupancy grids[Moravec and Elfes, 1985] separate
the environment into a grid of equally spaced cells and store in each cell〈x, y〉 the
probabilityPocc(〈x, y〉) that it is occupied by a static object. An occupancy grid
map can be seen as a discrete graph: Each cell of the grid represents a node of
the graph. For all neighbor cells with an occupancy value lower than a threshold,
an edge between the nodes is inserted. The cost for traversing a cell〈x, y〉 is
proportional to its occupancy probabilityPocc(〈x, y〉). To avoid that paths lead
through walls etc. we apply a threshold functionγ(Pocc(〈x, y〉)) which is infinite
if Pocc(〈x, y〉) exceeds 0.8, andPocc(〈x, y〉) otherwise.

Furthermore, the estimated cost for reaching the target location〈x∗, y∗〉 is ap-
proximated byminocc · ||〈x, y〉 − 〈x∗, y∗〉|| whereminocc > 0 is chosen as the
minimum occupancy probability in the map and||〈x, y〉−〈x∗, y∗〉|| is the straight-
line distance between〈x, y〉 and〈x∗, y∗〉. Since this heuristics is admissibleA∗

determines the cost-optimal path from a starting position to the target location.
Figure 2.3 shows a typical space explored byA∗. In this situation the robot

starts in the corridor of our environment. Its target location is in the third room
to the south. The figure also shows the accumulated costs of the states considered
by the planning process. As can be seenA∗ only expands a small fraction of the
overall state space and therefore is highly efficient.

The disadvantage of theA∗ procedure lies in the assumption that all actions
are carried out with absolute certainty. To deal with the uncertainty in the robot’s
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Algorithm 1 Algorithm to compute optimal paths.
A∗(s, g, succ(∗), c(∗, ∗), h(∗, ∗))
Input: Initial statestart, goal stategoal, successor functionsucc, cost function
c, heuristicsh.

Output: Optimal path fromstart to goal or NULL if no path exists.

initializePriorityQueue(PQ);
for all e ∈ searchspace do

cost from start [e] = ∞;
end for
cost from start [s] = 0;
predecessor [s] = s;
insertstart in PQ with f(start) = 0;
while (PQ not empty)do
e = extractMin(PQ);
if (e == g) then

return optimal path fromstart to goal given bypredecessor [];
end if
for all n ∈ succ(e) do

if (cost from start [n] > cost from start [e] + c(e, n)) then
cost from start [n] = cost from start [e] + c(e, n);
predecessor [n] = e;
if (n ∈ PQ) then

updatef(n) = cost from start [n] + h(n, goal) in PQ;
else

insertn with f(n) = cost from start [n] + h(n, goal) in PQ
end if

end if
end for

end while
/* no path fromstart to goal exists */
return NULL.

actions one in principle would have to use the value iteration algorithm for non-
deterministic actions (see for example[Sutton and Barto, 1998]) which is less
efficient thanA∗. To incorporate the uncertainty of the robots motions into the
A∗ approach we convolve the grid map using a Gaussian kernel. This has a sim-
ilar effect as generally observed when considering non-deterministic motions: It
introduces a penalty for traversing narrow passages or staying close to obstacles.
As a result, according to the paths computed byA∗ our robots generally prefer
trajectories which stay away from obstacles.
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Figure 2.3: Result of a path planing process for a single robot usingA∗. The
accumulated costs of the cells considered during the search are indicated in grey
(the darker the cell the higher the cost).

2.3.2 Prioritized Decoupled Path Planning for Teams of Robots

Recall that in the multi-robot path planning problem, many robots simultaneously
seek to traverse an environment. If the robots could move freely regardless of
other robots the problem could easily be separated into many local path planning
problems. In such a situation each robot could applyA∗ to determine its optimal
path. However, the impossibility for robots to occupy the same location at the
same point in time introduces non-trivial restrictions that have to be incorporated
into the paths of the individual robots.

A common prioritized decoupled path planning approach is the following. In
a first step, for each robot its optimal path is computed usingA∗ without consid-
ering the paths of the other robots. In the remainder we denote these paths as the
independently planned optimal paths. Clearly, these paths might not be accept-
able since they would lead to collisions if they were executed. Thus, in a second
step, a check for possible conflicts is performed. If conflicts occur, a prioritized
planning method tries to avoid them by recomputing the paths of the individual
robots, thereby using a priority scheme for the robots. Such a priority schemeΠ
determines the order in which the robots are processed.Π[0] is the robot with the
highest priority which is processed first. For each robot it is checked whether its
independently planned optimal path has a conflict with one or more of the paths
of the robots with higher priority. If so, a path planning method is applied to com-
pute a conflict-free path for the robot under consideration by taking into account
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Algorithm 2 Prioritized approach to compute conflict-free paths.
computeConflictFreePaths(in,Π)

Input: Individually planned pathsin of R robots, ordering of the robots (priority
scheme)Π.

Output: Conflict-free pathsout of the robots orNULL if for one robot no conflict-
free path can be computed.

for t = 1 toR− 1 do
if (existsConflict(inΠ[t], {outΠ[0], . . . , outΠ[t−1]})) then

/* compute a conflict-free path for robotΠ[t] given the paths of the robots
with higher priority */
outΠ[t] = computePath({outΠ[0], . . . , outΠ[t−1]}, startΠ[t], goalΠ[t]);
if (outΠ[t] == NULL) then

return NULL

end if
else

/* the individual optimal path of robotΠ[t] has no conflicts with the paths
of the robots with higher priority */
outΠ[t] = inΠ[t];

end if
end for
return out .

the paths of the robots with higher priority. The complete prioritized planning
method is listed in Algorithm 2. The input are the individually planned paths of
the robots and a priority scheme.

2.3.3 UsingA∗ for Prioritized Path Planning

TheA∗ algorithm can also be used as the planning method for prioritized path
planning. In this case the path of a robot is replanned in its configuration time-
space[Erdmann and Lozano-Pérez, 1987]. The configuration time-space of each
robot is computed based on the map of the environment and the paths of the robots
with higher priority.

In the following we introduce the costs used for planning in the configuration
time-space. While planning in the configuration time-space we take into account
possible deviations of the individual robots from their planned paths. For this
purpose we use a probabilistic model which allows us to derive the probability
that a robot will be at location〈x, y〉 at timet given it is planned to be at location
〈x′, y′〉 at that time. To estimate the parameters of this model we performed a
series of 28 experiments with a robot which was moving with constant velocity.
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Figure 2.4: Average deviation of a robot from its pre-planned path during plan
execution. In a series of experiments we constantly measured the distance of the
robot’s current position from its planned position at the same point in time.

In each run we constantly measured the distance of the robot from its planned
position at the same point in time. As a result we obtained for a discrete set of
distances the number of times the robot deviated from its planned path by that
distance. The resulting probabilities are depicted in Figure 2.4. In our current
implementation this histogram is approximated by a set of linear functions in order
to avoid over-fitting. Given these data, we can easily determine the probability
Pi(〈x, y, t〉) that the robotΠ[i] is at a location〈x, y〉 at timet. This probability is
then used to define a function which allows us to determine the costCk(〈x, y, t〉),
which is the cost for robotΠ[k] of traversing cell the〈x, y〉 at timet:

Ck(〈x, y, t〉) = γ(Pocc(〈x, y〉)) +
k−1∑
i=0

Pi(〈x, y, t〉). (2.1)

A typical application example of the prioritized decoupled planning technique
is illustrated in the left image of Figure 2.5. In this case, the robot depicted in
green was supposed to move into the fourth room in the north. The second robot
depicted in black had its starting position in the corridor and its target location
was close to the starting point of the first robot. When both paths were planned
independently, they imposed a conflict between the two robots as can be seen in
the left image of the figure. After applying theA∗ procedure in the configuration
time-space of the black robot (which we assumed to have lower priority), the
conflict had been resolved (see right image of Figure 2.5). According to the path
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Figure 2.5: Conflict situation for two robots (left image) and resulting conflict-free
paths after planning in the configuration-time space of the black robot.

Figure 2.6: Resulting trajectories of two robots carrying out the planned paths
shown in the right image of Figure 2.5.

computed byA∗, the black robot had to avoid the conflict with the green robot by
moving to the north just at the door where the other robot is supposed to enter the
corridor. After this collision avoidance action, the path through the next doorway
has less cost. Figure 2.6 shows the trajectories of two robots carrying out the
computed plans.

In addition to the generalA∗-based planning in the configuration time-space
there exists a restricted version of this method which only explores a subset of
the configuration in order to reduce the search time. The path coordination tech-
nique [O’Donnell and Lozano-Ṕerez, 1989] restricts the search space to those
states which lie on the independently planned optimal paths of the robots. Thus,
it forces the robots to stay on their initially computed paths. In our work we use
a prioritized variant of this approach. Due to the restriction of the search space,
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wait

Figure 2.7: Trajectories of two robots obtained by using the path coordination
technique to resolve the conflict shown in the right image of Figure 2.5. As can
be seen, one robot has to wait until the other passed by and needed twice as long
to arrive at its target location compared to the experiment shown in Figure 2.6.

the path coordination method is more efficient than the generalA∗ search. Its ma-
jor disadvantage, however, lies in the fact that it fails more often and that it often
produces inefficient solutions.

Consider for example the situation depicted in Figure 2.5. In this situation
the path coordination technique cannot find a path for the green robot if the black
robot has higher priority. Only if the green robot has higher priority the path plan-
ning problem can be solved by letting the black robot wait at its initial position
until the green robot passed by. Figure 2.7 shows the corresponding paths ob-
tained with the path coordination technique. Please note that in this situation the
coordination technique performs significantly worse than generalA∗-based plan-
ning in the configuration time-space. Since the coordination technique restricts
the robots to stay on their pre-planned paths, the robot starting in the corridor has
to wait until the other robot passed by. Therefore, the time to arrive at its target
location is almost twice as long as it would be without any conflict. In contrast to
that, the two robots arrive almost at the same time using unconstrainedA∗-based
planning in the configuration time-space.

2.4 Finding and Optimizing Solvable Priority
Schemes

As already discussed above, the introduction of a priority scheme for the decou-
pled path planning leads to a serious reduction of the search space. Whereas there
are schemes leading to a viable solution with conflict-free paths for a multi-robot
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path planning problem, there also exist schemes for which no solution can be
found. The examples given in the introduction of this chapter illustrate that the
order in which the paths are planned has a profound impact on whether a solution
can be found and on how long the resulting paths are. This raises the question
of how to find a priority scheme for which the decoupled approach does not fail
and for which the move costs of the resulting paths are minimized. Unfortunately,
the problem of finding the optimal priority scheme is a non-trivial matter since
paths for allR! possible orders of theR robots have to computed. In this section
we describe our approach to searching in the space of priority schemes during
decoupled path planning. We describe a naive randomized hill-climbing search
procedure first, which is subsequently improved by utilizing constraints derived
from the task specification.

2.4.1 The Randomized Search Technique

Our algorithm for finding eligible priority schemes for decoupled path planning
techniques interleaves the search for conflict-free paths with the search for a solv-
able priority scheme. Recently, randomized search techniques have been used
with great success to solve constraint satisfaction or satisfiability problems[Sel-
manet al., 1992]. Our algorithm presented here is a variant which performs a
randomized and hill-climbing search in order to optimize the planning order for
prioritized decoupled path planning techniques. It starts with an arbitrary initial
priority scheme and tries to compute conflict-free paths for all robots in the or-
der given by the priority scheme. It then randomly exchanges the priorities of
two robots in the current scheme and tries to find paths for the robots given the
new priority scheme. If the new order results in a solution with paths with lower
move costs than the best one found so far, it continues with this new order. Since
hill-climbing approaches like this frequently get stuck in local minima, it per-
forms random restarts with different initial orders of the robots. The number of
restarts and priority exchanges are controlled by the two parametersmaxTries
and maxFlips . The complete method is listed in Algorithm 3. Note that in
our implementation, we reuse the pathsp if they are conflict-free. After swap-
ping the priorities of two robots, only the paths of the robots with a priority index
higher or equali have to be recomputed. However, we omitted the corresponding
statements to enhance readability.

2.4.2 Utilizing Constraints to Focus the Search

Whereas the plain randomized search technique produces good results, it has the
major disadvantage that often a lot of iterations are necessary to come up with a
solution. For example, we found that for a situation with ten robots in the envi-
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Algorithm 3 The naive algorithm to optimize priority schemes.
naiveOptimization(pindep)

Input: Independently planned optimal pathspindep.
Output: Conflict-free pathsp∗ with the lowest found move cost orNULL if

conflict-free paths for all robots cannot be found.

p∗ = NULL;
for tries = 1 to MAX TRIES do

select random orderΠ;
p = computeConflictFreePaths(pindep,Π);
for flips = 1 to MAX FLIPS do

choose randomi, j with i < j;
Π′ = swap(Π, i, j);
p′ = computeConflictFreePaths(pindep,Π

′);
if (p == NULL or moveCost(p′) < moveCost(p)) then
p = p′; Π = Π′;

end if
end for
if (p∗ == NULL or moveCost(p) < moveCost(p∗)) then
p∗ = p;

end if
end for
return p∗.

ronment shown in Figure 2.8 more than 20 iterations on average were necessary
to find a solvable priority scheme. Since each change of a scheme requires the
recomputation of the paths for many of the robots, it is of utmost importance to
minimize the time required to find priority schemes for which a solution to the
path planning problem can be computed. In this section we therefore present a
technique to focus the search that tends to reduce the search time significantly.

Our approach can be motivated through the situation depicted in Figure 2.1.
In this situation, it is impossible to find a path for robot 1 if the path of robot 3
is planned first, because the goal location of robot 3 lies on the optimal path for
robot 1. The key idea of our approach is to introduce a constraint between the
priorities of two robotsi andj, when the goal position of robotj lies too close
to the independently planned optimal path of roboti. Such a constraint would be
robot i < robot j, which means that the path of roboti has to be planned before
the path of robotj. In our example we thus obtain the constraint robot 1< robot 3
between the robots 1 and 3. Additionally, we get the constraint robot 2< robot 1,
since the goal location of robot 1 lies too close to the trajectory of robot 2.
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Although the satisfaction of the constraints by a certain priority scheme does
not guarantee that valid paths can be found, orders satisfying the constraints more
often have a solution than priority schemes violating constraints. Unfortunately,
depending on the environment and the number of the robots, it is possible that
there is no order satisfying all constraints. In such a case the constraints produce a
cyclic dependency. The key idea of our approach is to initially reorder only those
robots that are involved in such a cycle in a constraint graph. Thus, we separate
all robots into two sets. The first groupR1 contains all robots that, according to
the constraints, do not lie on a cycle and have a higher priority than the robot with
highest priority which lies on a cycle. This set of robots is ordered arbitrarily with
respect to the constraints. This order is initially not changed during the search.
The second set, denoted asR2 contains all other robots. Initially, our algorithm
only changes the order of the robots in this second group. After a certain number
of iterations, we include all robots in the search for a priority scheme. In our ex-
periments we figured out that this leads to better results with respect to the overall
move cost, especially for large numbers of iterations. The complete procedure is
listed in Algorithm 4. Note that if it is the case that no conflict-free paths for the
robots inR1 can be computed using the initial order, a new order which satisfies
the constraints is chosen for these robots. To enhance readability we omitted the
corresponding statements in Algorithm 4.

The advantages of this approach are quite obvious. Initially, the search for a
solvable priority scheme is focused. However, through the strong restriction of
the search space we loose many solutions which even might be more efficient.
Therefore, after a certain number of iterations we do not restrict the search space
anymore in order to have a higher chance to find better solutions. The number of
iterations carried out changing only the priorities of the robots inR2 is controlled
by a parameter denotedk in the remainder of this work.

Note that this procedure has any-time character[Zilberstein and Russell, 1995],
which means that – if a solution can be found – the quality of the solution depends
on the available computation time.

To illustrate our approach, consider again the situation with ten robots shown
in the left image of Figure 2.8. Whereas the starting locations are marked by
S0, . . . , S9 the corresponding goal positions are marked byG0, . . . , G9. The in-
dependently planned optimal trajectories are indicated by solid lines. Given these
paths we obtain the constraints depicted in Figure 2.9. The robots 3, 2, 6, 4, 7,
and 9 can be sorted according to the constraints and their order initially remains
unchanged during the search process (the corresponding nodes are colored red in
the figure). Figure 2.10 shows the part of the constraint graph with the robots
of R2. Given the restricted search spaceR2 our system quickly finds a solution.
In this example, after one iteration we obtained the order 0, 1, 5, and 8 for the
robots inR2. The resulting corresponding conflict-free paths for all robots are
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Algorithm 4 The algorithm for finding and optimizing priority schemes.
findAndOptimizePriorityScheme(pindep, R1, R2, k)

Input: Independently optimal pathspindep, set of robotsR1 which can be sorted
according to the constraints, set of all other robotsR2, factork specifying after
which iteration the constraints are to be ignored.

Output: Conflict-free pathsp∗ with the lowest found move cost orNULL if
conflict-free paths for all robots cannot be found.

count = 0
p∗ = NULL;
for tries = 1 to MAX TRIES do

if (count < k) then
selectΠ which satisfies the constraints forR1 and randomly ordersR2

else /* extensive search afterk iterations */
select random orderΠ;

end if
p = computeConflictFreePaths(pindep,Π);
for flips = 1 to MAX FLIPS do

if (count < k) then
choose randomi, j with i < j andΠ[i],Π[j] ∈ R2;

else /* extensive search afterk iterations */
choose randomi, j with i < j;

end if
Π′ = swap(Π, i, j);
p′ = computeConflictFreePaths(pindep,Π

′);
if (p == NULL or moveCost(p′) < moveCost(p)) then
p = p′; Π = Π′;

end if
count = count + 1;

end for
if (p∗ == NULL or moveCost(p) < moveCost(p∗)) then
p∗ = p;

end if
end for
return p∗.
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Figure 2.8: Independently planned paths for ten robots (left) and the paths result-
ing after a solvable priority scheme has been found (right).
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Figure 2.9: Constraint graph generated according to the paths shown in Figure 2.8.
Indicated red are those robots which can be sorted according to the constraints.
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Figure 2.10: Constraint graph for the robots ofR2.



26 CHAPTER 2: MULTI -ROBOT PATH PLANNING

shown in the right image of Figure 2.8. This demonstrates that the constraints can
drastically reduce the search space and allow the system to quickly find solvable
priority schemes.

2.5 Experimental Results

Our approach has been tested thoroughly on real robots and in extensive simula-
tion runs. The key questions addressed in our experiments were:

Practicability: Is our approach relevant and applicable to real robot systems?

Solvability: Does our approach succeed more frequently in finding valid multi-
robot paths than approaches with fixed prioritization?

Optimality: When our approach can find a solution, does it generate more effi-
cient plans?

All experiments were carried out using different environments. To evaluate the
general applicability, we applied our method to the two prioritized decoupled path
planning techniques described above. In our current implementation we regard it
as a conflict whenever the distance between two robots is below1.2m at the same
time step. In our implementation it requires less than 0.02 seconds on a 3 GHz
Pentium 4 to plan a conflict-free path for one robot in all environments described
below. The whole optimization for 10 robots with 10 restarts and 10 iterations per
restart requires approximately 12 seconds.

2.5.1 An Example with Real Robots

The goal of the first experiment is to demonstrate the applicability of our approach
to real robot systems. This experiment was carried out using the Pioneer I robots
of the CS-Freiburg RoboCup[Dietl et al., 2002] team. The task of the robots
was to get into their initial formation which has to be done at the beginning of
each match. Thereby, the robots have to avoid colliding with other robots that
are on the field (shown here as filled circles). In the particular example described
here, the robots were deployed on one side of the field and had to move to their
home positions on the other side. The left image of Figure 2.11 shows this initial
configuration along with the independently planned optimal paths. As can be seen
from this figure, these paths cross each other close to the center of the field leading
to several several conflicts1. Therefore, we applied our randomized search method

1Note that in the experiments on this field we regard it as a conflict whenever the distance
between two robots is below0.8m at the same time step.
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Figure 2.11: An application example with the Robots of the CS-Freiburg
RoboCup team. The left image shows the independently planned optimal paths
for the four robots and the right image depicts the resulting conflict-free paths
computed by our algorithm.

using the generalA∗ search in the configuration time-space to compute conflict-
free paths for all robots. Our algorithm came up with the following order for
the robots: 0, 1, 3, 2. The corresponding paths are depicted in the right image of
Figure 2.11. As can be seen, the paths of the robots were changed in order to
avoid collisions. Whereas robot 1 and robot 2 shortly had to wait in order to let
robot 0 pass by (the corresponding positions are marked with a “W” in the right
image of Figure 2.11), robot 3 had to take a detour.

Figure 2.12 shows the robots carrying out the navigation plans. The upper
left image depicts the initial situation. In the top right image you can see robot 2
making space for robot 1 and robot 3 starting its detour. In the lower left image
robot 1 waits to let robot 0 pass by. Finally, the lower right image shows the
robots at their final locations. This experiment demonstrates that our approach is
applicable to real robot systems.

2.5.2 Simulation Experiments

To elucidate the scaling properties of our approach to larger number of robots, we
performed extensive simulation experiments. In particular, we were interested in
characterizing the dependence between the performance of our system on various
components of our approach. We analyzed the number of planning problems that
can be solved, the speed-up obtained by utilizing the constraints, and the reduction
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Figure 2.12: The robots carrying out the navigation plans. The top left images
depicts the initial situation. In the top right image robot 2 makes space for robot 1
while robot 3 takes a detour. The lower left images shows robot 1 waiting to let
robot 0 pass by. The lower right image shows the robots at their final locations.

of the overall move cost. In all experiments, we found that our approach produces
highly efficient motion plans even for very large teams of robots, for different en-
vironments, and regardless of the specific baseline path planning technique (e.g.,
generalA∗ or the path coordination method).

Solved Planning Problems

This first set of experiments was designed to characterize the effect of our search
strategy on the overall number of planning problems that can be solved. For each
number of robots considered, we performed 100 experiments. In each experiment
we randomly chose the starting and target locations of the robots. We applied four
different strategies to find solvable priority schemes:

1. A singlerandomly chosen order for the robots.

2. A singleorder whichsatisfiesthe constraints for the robots inR1 and con-
sists of a randomly chosen order for the robots inR2.
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Figure 2.13: Cyclic corridor environment used for the simulation runs.

3. Unconstrainedrandomized search starting with a random order and without
considering the constraints.

4. Constrainedrandomized search starting with an order computed in the same
way as strategy (2).

All four strategies can be cast as special cases of our algorithm. In the first two
strategies the corresponding values formaxTries andmaxFlips are 1. For the
first strategy the value of the thresholdk is 0. The strategies 3 and 4 only differ
in the value of the thresholdk. Whereas the unconstrained search is obtained by
settingk = 0, the constrained search corresponds to a value ofk = ∞. Which
means that the search space of the unconstrained search comprises all robots from
the beginning and the search space of the constrained search comprises only the
robots inR1 all the time.

Note that in these experiments we chose a small number of iterations for the
last two strategies in order to assess the advantages of the constrained search under
serious time constraints. Particularly, we chose a value of 3 for the parameters
maxFlips andmaxTries . Obviously, the larger the number of iterations, the
higher is the probability that a solution can be found by an arbitrary randomized
search. However, larger numbers of iterations drastically increase the computation
time. For each technique, we performedA∗-based planning in the configuration
time-space and counted the number of solved planning problems.

Figure 2.14 summarizes the results we obtained for the cyclic corridor environ-
ment depicted in Figure 2.13. The horizontal axis represents the number of robots,
and the vertical axis depicts the percentage of solved path planning problems. As
this result illustrates, our constrained search technique succeeds more often than
any of the alternative strategies. It is interesting to note that the second strategy,
which utilizes the constraints but considers only one scheme in each experiment,
shows a similar performance than the unconstrained randomized search.
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Figure 2.14: Number of solved planning problems for different strategies using
A∗-based planning in the configuration time-space in the cyclic corridor environ-
ment depicted in Figure 2.13.

To complement these results, we performed a similar series of experiments
for the noncyclic corridor environment depicted in Figure 2.8. The results are
shown in Figure 2.15. Again, the constrained-based search leads to a much higher
success rate.

To investigate the performance using a different baseline path planning algo-
rithm, we applied all four strategies using the path coordination method instead of
plainA∗. We used a variant of the environment depicted in Figure 2.8 with five
corridors on both sides. Since the path coordination method restricts the robots
to stay on their independently planned optimal trajectories, the number of unsolv-
able problems is much higher compared to the generalA∗-based planning in the
configuration time-space. As can be seen from Figure 2.16, again the constrained
search outperforms all other strategies.

These experiments demonstrate that our approach to finding solvable priority
schemes leads to a serious higher number of solved planning problems.

Speed-up Obtained by Utilizing the Constraints

The second set of experiments was performed to investigate the ability of our ap-
proach to guide the search in the space of all priority schemes. We were especially
interested in the question how much the computation time necessary to find a so-
lution can be reduced by constraining the search. During these experiments we
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Figure 2.15: Number of solved planning problems for all four strategies using
A∗-based planning in the configuration time-space in the noncyclic environment
depicted in Figure 2.8.
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Figure 2.16: Number of solved planning problems for all four strategies using the
path coordination method in a variant of the noncyclic environment depicted in
Figure 2.8.
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Figure 2.17: This figure plots for the cyclic corridor environment the iteration in
which the first solution was found if the planning problem could be solved. Sig-
nificantly fewer iterations are needed when using the constrained search method.

increased the values ofmaxFlips andmaxTries to 10 and evaluated in which
iteration the first solution was found if the planning problem could be solved.
Figure 2.17 plots the results obtained for different number of robots in the cyclic
corridor environment and Figure 2.18 shows the corresponding evaluation for the
noncyclic environment. We only evaluated planning problems which could be
solved by both search methods. As can be seen, the unconstrained search needs
significantly more iterations than the constrained search to generate a solution for
both environments. Thus, the advantages of our constrained search are two-fold.
On one hand, it requires fewer iterations than the unconstrained counter-part. On
the other hand, it requires less computation, since the search is restricted to a sub-
set of the robots, which reduces the number of paths that have to be generated in
each iteration during the search.

Influence on the Overall Move Cost

The next experiments were carried out to analyze the performance of our algo-
rithm with respect to the overall move cost. Since our algorithm considers in the
beginning only a restricted set of priority schemes, and afterk iterations explores
the whole set of priority schemes, we were especially interested in how long the
resulting paths are compared to the unconstrained search. We performed 100 ex-
periments in the cyclic corridor-environment and determined the average overall
move cost at each iteration. The corresponding graphs are shown in Figure 2.19.
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Figure 2.18: In the noncyclic corridor environment we also have a significant
difference between the two search strategies considering the iteration in which the
first solution was found if the planning problem could be solved.

This plot contains the average move costs for three different strategies at each
iteration. The first data set was obtained for the constrained search which corre-
sponds tok = ∞. Using this strategy we reorder only the robots ofR2. The data
for the unconstrained search was obtained usingk = 0. In this case our algo-
rithm chooses arbitrary priority schemes regardless of the constraints which were
derived given the task specification. Finally, the third function labeled “combi-
nation of both techniques” corresponds to the results obtained with our algorithm
givenk = 20.

Since the constrained search focuses the search on the robots that pose the
most serious restrictions to the other robots, it finds a solution faster and accord-
ingly has more time to optimize it. Thus, in the beginning, the constrained search
outperforms the unconstrained search. After 20 iterations, however, the situation
completely changes. Because the unconstrained search can explore many more
priority schemes, it more often finds better solutions than the constrained search.
Thus, after 20 iterations, the unconstrained search leads to better results than the
constrained search. As can be seen from the figure, our approach combines the
advantages of both methods. In the beginning, it applies the constraints to focus
the search and to quickly find a first solution which is optimized subsequently. Af-
ter 20 iterations it considers arbitrary priority schemes so that the resulting move
costs can be reduced as in the unconstrained search.

Accordingly, our randomized search, which initially uses the constraints to
focus the search for a viable solution and afterward uses the unconstrained search
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Figure 2.19: Summed move cost plotted over time averaged over 100 planning
problems for 15 robots in the cyclic environment.

to optimize this solution, inherits the advantages of both techniques with respect
to efficiency and the resulting move costs.

Planning Paths for Large Teams of Robots

The final experiment is designed to illustrate that our system can be used to solve
planning problems for even large numbers of robots.

The left image of Figure 2.20 shows the independently planned optimal paths
for a team of 30 robots in an unstructured environment. In this particular example
our system was able to generate a first solution in less than one second. The paths
shown in the right image of this figure are the best solution found after 10 restarts
with 10 iterations in each round.

Figure 2.21 plots the evolution of the summed move cost of the best solution
found so far over time. As can be seen from the figure, after 100 iterations the
overall move cost is reduced by 15%. Figure 2.22 shows images of the robots
carrying out in simulation the navigation plans of the best solution which was
found.

2.6 Conclusion

In this chapter we presented the main problems of the multi-robot path planning
problem and explained the drawbacks of existing approaches. We introduced the
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Figure 2.20: Independently planned optimal paths for 30 robots (left image) and
the resulting paths after optimizing the priority scheme during 100 iterations (right
image).
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Figure 2.21: Summed move cost plotted over time for the planning problem with
30 robots shown in Figure 2.20.

prioritized decoupled path planning approach which searches in the configura-
tion time-spaces of the robots for conflict-free paths. As pointed out, no single
priority scheme for the robots will be sufficient to solve all possible multi-robot
motion problems. We therefore proposed a randomized and hill-climbing search
technique in the space of priority schemes, which is used to find a solution to a
given path planning problem and to minimize the overall path length. To guide the
search for a solvable priority scheme, our approach utilized constraints extracted
from the task specification. These constraints specify an order in which certain
paths have to be planned.

We presented experiments which were designed to evaluate the general appli-
cability of our approach to finding and optimizing solvable priority schemes for
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decoupled path planning methods. Our approach has been successfully applied
to real robots. These results have been complemented by extensive simulations
to characterize the relation between the planning performance and various prob-
lem parameters. The experiments suggest that our technique seriously decreases
the number of cases in which no solution can be found. Additionally, our ap-
proach leads to a reduction of the overall path length. In all experiments, we have
found that our approach produces highly efficient motion plans even for very large
teams of robots and in different types of environments. One further advantage of
our method lies in its general applicability. Although we applied our optimization
technique only to two different baseline path-planning techniques here, it is not
limited to these two techniques. Rather, it can be used to find and optimize paths
generated by arbitrary prioritized path-planning techniques.
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Figure 2.22: This figure shows images of a simulation run in which the robots
carry out the paths of the best solution which was found. The upper left image
shows the robots at their initial position, the upper right images shows the position
of the robots at time step 9, the left image in the second row at time step 17 and so
on. In the situation depicted in the image in the lower right all robots have arrived
at their goal position.
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Chapter 3

Learning Motion Patterns of People

3.1 Introduction

Whenever mobile robots are designed to operate in environments populated by hu-
mans they need to be able to perceive the people in their environment and to adapt
their behavior according to the activities of the people. The knowledge about typi-
cal motion patterns of people can be used in several ways to improve the behavior
of a mobile robot. For example, it enables the robot to develop improved people
following and obstacle avoidance skills. Furthermore, knowledge about typical
motion patterns can be important for robotic security devices[Everett, 1998] to
identify potential intruders based on the deviations in the movements and for in-
telligent homes. Those have the objectives to anticipate the inhabitants needs, like
for example lighting conditions and energy conservation[Mozer, 1998].

In this chapter we present an approach that allows to learn motion patterns of
people, while they are carrying out their every-day activities. Our approach to
learning motion patterns of people is purely probabilistic. It is motivated by the
observation that people typically do not move randomly when they walk through
their environments. Instead, they usually engage in motion patterns, related to
typical activities or specific locations they are interested in approaching. The input
to our algorithm is a set of trajectories of people between so-called resting places
where the people often stop and stay for a certain period of time. Such places can
be desks in office environments or the TV set in at home. Our approach clusters
these trajectories into so-called motion patterns using the EM algorithm (see for
example[McLachlan and Krishnan, 1997]). Our method is an extension of thek-
Means algorithm to the multi-step case that independently appliesk-Means (see
e.g.[Dudaet al., 2001]) to each step in a normalized trajectory.

In the following section we introduce our probabilistic representation of the
motion patterns and describe how to learn them using EM. Section 3.3 describes
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our approach to compute the likelihoods that an observed trajectory belongs to the
individual motion patterns. In Section 3.4 we provide implementation details of
the data acquisition procedure. Section 3.5 presents experimental results regarding
the learning process as well as regarding the prediction accuracy of the learned
models. Furthermore, this section contains a discussion about properties of our
algorithm. Before presenting related work in Section 3.7 we describe a different
approach to represent the motion patterns in Section 3.6 and give reasons why this
approach is not applicable in the context of clustering trajectories.

3.2 Using EM to Learn Motion Patterns

When people perform everyday activities in their environments they do not move
permanently. They usually stop at several locations denoted as resting places and
stay there for a certain period of time, depending on what activity they are cur-
rently carrying out. The task of the algorithm presented in this section is to cluster
similar trajectories between resting places into single motion patterns in a com-
pletely unsupervised manner. Accordingly, we assume that the input to our algo-
rithm is a collection of observed trajectoriess = {s1, . . . , sI} (called: the data)
between resting places. The output is a number of different types of motion pat-
ternsθ = {θ1, . . . , θM} a person might exhibit in its natural environment. Each
trajectorysi consists of a sequencesi = {s1

i , s
2
i , . . . , s

Ti
i } of positionssti, where

s1
i is the resting place the person leaves andsTi

i is the destination.
Our goal is to find a motion modelθ (i.e., a set of motion patterns) that max-

imizes the likelihood of the data. The likelihood of a data sets under a modelθ
is the probabilityP (s | θ) of obtainings given θ. Thus, the modelθ with the
maximum likelihood is given by:

θ = argmax
θ′

P (s | θ′). (3.1)

To define the likelihood of the data under the modelθ, it will be useful to introduce
a set ofcorrespondence variables, denotedc. Each correspondencecim is a binary
variable, i.e., it is either 0 or 1. Herei is the index of the trajectorysi andm is
the index of the motion patternθm. cim is 1 if and only if si belongs toθm.
If we think of the motion pattern as a specific motion activity a person might
be engaged in,cim is 1 if the person was engaged in motion activitym when
following trajectoryi.

In the sequel, we denote the set of all correspondence variables for thei-th
data item byci, i.e.,ci = {ci1, . . . , ciM}. For any data itemsi, the fact that exactly
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one correspondence is1 translates into the following:

M∑
m=1

cim = 1. (3.2)

The goal is to find the set of motion patterns which has the highest data likeli-
hood. Finding the model that maximizes the likelihood of the observed datas is
equivalent to finding the model which maximizes the joint likelihood ofs and the
correspondence variablesc. Given a modelθ we can compute the joint likelihood
of s andc as the product of the likelihoods of the individual data items and their
correspondence variables:

P (s, c | θ) =
I∏
i=1

P (si, ci | θ). (3.3)

Since the logarithm is a monotonic function we can maximize the log likelihood
instead of the likelihood. The logarithm of Eq. (3.3) is given by:

lnP (s, c | θ) =
I∑
i=1

lnP (si, ci | θ). (3.4)

Since the values of the correspondence variablesc are hidden (i.e., not known)
we have to integrate over them and optimize theexpectedlog likelihood, denoted
Ec[lnP (s, c | θ) | θ, s], instead which is defined as:

Ec[lnP (s, c | θ) | θ, s] = Ec[
I∑
i=1

lnP (si, ci | θ) | θ, s]. (3.5)

Optimizing this term is usually not an easy endeavor since it is a non-linear op-
timization. The EM algorithm, which is introduced in the following, iteratively
maximizes expected log likelihood functions by optimizing a sequence of lower
bounds. In particular, it generates a sequence of models, denotedθ[1], θ[2], . . . of
increasing log likelihood.

3.2.1 The EM Algorithm

The EM algorithm is often used in statistics to compute maximum-likelihood esti-
mates in the case of hidden data[Dempsteret al., 1977, McLachlan and Krishnan,
1997].

A common method to find the model which has the maximum expected data
likelihood is to use a functionQ(θ′ | θ) which depends on the current estimated
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modelθ and yields the expected data log likelihood as a function ofθ′ given the
observed datas:

Q(θ′ | θ) = Ec[lnP (s, c | θ′) | θ, s]. (3.6)

The sequence of models generated in the iterations of the EM algorithm is then
given by calculating

θ[j+1] = argmax
θ′

Q(θ′ | θ[j]), (3.7)

starting with some initial modelθ[0]. In particular, the EM algorithm repeats the
following two steps until convergence:

Estimation (E) step: Compute expected values for the hidden variablesc given
the current modelθ[j]. Define the expected data log likelihood as a function
of θ using these values:

Q(θ | θ[j]) = Ec[lnP (s, c | θ) | θ[j], s]. (3.8)

Maximization (M) step: Maximize this expected likelihood. Replaceθ[j] by the
modelθ′ that maximizes theQ function:

θ[j+1] = argmax
θ′

Q(θ′ | θ[j]). (3.9)

In each iteration the M-step chooses a new modelθ[j+1] that monotonically in-
creases theQ function and thus the EM algorithm increases monotonically the
data likelihood ([Dempsteret al., 1977], see Appendix A.3 for the proof). When-
ever theQ function is continuous this approach is guaranteed to converge to a
stationary point, typically to a local maximum (see[Wu, 1983] for convergence
properties). However, it is not guaranteed to converge to a global maximum. The
choice of the initial estimateθ[0] can have a serious influence on the final result of
the EM algorithm.

3.2.2 Representing Motion Patterns by Gaussian Distributions

In our implementation a motion pattern, denotedθm with 1 ≤ m ≤ M where
M is the number of different motion patterns the person might be engaged in, is
represented byK probability distributionsP (x | θkm). In particular, we use Gaus-
sian distributions with a fixed standard deviationσ. Accordingly, the application
of EM leads to an extension of thek-Means algorithm[Forgy, 1965, MacQueen,
1967, Mitchell, 1997, Dudaet al., 2001] to trajectories.
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In order to be able to apply thek-Means algorithm the input to our algorithm
must consist of trajectories which have the same number of observed positions,
i.e., Ti = T for all i. To achieve this, we transform the trajectories of the input
set s into a setd of I trajectories such that eachdi = {x1

i , x
2
i , . . . , x

T
i } has a

fixed lengthT and is obtained fromsi by a linear interpolation (which means that
we insert new data points into the sequences). The lengthT of these trajectories
corresponds to the maximum length of the input trajectories ins. The learning
algorithm described below operates solely ond1, . . . , dI and does not take into
account the velocities of the people during the learning phase. In our experiments
we never found evidence that the linear interpolation led to wrong results or that
the walking speed of a person depends on the typical activity it is carrying out.
Note, however, that one can extend our algorithm to also incorporate the velocities
of the people. This can be achieved by introducing further dimensions to the state
variables.

For eachθkm the probability distributionP (x | θkm) is computed based onβ =
dT/Ke subsequent positions on the trajectories. Accordingly,P (x | θkm) specifies
the probability that the person is at locationx after t ∈ [(k − 1) · β + 1; k · β]
observations given that it is engaged in motion patternm. Thus, we calculate the
likelihood of a trajectory under them-th motion patternθm as:

P (di | θm) =
T∏
t=1

P (xti | θdt/βem ). (3.10)

Note that we assume consecutive positions on the trajectories to be independent.
This is generally not justified, however, in our experiments we never found evi-
dence that this led to wrong results.

Expectation Maximization

As mentioned above we assume that each motion patternθm is represented byK
Gaussian distributions with meansµkm and a fixed standard deviationσ. Given the
individual Gaussians for a modelθ we can compute the joint likelihood of a single
trajectorydi and its correspondence vectorci as follows:

P (di, ci | θ) =
T∏
t=1

1√
2πσ

M∏
m=1

e−
1

2σ2 cim‖xt
i−µ

dt/βe
m ‖2

. (3.11)

Here we make use of the fact that only one of the correspondence variablescim in
the inner product is 1 and all others are 0.

Accordingly, the expected data log likelihood which has to be maximized is
defined as:
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Ec[lnP (d, c | θ) | θ, d]

= Ec

[ I∑
i=1

ln
T∏
t=1

1√
2πσ

M∏
m=1

e−
1

2σ2 cim‖xt
i−µ

dt/βe
m ‖2

∣∣∣ θ, d] (3.12)

= Ec

[
I · T · ln 1√

2πσ

− 1

2σ2

I∑
i=1

T∑
t=1

M∑
m=1

cim‖xti − µdt/βem ‖2
∣∣∣ θ, d]. (3.13)

Since the expectation is a linear operator we can move the expectations inside the
expression so that we finally get:

Ec[lnP (d, c | θ) | θ, d]

= const − 1

2σ2

I∑
i=1

M∑
m=1

E[cim | θ, d]
T∑
t=1

‖xti − µdt/βem ‖2. (3.14)

Application of the EM Algorithm

In accordance with Eq. (3.14), theQ-function is factored as follows:

Q(θ′ | θ) = const − 1

2σ2

I∑
i=1

M∑
m=1

E[cim | θ, d]
T∑
t=1

‖xti − µ′dt/βem ‖2. (3.15)

During the iterations of the EM algorithm a sequence of modelsθ[j] is generated
starting with some initial modelθ[0] as explained above. The optimization involves
two steps: Calculating the expectationsE[cim | θ[j], d] given the current modelθ[j]

(E-step) and finding the new modelθ[j+1] that has the maximum expected likeli-
hood under these expectations (M-step).

The expected values for the correspondence variables are easily calculated via
Bayes’ Rule (see Appendix A.2.1), by obeying obvious independence assump-
tions between different data trajectories and assuming that thecim are a priori
equally likely:

E[cim | θ[j], d] = P (cim | θ[j], d) (3.16)

= P (cim | θ[j], di) (3.17)

= ηP (di | cim, θ[j])P (cim | θ[j]) (3.18)

= η′P (di | θ[j]
m ). (3.19)
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Thus,E[cim | θ[j], d] is the probability that trajectorydi belongs to them-th com-
ponent given the current modelθ[j]. The normalization constantsη andη′ ensure
that the expectations sum up to 1 over allm.

If we combine Eq. (3.10) and Eq. (3.19) making use of the fact that the distri-
butions are represented by Gaussians we obtain:

E[cim | θ[j], d] = η′
T∏
t=1

e−
1

2σ2 ‖xt
i−µ

dt/βe[j]
m ‖2

. (3.20)

The M-step calculates a new modelθ[j+1] by maximizing the expected likelihood.
This is done by computing for each model componentθm and for each probability
distributionP (x | θk[j+1]

m ) a new meanµk[j+1]
m of the Gaussian distribution. The

new modelθ[j+1] is computed as follows:

θ[j+1]

=argmax
θ′

Q(θ′ | θ[j]) (3.21)

=argmax
θ′

{
const − 1

2σ2

I∑
i=1

M∑
m=1

E[cim | θ, d]
T∑
t=1

‖xti − µ′dt/βem ‖2

}
(3.22)

=argmin
θ′

{ I∑
i=1

M∑
m=1

E[cim | θ[j], d]
T∑
t=1

‖xti − µ′dt/βem ‖2

}
. (3.23)

To compute the modelθ[j+1] which minimizes this expression we compute the first
derivation and set it to zero. Each of theK means of the probability distributions
which represent the motion patterns is computed based onβ subsequent positions
on the trajectories. Thus, for each component of the meanµ

k[j+1]
m it must hold that

(to enhance readability we do not use a further index for the component here):

I∑
i=1

E[cim | θ[j], d] · 2 ·
k·β∑

t=(k−1)·β+1

(xti − µk[j+1]
m )

!
= 0 ⇐⇒ (3.24)

I∑
i=1

E[cim | θ[j], d]

k·β∑
t=(k−1)·β+1

xti
!
=

I∑
i=1

E[cim | θ[j], d] · β · µk[j+1]
m .

Thus, we get forµk[j+1]
m a weighted sum of theβ subsequent positions on the

trajectories:

µk[j+1]
m =

1

β
·
∑I

i=1E[cim | θ[j], d]
∑k·β

t=(k−1)·β+1 x
t
i∑I

i=1E[cim | θ[j], d]
. (3.25)



46 CHAPTER 3: LEARNING MOTION PATTERNS OFPEOPLE

3.2.3 Monitoring Convergence and Local Maxima

The EM algorithm is well-known to be sensitive to local maxima during the
search. In the context of clustering local maxima correspond to situations in which
data items are associated to wrong model components or clusters. In our applica-
tion this involves situations in which trajectories of different motion patterns are
with high probability associated to the same model componentθm. In such cases,
θ cannot correctly represent a model of the people’s motions. Luckily, such cases
can be identified quite reliably during EM.

Let us first assume that the correct number of motion patterns is given. Our
approach continuously monitors two types of occurrences to detect local maxima:

Low data likelihood: If a trajectorydi has low likelihood under the modelθ, this
is an indication that no appropriate model component fordi has yet been
identified that explains this trajectory.

Low model component utility: The aim of this criterion is to discover multiple
model components that basically represent the same motion pattern. To
detect such cases, the expected data log likelihood is calculated with and
without a specific model componentθm. If the difference in this likelihood
is smaller than a pre-specified threshold, the effect of removingθm from the
model is negligible.

Whenever the EM algorithm has converged, our approach extracts those two statis-
tics and considers “resetting” individual model components. In particular, if a low
data likelihood trajectory is found, a new model component is introduced that is
initialized using this very trajectory (this is an adaption of the partition expansion
presented by Liet al. [2001]). At the same time the model component which has
the lowest utility is eliminated from the model. If no model component exists with
a utility lower than a predefined threshold our algorithm terminates and returns the
current set of model components.

In our experiments we found this selective resetting and elimination strategy
extremely effective in escaping local maxima. Without this mechanism, the EM
algorithm frequently got stuck in local maxima and generated models that were
significantly less predictive of human motion.

3.2.4 Estimating the Number of Model Components

The approach presented above works well in the case that the actual number of
different motion patterns is known. In general, however, the correct number of
motion patterns is not known in advance. Thus, we need to determine this quan-
tity during the learning phase. If the number of model components is wrong, we
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can distinguish two different situations. First, if there are too few model compo-
nents, there must be trajectories that are not explained well by any of the current
model components. On the other hand, if there are too many model components
there must be trajectories that are explained well by different model components.
Whenever the EM algorithm has converged, our algorithm checks whether the
model can be improved by increasing or decreasing the number of model compo-
nents. During the search, we continuously monitor the two types of occurrences
mentioned above: low data likelihood and low model component utility. If a low
data likelihood trajectory is found, a new model component is introduced which is
initialized using this very trajectory. Conversely, if a model component with low
utility is found, it is eliminated from the model.

To limit the model complexity and to avoid overfitting we use the Bayesian
Information Criterion (BIC)[Schwarz, 1978] to evaluate a modelθ[j]:

Ec[logP (d, c | θ[j]) | θ[j], d]− M [j]

2
log I. (3.26)

BIC is a popular approach to score a model during clustering (see also[Fraley and
Raftery, 1998]). It trades off the number of model componentsM [j] multiplied by
the logarithm of the number of input trajectories with the quality of the model
with respect to the given data1.

Our algorithm terminates and returns the model with the best overall evalu-
ation found so far after the maximum number of iterations has been reached or
when the overall evaluation cannot be improved by increasing or decreasing the
number of model components.

3.3 Computing the Likelihood of Motion Patterns

To be able to use the learned motion patterns to classify trajectories and to predict
future movements, we have to compute the probability that an observed sequence
belongs to the individual motion patterns. Suppose the robot observes a sequence
z = {z1, z2, . . . , zT } of positions of a person. What we are interested in is a dis-
tribution which gives us for each motion patternθm the probabilityP (θm | z) that
the person is engaged inθm givenz. According to Bayes’ Rule, this corresponds
to

P (θm | z) = αP (z | θm)P (θm). (3.27)

1Note that BIC bears a resemblance to the Minimum Description Length Principle (MDL) from
the information theory[Rissanen, 1984]. MDL says that the best model is the one that minimizes
the number of bits needed to describe the model plus the number of bits needed to describe the
data given the model.
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Here,P (z | θm) is the likelihood of the data givenθm, P (θm) is the prior forθm,
andα is a normalizer ensuring that the left-hand side sums up to one over allθm.

It remains to describe howP (z | θm) is computed. Unfortunately,z does
not necessarily start at the initial position of the corresponding motion pattern.
Supposeθkm with 1 ≤ k ≤ K is the position inθm the first observed positionz1

corresponds to. Furthermore, supposeθk
′
m with k ≤ k′ ≤ K is the position ofθm

the final observationzT of z corresponds to. Since bothk andk′ are unknown, we
apply the law of total probability (see Appendix A.2.4) and computeP (z | θm)
by summing over all possible combinations ofk andk′:

P (z | θm) =
K∑
k=1

K∑
k′=k

P (z | θm, k, k′)P (k, k′ | θm). (3.28)

The prior probabilityP (k, k′ | θm) depends on the difference between the length
of the given segment on the motion patternθm and on the distance‖z1 − zT ‖. To
getP (z | θm, k, k′) we compute the product of the likelihoods of each observation
zτ in z given that it starts atk and ends atk′:

P (z | θm, k, k′) =
T∏
τ=1

P (zτ | θm, k, k′) (3.29)

=
T∏
τ=1

P (zτ | θdf(τ,k,k′)e
m ) (3.30)

where

f(τ, k, k′) =
k′ − k

T − 1
τ +

kT − k′

T − 1
(3.31)

realizes a linear mapping of the individual observationsz1, . . . , zT to the compo-
nentsθkm, . . . , θ

k′
m of θm.

3.4 Laser-based Data Acquisition

The EM-based learning procedure has been implemented for data acquired with
laser range sensors. To acquire the data we used several laser range scanners
which were installed in the environment such that all relevant parts of the envi-
ronment were covered. The laser scanners were mounted on a height of approx-
imately 30cm. During the data acquisition we assume that only one person is
moving through the environment. But it should be noted that if more sensors to
distinguish people (e.g. a camera system) were available one could easily learn
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Figure 3.1: Typical laser range data obtained in a home environment equipped
with three laser-range scanners. This data is used to extract resting places and
trajectories of people between these resting places.

different motion models for individual people at the same time. Figure 3.1 depicts
typical laser range data obtained during the data acquisition phase.

To determine the trajectories that are the input to our algorithm our system first
extracts features which are local minima in the range scans that come from the
person’s legs2. Additionally, it considers changes in consecutive scans to identify
a moving person. After determining the positions of the person based on the
range scans we proceed with the next step and determine the resting places, i.e.,
the places where the person frequently stays for a while. This can easily be done
by identifying time periods in which the person does not move. Figure 3.2 shows
a map of a domestic residence as well as identified resting places.

Then we perform a segmentation of the data into different slices in which the
person moves. Furthermore, we smooth the data to filter out measurement noise.
Finally, we compute the trajectories which are the input to the learning algorithm
described above, i.e. the sequence of positions covered by the person during that
motion. When computing these trajectories we ignore positions which lie closer
than15cm to each other. A typical result of this process is shown in Figure 3.3.

3.5 Experimental Results

To evaluate the capabilities of our approach, we performed extensive experiments.
The first set of experiments described here are designed to illustrate that our algo-
rithm can learn complex motion patterns of people in different types of environ-
ments. In the second set of experiments we analyze the classification performance
of learned models.

2A key precondition of our approach for extracting the positions of the person out of the laser
range data is to know the relative positions of the laser range scanners. We used the system
developed by Tacke[2002] to determine these positions.
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Figure 3.2: Map of a domestic residence. Indicated in red are identified resting
places where the person frequently stayed for a while.

Figure 3.3: A single trajectory extracted from the laser data.
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3.5.1 Learning Results

To analyze the ability of our approach to learn different motion patterns from a
set of trajectories we performed extensive experiments in different environments.
This included a domestic residence, an office environment, and a large hallway.
The following section describes an experiment using data collected in the home
environment. In this experiment the actual number of motion patterns is known
beforehand. In the second set of experiments the number of motion patterns is
unknown and has to be determined during the clustering process.

To get the random initial model we initialize the expectations with a uni-
modal distribution for each trajectory, i.e., for eachdi the expectationsE[ci1 |
θ[0], d], . . . , E[ciM [0] | θ[0], d] form a distribution with a unique randomly chosen
peak. In all experiments we set the parameterβ to 5 which means that the mean
of each probability distribution is computed based on 5 subsequent positions on
the trajectories. The standard deviationσ was set to170cm. We experimentally
found out that these values yield good results.

Known Number of Motion Patterns

To see how our EM-based learning procedure works in practice consider Fig-
ure 3.4. In this example, a model for nine trajectories belonging to three different
motion patterns has to be learned. There are three trajectories leading from rest-
ing place 3 to resting place 1, three trajectories leading from 3 to 2, and three
trajectories leading from 2 to 3.

The leftmost image shows the initial model (the means of the three model
components are indicated by circles). In the following images one can see the evo-
lution of the model components during different iterations of the EM algorithm.
Finally, the rightmost image shows the model components after convergence of
the EM algorithm. As can be seen, the trajectories have been approximated quite
well by the individual model components.

Unknown Number of Motion Patterns

In the remaining experiments the task was to correctly learn the motion patterns
of the people along with their number. In principle, one could start our algo-
rithm with a single model component and just introduce in each iteration (after
convergence of the EM) a new model component for the trajectory which has the
lowest likelihood given the current model. When the overall evaluation cannot
be improved anymore by increasing the number of components, the system auto-
matically alternates decreasing and increasing operations until the evaluation of
the best model cannot be improved any more. However, to speed up the process
we usually start our algorithm with a model that contains one component for six
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Figure 3.4: Trajectories of three different motion patterns and evolution of the
model components during different iterations the EM algorithm. The means of
the three model components are indicated by circles and the numbers indicate the
three resting places.

trajectories in the input data. This reduces the learning time since typically fewer
increasing operations are needed. In general, it is not easy to guess a good initial
value of the number of motion patterns. Even if there is a heuristic about the cor-
rect number of motion patterns, initializing our algorithm with this number does
not automatically lead to a small number of iterations. This is because the EM
often gets stuck in local maxima which means that there exist redundant model
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components that basically represent the same motion pattern. Those redundant
model components are first eliminated before new model components are intro-
duced for trajectories with low likelihood.

The first experiment was carried out with 42 trajectories from a data set of
61 trajectories recorded in a home environment (a map of this environment is
depicted in Figure 3.7). To enhance the readability in this experiment we chose
exactly three trajectories for each of 14 motion patterns. We grouped the trajec-
tories belonging to the same motion pattern so that they appear as blocks of three
in Figure 3.5. In general, of course, our algorithm works with an arbitrary set of
trajectories.

We started our algorithm with a model of sizeM = 10. Figure 3.5 shows
for different rounds of the EM during this run the resulting expectationsE[ci1 |
θ[j], d], . . . , E[ciM [j] | θ[j], d] for each trajectorydi under the current modelθ[j]

(the darker the color the higher the value). The x-axis of each plot represents the
trajectoriesd1, . . . , dI and the y-axis contains the different model componentsθ

[j]
i ,

for i = 1, . . . ,M [j].
The topmost image of Figure 3.5 labeled A shows the initialization of the

expectations. The second image (plot B) shows the expectations after a few iter-
ations. In the situation corresponding to C the EM has converged to a maximum
in the log likelihood space given ten different model components. As can be seen
from the figure, there are four model components that explain two different tra-
jectories (the model components are indicated by arrows in the figure). In the
next step (image D) our algorithm therefore tries to improve the data likelihood
by introducing a new model component to which it assigns trajectory25 which
has the lowest likelihood given the current model. The situation when the EM has
again converged to a maximum is shown in E. As before, another model compo-
nent is introduced. We omit the corresponding images for the sake of brevity. The
correct classification is found after our algorithm has introduced four additional
model components (plot F). As can be seen from the figure, the system has de-
termined a model in which all trajectories are correctly clustered, which means
that the expected values of the correspondence variables of trajectories belonging
to the same motion pattern have a peak close to 1 in the same model component.
Nevertheless, our algorithm still tries to further improve this model by remov-
ing and adding a model component. However, since none of these operations
increases the overall evaluation, our algorithm terminates and outputs the model
corresponding to F. Plot G shows the expectations after convergence for a model
with 15 components. As can be seen from the histogram three trajectories are
assigned to two different model components. Because of the penalty term our
algorithm prefers the lower complexity model corresponding to histogram F.

Figure 3.6 shows for the whole data set (61 trajectories) recorded in the home
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Figure 3.5:ExpectationsE[cim | θ[j], d] computed in the different iterations of the EM
algorithm (the darker the color the higher the value). The x-axis represents the trajectories
and the y-axis the model components. See text for a detailed explanation.
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Figure 3.6: Evolution of the number of model components and the overall evalu-
ation of the model for the domestic residence (see map in Figure 3.7).

environment the evolution of the overall evaluation as well as the number of model
components. As can be seen from the figure, we started our algorithm with ten
model components and our algorithm first tried to reduce the model complexity.
Decreasing the number of model components did not increase the model eval-
uation and therefore our algorithm introduced new model components for the
trajectories with low likelihood. In the end it stopped with 16 different model
components when no improvement of the model could be achieved by increasing
or decreasing the number of components. To illustrate that our algorithm correctly
clustered the trajectories Figure 3.7 shows trajectories of two different model com-
ponents after the convergence of the EM. Figure 3.8 depicts the learned motion
patterns as well as the resting places which are indicated by numbers.

Figure 3.9 shows the evolution of the number of model components and the
overall evaluation of the model when starting our algorithm with two model com-
ponents. As can be seen, our algorithm needs 70% more iterations until it has
clustered the trajectories.

We additionally applied our algorithm to data recorded in our office envi-
ronment (see map in Figure 3.11). From the collected data we extracted 129
trajectories. Figure 3.10 shows the model complexity and model evaluation for
one run in which we started with 20 different model components. As can bee
seen from the figure, the algorithm decreased the model complexity until only
17 (non-redundant) components remained. Afterwards it increased the number of
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Figure 3.7: Trajectories of two different model components.

1
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4

Figure 3.8: The 16 learned motion patterns between the identified resting places.
Note that there are pairs of resting places for which we have two motion patterns,
one for either direction.
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Figure 3.9: Evolution of the number of model components and of the model eval-
uation in the case in which our algorithm started with two model components and
was applied to the same set of trajectories as in the experiment shown in Fig-
ure 3.6.

model components to improve the model evaluation. Finally, it terminated with
the model correctly representing 49 different motion patterns. The trajectories of
the learned model can be seen in Figure 3.11. The identified resting places are
again indicated by numbers.

Figure 3.12 shows the evolution of the number of model components and the
overall evaluation of the model for the case in which our algorithm was started
with two model components on the same data set. As can be seen, now the algo-
rithm needed more iterations (in this case over 35% more) to cluster the trajecto-
ries.

Corresponding results for a third data set recorded in the large entrance hall of
a building on our campus are shown in Figure 3.13. In this experiment our algo-
rithm was started with ten different model components for 59 trajectories and first
reduced the number of model components. When there were 8 different model
components left our algorithm tried to improve the model by introducing new
components for the trajectories with low likelihood and finally stopped with 20
model components. A map of the environment as well as the learned motion pat-
terns can be seen in Figure 3.15. Figure 3.14 shows the evolution of the number
of model components and the overall evaluation of the model when starting our
algorithm with two model components on the same data set. Again, the number
of iterations was over 35% higher.



58 CHAPTER 3: LEARNING MOTION PATTERNS OFPEOPLE

 0

 10

 20

 30

 40

 50

 0  5  10  15  20  25  30  35

-1600

-1200

-800

-400

 0
nu

m
be

r o
f m

od
el

 c
om

po
ne

nt
s

m
od

el
 e

va
lu

at
io

n 
 [l

og
]

iteration

number of model components
model evaluation

Figure 3.10: Evolution of the number of model components and the overall eval-
uation of the model during the application of our algorithm. In this case a model
for 129 trajectories collected in our office environment (see map in Figure 3.11)
has to be learned.

Figure 3.11: The 49 learned motion patterns in the office environment as well as
the corresponding resting places.
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Figure 3.12: Corresponding evolution when starting our algorithm with two model
components on the data set recorded in the office environment.
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Figure 3.13: Evolution of the number of model components and the overall eval-
uation of the model for a data set recorded in the entrance hall of one of our main
buildings on the campus (see map in Figure 3.15).
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Figure 3.14: Evolution of the number of model components and the overall eval-
uation of the model when our algorithm was started with two model components
on the same set of trajectories which was used in the experiment shown in Fig-
ure 3.13.
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Figure 3.15: The 20 learned motion patterns for the entrance hall as well as iden-
tified resting places.
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Figure 3.16: Two of the trajectories which are sometimes falsely classified into
the same model component.

To evaluate the performance of our approach we carried out a series of ex-
periments using several data sets. In each experiment we chose a random set of
trajectories and counted the number of correct classifications. It turned out that
our algorithm was able to learn the correct model in 96% of all cases. Thus, even
if the initialization of the expectations seriously influences to which situation the
EM algorithm converges, using the selective resetting and elimination strategy our
algorithm is able to compute the correct classification of the trajectories and thus
the correct motion patterns in most of the cases. We furthermore did not discover
evidence that the number of model components we initialized our algorithm with
has an influence on the overall result.

To analyze why our algorithm sometimes fails to correctly cluster the trajecto-
ries consider Figure 3.16 which shows two trajectories belonging to two different
motion patterns that are often clustered into the same model component. As can
be seen from the figure, both trajectories are extremely similar. Even if the model
which has an individual component for both trajectories has a higher expected
data likelihood, our algorithm prefers the model with just one component due to
the penalizing of higher complexity models.

Discussion

Note that the output of our learning algorithm depends on the standard deviation
σ and on the number of probability distributionsK used to represent the motion
patterns. It is clear that smaller values ofσ will result in a higher number of model
components. Furthermore, if there is only a relatively small number of trajectories
for one motion pattern compared to the other motion patterns, our algorithm tends
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to underestimate the number of model components and to assign these trajectories
to other clusters. Due to the assumption that all model components have the same
length, our algorithm prefers to cluster longer trajectories into single components
rather than short trajectories. This is because the distance between long trajecto-
ries and their cluster is typically higher than for short trajectories. A solution to
this problem would be to additionally estimate the number of probability distri-
butions constituting each particular motion pattern. This aspect will be subject of
future research.

Furthermore, there are several alternative clustering approaches that might be
applicable to our problem of learning motion patterns. For the purpose of compar-
ison we also implemented the classicalk-Means algorithm. This algorithm differs
from the approach used here in that in each iteration each data trajectorydi is as-
signed to the “closest” model component, i.e., the model componentθm which has
the highest probability thatdi is observed given the person is engaged inθm. In
our experiments it turned out that the classicalk-Means algorithm yields a similar
success rate compared to our approach. The advantage of our technique, which al-
lows a “fuzzy” assignment of the trajectories to the model components, lies in the
probabilistic framework and its correspondence to the EM algorithm as a general
optimization procedure.

3.5.2 Prediction Accuracy

To evaluate the capability of our learned motion patterns to predict human motions
we performed a series of experiments.

In the first experiment we used the data collected in home and in the office
environment. In each experiment we randomly chose fractions of test trajectories
and computed the likelihood of the correct motion pattern using the approach de-
scribed in Section 3.3. Figure 3.17 shows the average likelihood of the correct
motion pattern depending on the length of the observed fraction. As can be seen
from the figure, the classification results are quite good and our approach yields
motion patterns allowing a mobile robot to reliably identify the correct motion pat-
tern. For example, if the robot observes 50% of a trajectory, then the probability
of the correct motion pattern is about 0.6 in both environments.

Figure 3.18 illustrates for one trajectory of the person in the office environment
the evolution of the set of possible motion patterns. The dashed black line corre-
sponds to the trajectory of the person, which started to move at resting place 2. In
the beginning all resting places are possible target locations. When the location
labeledA is reached the motion pattern which leads to resting place 6 can be elim-
inated from the set of hypotheses because the corresponding likelihood gets too
low. Thus, even if our system is not able to uniquely determine the intended goal
location, it can already predict that the person will follow the corridor during the
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Figure 3.17: Average likelihood of the correct motion pattern after observing frac-
tions of trajectories.

Figure 3.18: The black line corresponds to the trajectory of a person. The labels A,
B, C, and D indicate locations at which motion patterns can be excluded because
their likelihoods have become too low.
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next steps. When the person reaches locationB the system can also exclude rest-
ing place 5. When the person reaches positionC resting place 3 becomes unlikely
as well and the motion patterns leading to 7 and 1 become the most probable. Fi-
nally, at locationD out system correctly predicts that resting place 7 is the target
location. This experiment illustrates, that the results of the prediction are useful
even in situations in which there are ambiguities about the actual intention of the
person.

3.6 Representing Motion Patterns by Flow-Fields

In this section we discuss a different approach to represent the motion patterns
and explain why this approach is not applicable in our context.

The idea is to learn probabilistic “flow-fields” of motion, which define local
transition probabilities for each state in the two dimensional space. A flow-field
Fm, with 1 ≤ m ≤ M , is composed of two types of probability distributions
(similar to a Markov chain[Cox and Miller, 1965], see also Section 5.2). The first
distribution assigns to each environment locationx in the discretized 2D space
the probabilityP (x | Fm) that this locationx is the initial location of the person
given it is engaged in them-th motion pattern. Second, it also assigns to each en-
vironment locationx a conditional probability distribution over possible successor
locationsx′. This probability, denotedP (x′ | x, Fm), specifies our expectations
over successor locationsx′ given the person was at locationx one time step ear-
lier, and if we know for a fact that the person is engaged in motion patternm. The
totality of all such conditional probabilities for a specific value ofm is called a
probabilistic flow-field.

It is straightforward to define the likelihood of a trajectorysi = {s1
i , s

2
i , . . . , s

Ti
i }

under the flow-fieldFm as the product of the probabilities which correspond to the
transitions of the trajectory times the probability of the initial location:

P (si | Fm) = P (s1
i | Fm)

Ti−1∏
t=1

P (st+1
i | sti, Fm). (3.32)

The representation of motion patterns by flow-fields seems to be very natural.
However, a major problem exists which makes it impossible to come up with
the correct number of different motion patterns using this representation. In the
following we first explain how to compute the set of flow-fields which has the
maximum expected data likelihood using the EM algorithm. After that we discuss
the problem which arises by using this approach for clustering.
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3.6.1 Application of the EM Algorithm

The E-step computes the expectationE[cim | F [j], s] that thei-th trajectory be-
longs to them-th flow-field in the current modelF [j] by combining Eq. (3.32)
and Eq. (3.19):

E[cim | F [j], s] (3.33)

= η′P (si | F [j]
m ) (3.34)

= η′P (s1
i | F [j]

m )

Ti−1∏
t=1

P (st+1
i | sti, F [j]

m ). (3.35)

The M-step calculates new transition probabilitiesP (x′ | x, F [j+1]
m ) for each flow-

field F [j+1]
m , and each pair of positionsx andx′ and by identifying the probability

P (x | F [j+1]
m ) for each cellx that it is the starting location of the represented

motion pattern. The maximum likelihood estimates of such probabilities are the
empirical frequency count ratios. The equations are basically equivalent to those
used in Hidden Markov Models (HMMS) for learning model parameters[Rabiner
and Juang, 1986, Bilmes, 1997]:

P (x | F [j+1]
m ) =

1

I

I∑
i=1

Is1i =x E[cim | F [j], s], (3.36)

P (x′ | x, F [j+1]
m ) =

I∑
i=1

E[cim | F [j], s]

Ti−1∑
t=1

Ist
i=x∧s

t+1
i =x′

I∑
i=1

E[cim | F [j], s]

Ti−1∑
t=1

Ist
i=x

. (3.37)

HereI is the indicator function that is 1 if its argument is true, and 0 otherwise.
Notice that our empirical ratios are weighted by the expectationsE[cim | F [j], s]
computed in the E-step. If data is scarce (as it is the case in our experiments), these
probabilities have to be smoothed over neighboring locations so as to avoid over-
fitting of scarce data. In our implementation, this is achieved by convolving the
estimated transition probabilities with a Gaussian kernel. The resulting flow-fields
are, strictly speaking, not maximum likelihood estimators, but they generalize
much better to unseen data when training data is scarce. Furthermore, in order to
be able to compute the log likelihood, for eachsi andFm it must be ensured that
the likelihoodsP (si | Fm) are greater than zero. This can be achieved by setting
the transition probabilities to a minimum value if they have a lesser value.
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Figure 3.19: Maximum likelihood transitions for one motion pattern (shown here
are only transitions with a probability greater than 0.15).
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Figure 3.20: Four trajectories for which flow-fields have to be learned.

Figure 3.19 shows the maximum likelihood transitions for the typical motions
carried out by the person when it goes from the kitchen to the living room in
the home environment (we only show transitions which have a probability greater
than 0.15).

3.6.2 Drawback of Flow-Fields in the Context of Clustering

As can be seen, the flow-fields model typical motion patterns in a natural way.
However, one major problem arises during the application of the EM: When using
these flow-fields to cluster the input trajectories it is not really penalized when
totally different motion patterns are represented by the same flow-field. As an
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Figure 3.21: Two model components which can result after convergence of EM.
The left hand side of each model component depicts the transition probabilities
and the right hand side shows the probability distributions over the initial states.

example consider Figure 3.20. Here, we have four trajectories, each of which has
three transitions. Let us assume EM converges to a local maximum, in which
the trajectoriess1 ands2 and the trajectoriess3 ands4 are clustered together into
model componentsF1 andF2 respectively. The model components depicted in
Figure 3.21 are the resulting ones after convergence of the EM. The left hand side
of each model component depicts the transition probabilities of the corresponding
flow-field3. The right hand side of each model component shows the probability
distributions, which indicate the probability that the corresponding states are the
initial locations of the trajectory the person. For the likelihoods of the trajectories
we haveP (s1 | F1) = 0.5, P (s2 | F1) = 0.5, P (s3 | F2) = 0.5, andP (s4 |
F2) = 0.5 according to Eq. (3.32). These results are rather implausible because
the model componentF1 represents two totally different trajectories. Actually, it
should be penalized that the trajectoriess1 ands2 are clustered together and these
trajectories should have a lower likelihood given this model thans3 ands4.

The described problem often leads to a wrong estimation of the number of
model components. If the penalty term in Eq. (3.26) is high than this approach
outputs a model in which totally different trajectories are clustered into one com-
ponent since the gain in clustering them into different model components is not
high enough. To find a good strategy to penalize a model in which totally different
trajectories are assigned to the same model component is not easy. This is because
the input trajectories can traverse a different number of states. Therefore, for ex-
ample, it does not make sense to count the number of transitions in each flow-field
which have a probability greater than a pre-defined threshold and to discount the
likelihood according to this number.

In contrast, our approach, which uses Gaussian distributions to represent the
positions of the people at different time steps, does not have the described unde-

3Note that we did not use a minimum transition probability and also omitted smoothing over
neighboring locations for simplicity reasons in this illustrative example.
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sired property. Using our approach it is ensured that trajectories of totally different
motion patterns have a much lower likelihood when they are clustered together
compared to the case when they are clustered into individual components.

3.7 Related Work

A variety of techniques has been developed that allows a robot to estimate the
positions of people in its vicinity or to predict future poses. For example, the
approaches presented by Tadokoroet al. [1995] and Zhu[1991] use given prob-
abilistic motion models in order to predict future poses of observed objects. The
techniques developed by Schulzet al. [2003a] and Montemerloet al. [2002b]
are able to robustly track multiple persons in the sensor range of a mobile robot
equipped with laser range finders using particle filters[Bar-Shalom and Fortmann,
1988]. Klugeet al. [2001] also implemented a system to track people but they do
not apply a motion model to the objects. Thus, they cannot reliably keep track of
individual moving objects over time and deal with temporary occlusion. The same
drawback has the approach presented by Lindström and Eklundh[2001] which
uses Gaussian hypotheses to detect and track moving objects from a moving plat-
form in furnished rooms. Rosencrantzet al.[2003] introduced variable-dimension
particle filters to track the location of moving objects even if they are temporar-
ily occluded. There are also many vision-based techniques that are designed to
keep track of moving objects and which show robust behavior even in the case
of temporary occlusions (for example[Rosales and Sclaroff, 1998, MacCormick
and Blake, 1999]). Feyrer and Zell[2000] use a combination of vision and laser
data to detect people in front of stationary background and to track them. Fodet
al. [2002] use multiple statically mounted laser range finders and apply Kalman
filters [Kalman, 1960] to maintain an estimate of the positions of people in ev-
eryday environments whereas Krummet al. [2000] deployed multiple stationary
cameras for multi-person tracking in a living room. Lavalleet al.[1997] presented
a system that is able to follow of a moving target. They explicitely take into ac-
count possible short-term occlusions by static obstacles in the environment. Riley
and Veloso[2002b] use predefined opponent models to predict opponent agents
behavior in the RoboCup domain. Foka and Trahanias[2002] suggested to predict
the movements of people using manually defined “hot points” which the people
might be interesting in approaching.

The majority of the described techniques assume the existence of some models
of the motion behavior of the tracked objects. Our approach, in contrast, is able
to learn such models. The system described by Kruse[1998] uses a camera sys-
tem mounted on the ceiling to track people in the environment and to learn where
the people usually walk in their workspace. However, the system does not take
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into account that the behavior of the people may vary depending on their inten-
tions. Nguyenet al. [2003] proposed to use an Abstract Hidden Markov mEmory
Model (AHMEM) to infer intentions of people. The idea of an AHMEM is to
model higher level behaviors by a stochastic sequence of more simple behaviors
at the lower levels. The authors apply an EM-based learning method for labeled
trajectories to determine the transition probabilities for the states at the lowest
level (grid cells) and assume that the landmarks the people want to approach are
given. Our approach in contrast applies an unsupervised clustering method to the
observed trajectories and is also able to automatically infer resting places which
correspond to the landmarks in the AHMEM. The approach recently presented by
Liao et al. [2004] learns the structure and parameters of an 3-level Abstract Hid-
den Markov Model. The authors apply EM to GPS data collected by a user which
wears a GPS unit. The learned model is able to infer the user’s daily movements
and use of mode of transportation. Furthermore, it supports detecting novel events
that may indicate user errors. Walteret al.[Walteret al., 2001] proposed a method
to learn hand gestures. Their approach assumes that the individual gestures can
be viewed as repetitive sequences of atomic components and that they start and
end in resting positions (this is similar to our approach to extract the trajecto-
ries). The authors model the atomic components by a mixture of Gaussians. They
apply the EM algorithm to learn the atomic components and use the Minimum
Description Length (MDL[Rissanen, 1984]) to estimate their number. After they
have clustered the extracted trajectories into atomic components they analyze the
observation sequence to concatenate consecutive atomic components. Since they
found out that this way the number of different gestures tends to be over-estimated
they apply EM and MDL a second time to reduce the number of gestures.

The approaches to clustering data sequences presented by Liet al. [2001] and
Smyth [1997] are based on HMMs. Liet al. start with one cluster and gradu-
ally increase the number of clusters by introducing a new component for the data
sequences which have the lowest likelihood given the current partition. Besides
estimating the number of clusters this technique also estimates the number of
states for the HMMs by using BIC. The approach, which penalized HMMs with
a higher number of states, is not applicable for learning motion patterns of people
as explained in the previous section. Smyth first learns an individual HMM for
each single data sequence. Afterward, this approach uses the symmetrized dis-
tance matrix to cluster the data sequences intoM groups.M is then chosen as
that value which yields the best model. Sebastianiet al. [1999] follow a similar
approach. They first learn an individual Markov chain for each data sequence and
then merge one pair of chains in each step. They try out to merge all pairs of
chains and stop the merging process when the model cannot be improved. The
latter two approaches are not applicable in our context of learning trajectories be-
cause they are vulnerable to clustering totally different trajectories into the same
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cluster as pointed out in the previous section.
Illmannet al. [2002] apply a fusion of omnidirectional vision and information

of a laser range finder to acquire basic motion patterns like straight motion, wan-
dering aimlessly, or entering a queue. The authors use the symmetric Kullback-
Leibler divergence to compare pairwise trajectories and to cluster them. However,
it is not obvious how to choose an appropriate stopping criterion. Gaffney and
Smyth[1999] proposed a mixture regression model to cluster trajectory data. The
authors applied their approach to cluster hand movements extracted from video
streams into a given number of classes. Johnson and Hogg[1995] learn proba-
bility density functions of typical object trajectories to detect atypical behaviors.
Compared to the our work, these approaches lack a technique to estimate the
number of different motion patterns. The goal of the work by Stauffer and Grim-
son [2000] is also to detect unusual events. They learn codebooks of a given
number of prototypes which is used for automatic hierarchical object classifica-
tion. Rosales and Sclaroff[2003] analyze 3D trajectories to learn and recognize
a given number of typical actions like walking, running, and biking. They use
an extended Kalman filter[Welch and Bishop, 1997] to track objects in a video
sequence. Oliveret al. [2002] use data obtained from various sensors (like mi-
crophone, camera, keyboard, and mouse) as input to a two layer HMM archi-
tecture to infer the state of a user’s activity. Each layer is connected to the next
higher layer via its inferential results and is trained independently with differ-
ent feature vectors. The authors train independent HMMs for a given number
of sounds/behaviors. Finally, Guralnik and Haigh[2002] use sequential pattern
mining to learn typical behaviors of humans in their homes. They installed 10-
20 sensors of different types in a home. Their algorithm uses this data to learn
sequences of rooms in which room the person was acting. Their algorithm uses
domain knowledge to extract sequences of rooms the person was acting in. These
sequences are then analyzed by a human expert to identify complex behavior mod-
els. The approach described here can be seen as an alternative way of learning the
sequences of rooms that does not require domain knowledge.

3.8 Conclusion

In this chapter we presented a method for learning motion patterns of people. Our
approach applies the popular EM algorithm to cluster similar trajectories into sin-
gle patterns. Additionally, it is able to estimate the number of motion patterns
using the Bayesian Information Criterion. The output of our algorithm is a col-
lection of motion patterns, each corresponding to a principle motion activity of a
person. Using the resulting motion patterns our system can predict the motions of
people based on observations made by a robot.
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Our approach has been implemented and applied to range data recorded with
laser range sensors. In practical experiments we demonstrated that our method
is able to accurately learn typical motion patterns of a person in a domestic res-
idence, in an office building, and in an large entrance hall. We furthermore de-
scribed how to use the resulting models to predict the motions of people and pre-
sented reliable classification results for observed trajectories.



Chapter 4

Adapting Navigation Strategies
Using Motion Patterns of People

4.1 Introduction

In this chapter we consider the problem of how knowledge about typical motion
patterns of people can be utilized to improve the navigation behavior of the robot.
In particular, we are interested in predicting the motions of people and instructing
the robot to choose appropriate detours so that the risk of interferences with people
is minimized.

As an example, consider the situations illustrated in Figure 4.1. In the left
image a robot is moving from right to left in a corridor. At the same time, a person
is walking down the corridor from left to right. In this particular situation, the
robot needs to be able to detect the person and to predict its future actions in order
to prevent interfering with it. A similar situation is depicted in the right image.

robotperson

robot

person

Figure 4.1: Situations in which a robot interferes with a person. In both cases
the knowledge that the path of the person leads through the position of the robot
would help the robot to avoid this conflict.
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Here, the robot is standing in a doorway and a person, that wants to enter the room,
is approaching the robot. Again, if the robot fails to detect the intention of the
person and to react appropriately, the person cannot enter the room immediately.
Whereas the conflict indicated in the left image could possibly be avoided with a
linear prediction of the person’s path, the conflict depicted in the right image can
only be avoided if the robot anticipates that the person will enter the room. Then
the robot can react early enough and the person does not need to wait until the
robot moves aside.

We introduce a technique that allows a mobile robot to predict future motions
of detected people and to incorporate this knowledge into its navigation plans.
In particular, we describe a probabilistic technique to determine potential motion
patterns the people might follow. The knowledge about potential intentions is then
used to plan the actions of the robot in its configuration time-space. This way, the
robot is able to avoid interfering with people by choosing trajectories that stay
away from the predicted paths of the people in its vicinity. As a result, the robot
can actively move out of the way of the people already at an earlier stage than with
purely reactive approaches. Such a behavior is especially useful in environments
with narrow passages since the robot comes too close to the people and forces
them to slow down if it does not correctly predict their movements.

In the following section we show how the learned motion patterns can be in-
tegrated into the path planning process. Section 4.3 introduces our approach to
detect and keep track of people using laser-range data. In Section 4.4 we present
several experiments. These experiments demonstrate that our approach can im-
prove the behavior of a mobile robot by predicting trajectories of people in the
vicinity using learned motion patterns. Finally, we discuss related work in Sec-
tion 4.5.

4.2 Integrating Predicted Motions of People into Path
Planning

Our approach uses motion patterns of people that are learned using the technique
described in the previous chapter. Thus, we assume we have a setθ ofM different
motion patternsθ = {θ1, . . . , θM} a person might exhibit in its environment. A
motion patternθm with 1 ≤ m ≤ M , is represented byK Gaussian distributions
θkm = N(µkm, σ) with meanµkm and fixed standard deviationσ for all m andk.
Each such Gaussian specifies for each data pointxt and eachθkm the likelihood
P (xt | θkm) that the person is at locationxt given that stept of the trajectoryx
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corresponds to stepk of motion patternm:

P (xt | θkm) =
1√
2πσ

e−
1

2σ2 ‖xt−µk
m‖2

. (4.1)

In Section 3.3 we explained how to estimate the probability that a person is en-
gaged in a motion patternθm given an observation sequencez. Within this section
we now focus on the question of how a robot can make use of this information to
improve its navigation behavior. In particular, we want to focus on the question
how the belief of the robot about possible motion patterns of people in its vicinity
can be considered during the path planning process.

We use theA∗ procedure[Nilsson, 1982] for path planning and for search-
ing the minimum-cost path in the robot’s three dimensional configuration time-
space[Erdmann and Lozano-Pérez, 1987]. The configuration time-space of the
robot is computed based on a static occupancy grid map[Moravec and Elfes,
1985] of the environment and the predicted positions of the surrounding people
at any point in time (these techniques have been introduced in Section 2.3). To
obtain a good heuristics forA∗ we compute the cost-optimal path for each pair of
grid cells in the two dimensional environment once using the deterministic value
iteration (see for example[Sutton and Barto, 1998]). More precisely, we compute
for each grid cell a value iteration with that cell as start and store the costs of the
paths to all other cells. These costs are used as a heuristics forA∗ in the three
dimensional configuration time-space. This allows the robot to quickly replan its
path whenever new measurements have arrived and the belief about the intended
trajectories of the people has changed.

The cost for traversing a grid cell〈x, y〉 is proportional to its occupancy prob-
ability Pocc(〈x, y〉). To incorporate the robot’s belief about future trajectories of
the people, each cell〈x, y〉 is additionally discounted according to the probability,
that one of the persons covers〈x, y〉 at a given timet. Suppose our robot has ob-
servedR persons and supposePcov(〈x, y, t〉 | zr) is the probability that personr
covers〈x, y〉 at time t given the observation sequencezr corresponding to this
person. If we consider the individual persons independently, we can compute the
costCcov(〈x, y, t〉) introduced by the fact that〈x, y〉 might be covered by one of
the observed persons at timet as follows:

Ccov(〈x, y, t〉)

=
R∑
r=1

Pcov(〈x, y, t〉 | zr) (4.2)

=
R∑
r=1

M∑
m=1

K∑
k=1

K∑
k′=k

Pcov(〈x, y, t〉 | θm, k, k′, zr) · P (θm, k, k
′ | zr). (4.3)



76 CHAPTER 4: ADAPTING NAVIGATION STRATEGIES

The last transformation is due to the fact that we do not know wherezr starts on
the motion patternθm and therefore we have to sum over all possible combinations
of start and end points (law of total probability; see also Section 3.3, Eq. (3.28)).
It remains to describe how the individual termsPcov(〈x, y, t〉 | θm, k, k′, zr) and
P (θm, k, k

′ | zr) are computed. For the latter term, according to Bayes’ Rule and
the product rule (see Appendix A.2.1 and A.2.2), we have:

P (θm, k, k
′ | zr)

= ηP (zr | θm, k, k′)P (θm, k, k
′) (4.4)

= ηP (zr | θm, k, k′)P (θm)P (k, k′ | θm). (4.5)

whereη is a normalizer. How we compute the likelihoodP (zr | θm, k, k′) of
an observation sequencezr given motion patternθm has been explained in Sec-
tion 3.3, Eq. (3.29).P (θm) is the prior forθm, whereas the prior probability
P (k, k′ | θm) depends on the difference between the length of the given segment
on the motion patternθm and on the distance the person moved in the observation
sequencezr. Finally, we need to describe how we compute the probability

Pcov(〈x, y, t〉 | θm, k, k′, zr)

that a person engaged in motion patternθm will cover 〈x, y〉 at timet given the
observationszr and given thatzr starts atθkm and ends atθk

′
m. We use a Gaussian

distribution to represent the uncertainty about the position of the person at time
stept. The mean of this Gaussian is computed as that position onθm which has
the distancev ·∆t from the latest observed positionxt

′
at time stept′. Herev is the

velocity of the person in the observationszr and∆t = t− t′. Thus, we predict the
motion of the person starting from locationxt

′
according to the average velocity

v and the trajectory given byθm.
The overall cost for the robot to traverse a cell〈x, y〉 at timet is then computed

as:

C(〈x, y, t〉) = γ(Pocc(〈x, y〉)) + Ccov(〈x, y, t〉). (4.6)

Therebyγ(Pocc(〈x, y〉)) is a threshold function which is infinite ifPocc(〈x, y〉)
exceeds 0.8, andPocc(〈x, y〉) otherwise. This avoids that paths for example lead
through walls. Note, that this computation is similar to the computation of the cost
of traversing a cell in the case of multi-robot systems (see Section 2.3, Eq. (2.1)).

Our approach can be used to predict motions of multiple persons and it can
even deal with people not engaged in any of the learned motion patterns. If the
trajectory of a personr cannot be associated well with any of the known motion
patterns, the beliefP (θm | zr) is uniformly distributed which introduces higher
costs for fields on learned motion patterns.
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Note that the system presented in this chapter does not distinguish between in-
dividual persons. In the next chapter we present an approach that is able to identify
people using vision data and which applies Hidden Markov Models (HMMs)[Ra-
biner and Juang, 1986] to maintain individual beliefs about the positions of peo-
ple. These HMMs can be used to provide the costsCcov needed for planning in
the configuration-time space. This way, the technique introduced so far can be
extended to incorporate different motion patterns for individual persons.

4.3 Detecting and Tracking People

To apply the technique described above, a robot must be able to detect people
in its vicinity and to keep track of them. Similar to Schulzet al. [2003a] and
Montemerloet al. [2002b], our system extracts features which are local minima
in the range scans that come from the legs of the people. It additionally considers
changes in consecutive scans to identify moving people more reliably. We extract
only features not belonging to static objects. Given these features we compute the
observed position of a person by taking the mean of close-by features. When the
robot is moving its sensor information is not as reliable as when it is standing.
Therefore we use a Kalman filter to keep track of a person. A Kalman filter
estimates the current position of the person given the estimated position at the
previous time step and given noisy sensor input as it is explained in the following.

4.3.1 The Kalman Filter

A Kalman filter [Kalman, 1960, Welch and Bishop, 1997] is a recursive proce-
dure to process sensor data. Figure 4.2 depicts a typical application scenario of
the Kalman filter (this figure is adapted from[Maybeck, 1979]). A system is con-
trolled by some known process and a measurement device provides information
about the state of the system. The Kalman filter is needed in the case that influ-
encing factors of various types exist which cannot be measured directly by the
available sensors. A Kalman filter represents the posterior estimate of the state of
a system by a Gaussian distribution.

Using a Kalman filter one can compute the optimal estimate of the state of a
system given the system can be described by a linear model and given the noise
of the process and the measurements is Gaussian and white. The latter means that
the noise is not correlated in time. According to Maybeck[1979] the Kalman filter
“processes all available measurements, regardless of their precision, to estimate
the current value of the variables of interest, with the use of (1) knowledge of the
system and measurement device dynamics, (2) the statistical description of the
system noises, measurement errors, and uncertainty in the dynamic models, and
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Figure 4.2: The task of the Kalman filter is the exact estimation of the state of a
system which cannot be measured perfectly by sensors.

(3) any available information about initial conditions of the variables of interest.”
The result of the fusion process which combines the estimates and the measure-
ments is a new estimation with a new error which is also Gaussian. The Kalman
filter is optimal in the sense that the estimate of the state of the system minimizes
the resulting error between the predicted and the actual state.

Figure 4.3 illustrates the individual steps of the Kalman filter (this figure is
adapted from[Welch and Bishop, 1997]). In essence, it is a cycle which consists
of a predictionand acorrectionstep. The prediction step projects the state ahead
in time and in the update step the projected estimate is adjusted using the current
measurement. Given initial estimates about the state of the system and the error
covariance, the Kalman filter iteratively computes the Kalman gain which indi-
cates how much the new measurement is weighted during the following update of
the new estimation of the state. Once the state is newly estimated the error covari-
ance is updated, the prediction step is invoked which computes new projections of
the state of the system and the corresponding error covariance.

In the following we introduce the mathematical equations of the Kalman filter.
The task of the Kalman filter is to estimate the statex ∈ Rn of a discrete-time
controlled process which can be modeled by two linear stochastic equations:

xt = At−1xt−1 +But + wt−1 (4.7)

and

zt = Hxt + vt. (4.8)

The matrixAt−1 specifies how the statext changes in relation to the previous state
xt−1 without taking into account any control input or process noise. The matrixB
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Figure 4.3: Diagram illustrating the operations during the iterations of the Kalman
filter.

describes the influence of the control inputut to the statext, whereas the measure-
ment matrixH indicates the relation between the statext and the measurementzt.
H might also change each time step but in our case we assume it to be constant.
The random variableswt−1 andvt represent the mentioned Gaussian process and
measurement noise. Sincewt−1 andvt are vectors, instead of variances we have
covariance matricesQ andR for the process and measurement noise which we
assume to be constant.

Thea priori state estimate at stept given knowledge about the systems state
prior to stept is denoted aŝx−t . The corrected state estimate at stept given the
measurementzt is referred to aŝxt and is called thea posterioristate estimate.

In the prediction step the following computations are carried out to get the a
priori estimates for the state of the systemx̂−t and the corresponding error covari-
ance matrixP−

t :

x̂−t = At−1x̂t−1 +But (4.9)

and

P−
t = At−1Pt−1A

′
t−1 +Q. (4.10)

HereA′
t−1 denotes the transpose of matrixAt−1. Initially, x̂0 andP0 have to be

specified to computêx−1 andP−
1 .

In the following correction step the a posteriori state estimatex̂t is computed
using the current measurementzt according to the following equation:

x̂t = x̂−t +Kt(zt −Hx̂−t ). (4.11)
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As can be seen, depending onKt the difference between the predicted measure-
mentHx̂−t and the actual measurementzt is weighted more or less heavily in this
linear combination. In the Kalman filter,Kt is chosen so that it minimizes the a
posteriori error covariance (see for example[Brown and Hwang, 1992]):

Kt = P−
t H

′(HP−
t H

′ +R)−1. (4.12)

The a posteriori error covariance matrixPt for the corrected statêxt is then com-
puted as:

Pt = (Id −KtH)P−
t . (4.13)

4.3.2 Tracking People Using Kalman Filters

In our application the state of a person is represented by a vector[x, y, vx, vy]
′.

Whereasx andy stand for the position of the person, the termsvx andvy represent
the velocity of the person inx- andy-direction.

The matrixB in Eq. (4.9) is in our case the zero matrix because we do not
have an extern control input. The matrixAt defines how the state of the person
changes if the person continues walking with the estimated current velocitiesvx
andvy:

At =


1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1

 . (4.14)

Here∆t is the time elapsed until the next measurement. According to Eq. (4.9),
the predicted state at the time of the next measurement is then:

x̂−t+1 = Atx̂t =


x+ ∆t · vx
y + ∆t · vy

vx
vy

 . (4.15)

In our case, a measurement is the position of the person extracted out of the laser
range data as explained in the beginning of this section. Since the sensors we are
using generally do not provide the velocitiesvx andvy, which are also part of our
state space, the measurement matrixH projects onto the first two components of
the state space:

H =

(
1 0 0 0
0 1 0 0

)
. (4.16)



4.3 DETECTING AND TRACKING PEOPLE 81

Accordingly, the predicted measurement for the next time step is:

z−t+1 = Hx̂−t+1 =

(
1 0 0 0
0 1 0 0

)
x̂−t+1 =

(
x+ ∆t · vx
y + ∆t · vy

)
. (4.17)

Using the defined quantities the prediction and correction steps are iteratively ex-
ecuted whenever a new measurement of the position of the person is provided.

4.3.3 Keeping Track of Multiple Persons

To track multiple persons in the range scans, we apply independent Kalman filters,
one for each feature. One problem which has to be solved in the case of multiple
persons is to decide which feature is caused by which person. To solve this data
association problem, we apply a nearest neighbor approach[Cox, 1993], i.e. we
update a filter using the observationzt that is closest to the predicted observation
z−t = Hx̂−t .

To measure the distance between the predicted observation and a given obser-
vation we apply the Mahalanobis distance[Mahalanobis, 1930], which is often
used in cluster analysis as a distance measurement[Everitt, 1974]. The squared
Mahalanobis distanced2

C between two data pointsxi andxj is defined as follows:

d2
C = (xi − xj)

′ · C−1 · (xi − xj). (4.18)

HereC−1 is the inverted covariance matrix of the data set. The advantage of
the Mahalanobis distance compared to the Euclidean distance is that it takes into
account the correlation between the parameters.

Accordingly, in our application the distance between the predicted observation
z−t and a given observationzt is computed as

d2
Pt

= (z−t − zt)
′ · (P−

t )−1 · (z−t − zt), (4.19)

where(P−
t )−1 is the inverted covariance matrix for the predicted statex̂−t .

Since the robot can only cover a restricted area of the environment with its
laser scanner we have to take into account that people disappear out of the field
of view of the robot and that new people enter it. Thus, filters are removed when
no updates can be made (because all observed features are farther away than a
predefined threshold) to a filter for a given period of time (one second in our
implementation). Furthermore, new filters are introduced for features which could
not be associated with any of the existing filters.

As an application example, Figure 4.4 shows laser-range data and the esti-
mated positions of two persons at different time steps. The upper left image shows
the situation in which a second Kalman filter was initialized for the person on the
right. In the following images one can see how the robot keeps track of the posi-
tions of the persons.
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Figure 4.4: Tracking two persons using laser-range data and independent Kalman
filters. A nearest neighbor approach is used to update the filters based on new
observations.

4.4 Experimental Results

To evaluate the capabilities of our approach, we performed extensive experiments.
The experiments illustrate that our method enables a mobile robot to correctly pre-
dict motions of people and to adapt its own behavior accordingly. We furthermore
present an experiment which demonstrates that the behavior of a robot can signif-
icantly be improved by predicting the trajectories using learned motion patterns
compared to the case when the robot performs only a linear prediction. All exper-
iments were carried out using our B21r platform Albert (see Appendix A.1) in the
corridor environment of our laboratory at the University of Freiburg.

4.4.1 Planning Detours

The first experiment is designed to demonstrate that our approach allows a mobile
robot to reliably predict the possible trajectories of a person and to appropriately
incorporate this information into its motion plans.

Here the robot was traveling along the corridor of our building. At the same
time, a person walking in the opposite direction was approaching the robot. Fig-
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Figure 4.5: Albert anticipates that it probably will interfere with the person if it
follows its original trajectory. Therefore the robot moves into a doorway to let the
person pass by (images taken during this experiment are shown in Figure 4.6).

ure 4.5 shows the initial position of the robot and the position of the person when
it was detected by the robot for the first time. Given the existing motion patterns,
possible trajectories led to the resting places 1, 2, 3, 5, 6, and 7 which are also
shown in Figure 4.5. Obviously, all trajectories led through the corridor so that
the robot was likely to interfere with the person. Furthermore, the probability that
the person followed the corridor to go to resting place 2 was very high. Accord-
ingly, the cost-optimal action for the robot was to drive into the doorway to the
right in front of it and to wait there until the person eventually had passed by.

Figure 4.5 shows the trajectory of the person (red line) as well as the trajectory
of the robot (black line). As can be seen from the figure, the person went to the
location 2 and the robot continued to move towards its designated goal point after
the person had walked by. Figure 4.6 shows images of the robot and the person
taken during this experiment.

4.4.2 Giving Space to People

The next experiment described here demonstrates that our technique can also be
used to improve the behavior of the robot even in situations in which the robot is
not performing a navigation task. Furthermore, it demonstrates that the knowl-
edge about typical motion patterns of people can be highly useful to achieve an
intelligent behavior of the robot.

In this particular situation (see Figure 4.7) the robot had no goal point and
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Figure 4.6: To avoid that the person has to slow down Albert moves into the
doorway and continues its way after the person had passed by.

rested in a doorway waiting for instructions. Then it realized that a person was
approaching from the left. According to the learned motion patterns, Albert in-
ferred a high probability that the person would enter the room through the doorway
that it was blocking. The cost-optimal action according to the path planner was to
drive to the middle of the corridor in order to give space to the person. Figure 4.8
shows images taken during this experiment.

If the robot did not take into account learned motion patterns and just per-
formed a linear prediction about the person’s movements or if it did not predict
the movements at all it would not be able to infer the intention of the person to en-
ter the room. Thus, the robot would not react early enough and the person would
have to slow down and wait until the robot moved out of its way.

4.4.3 Multiple Persons

Figure 4.9 shows a situation in which Albert was about to leave a room while two
persons were walking along the corridor and approaching the robot from either
direction. The trajectories of the persons are depicted as solid lines whereas the
designated path of the robot is indicated as a dashed line. Since Albert was not
able to leave the room before personP1 had walked by it stayed in the doorway.
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Figure 4.7: Albert anticipates that the person wants to enter the room through the
doorway which it is blocking. Thus, Albert moves aside in order to let the person
pass by (images taken during this experiment are shown in Figure 4.8).

Figure 4.8: Albert moves away from the doorway in order to let the person enter
the corresponding room.
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Figure 4.9: Albert observes two persons and waits in the doorway until both have
passed it. The dashed path corresponds to the intended path of the robot.

After P1 had passed the doorway the behavior of the robot was mainly influenced
by the trajectory ofP2. SinceP2 continued walking along the corridor Albert
waited until alsoP2 had passed the doorway. If, in contrast,P2 had walked into
one of the offices before passing the robot orP2 had moved at a lower speed,
Albert would have started moving immediately afterP1 had unblocked the robot’s
path.

We repeated this experiment with a reactive collision avoidance system that
does not predict the motions of people[Stachniss and Burgard, 2002]. The robot
directly left the doorway to drive to its designated goal point and blocked the way
of personP1.

4.4.4 A Comparison to Linear Prediction

The following experiment is designed to show that a robot, which takes into ac-
count different motion patterns during path planning, performs significantly better
than a robot that just relies on a linear prediction of the movements of people.

Consider the situation depicted in the left image of Figure 4.10. The robot was
moving along the corridor from left to right to reach its target location, which is
labeled C in the figure. At the position labeled with A the robot detected a person
approaching it. According to the learned motion patterns the person was most
probably walking to resting place 3. The motion patterns which had a sufficiently
high probability are depicted in Figure 4.11 (the thicker the trajectory, the higher
the probability that the person will follow this specific trajectory). Since the prob-
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Figure 4.10: In the left image the robot used the motion patterns to predict future
poses of people. At the position labeled A the robot observed a person approach-
ing it. Based on the learned motion patterns it inferred that the person will en-
ter the room to the north to go to resting place 3 with very high likelihood (see
Figure 4.11). Accordingly, the robot moved forward and waited at the position
labeled B until the person left the corridor. In the right image the robot used a
linear prediction of the trajectory of the person. It anticipated that it will block the
person’s way and thus it moved to the position labeled B. After the person left the
corridor the robot continued approaching its target location.

abilities of the motion patterns with target locations 4 and 8 were very low, the
additional costs introduced to the configuration time-space did not prevent the
robot from driving further along the corridor. Thus, the robot moved to the loca-
tion labeled B in the left image of Figure 4.10 and waited there until the person
entered the room in the north. After that it moved to its target location, which is
labeled C. Figure 4.12 shows images that were taken during this experiment.

We repeated this experiment with a system that does not use the motion pat-
terns and instead predicts the trajectories of people only linearly. The trajectory
of the robot in this experiment is shown in the right image of Figure 4.10. After
the robot detected the person it continued to move and simultaneously replanned
its path using the configuration time space computed based on a linear prediction
of the movements of the person. When it detected that it would block the path of
the person it turned around and moved to the location labeled B in the right image
of Figure 4.10. After it noticed that the person disappeared the robot continued to
its designated target location C.

We performed ten similar experiments for each of the prediction strategies and
measured the time needed to complete the navigation task. The average time for
both systems is shown in Figure 4.13. As can be seen from the graph, the time
can be significantly reduced when taking into account learned motion patterns
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Figure 4.11: Most probable trajectories of the person in the experiment shown in
Figure 4.10. The thicker the trajectory, the higher the probability that the person
follows this motion pattern.

Figure 4.12: Albert moves forward and waits until the likelihood of interfering
with the person is low enough.
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Figure 4.13: Average time needed to complete the navigation task when the robot
performs linear prediction (left column) and when it uses the learned motion pat-
terns (right column) for ten experiments.

compared to the approach that only performs a linear prediction.
We also performed this experiment with the reactive collision avoidance sys-

tem that does not predict the motions of people[Stachniss and Burgard, 2002].
In a situation like the one considered here, the person always had to slow down
because the robot was blocking its path.

4.5 Related Work

In the past, different techniques were introduced to adapt the behavior of a robot
according to a belief about the future motions of people in its surrounding. For
example, the approaches presented by Zhu[1991] and Tadokoroet al. [1995] ap-
ply Hidden Markov Models[Rabiner and Juang, 1986] to predict the motions of
moving obstacles in the vicinity and to choose adequate trajectories for a robot.
Jensenet al. [2003] defined a probabilistic navigation function that takes into
account possible future motions of people for which they define a probabilistic
motion model. Arkinet al. [1993] present a behavior-based technique to avoid
moving obstacles. Their approach computes a collisions zone and repulsive vec-
tors which are used to adapt the trajectory of the robot. Thereby, they assume that
the robot and the moving obstacles maintain their current velocities. Since those
approaches do not learn typical motion patterns, they can only predict short-term
motions and not complete trajectories. The system described by Kruse[1998]
uses cameras to track people and to learn where people typically walk in the en-
vironment. A collision probability field similar to a potential field is computed
which incorporates the average motion behavior of the people. Accordingly, the
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path of the robot is determined so that the likelihood of conflicts is reduced. In
contrast to our system, their goal isnotpredict the motions of observed people and
to actively adapt the trajectory of the robot during motion. When the path of the
robot is blocked the robot stops and replanning is invoked, treating the unforeseen
obstacle as a static obstacle. Foka and Trahanias[2002] proposed to use manually
defined “hot points” which people might be interested in approaching to predict
their movements. Depending on the direction of the movements of the people they
compute probabilities for the hot points. These probabilities are then integrated
into the reward function of an POMDP (Partially Observable Markov Decision
Process[Kaelblinget al., 1998]) which is used to compute the robot’s path. Ill-
mannet al. [2002] presented an approach to acquire basic motion patterns like
straight motion, wandering aimlessly, or entering a queue. Their goal is to predict
short-term motions of surrounding people using the learned motion patterns so
that a mobile robot can chose adequate behaviors. Riley and Veloso[2002a] try
to predict the behavior of opponent agents in the RoboCup domain using given
models. Depending on the belief about the strategy of the opponents they create
new setplays for their own team by performing a hill-climbing search in their plan
space. However, since they do not have monitoring actions they are not able to
react to unforeseen events. They only create new setplays for the robots when
the game is stopped. Kasperet al. [2001] presented an approach to improve the
behavior of a robot by following the activities of a teacher. Lavalleet al. [1997]
developed a system which is able to keep track of a moving target even in the case
of possible occlusions by static obstacles in the environment. González-Bãnos
et al. [2002] presented a modified version that works without a prior map of the
environment. A major difference between the latter approaches and our technique
lies in the different evaluation functions. Whereas Kasperet al. seek to optimize
the navigation skills, Lavalleet al. and Gonźalez-Bãnoset al. generate actions
to maximize the probability of future visibility of a moving object even in the
presence of obstacles. The approach presented here, in contrast, has the goal to
minimize the risk of interfering with people given knowledge about their typi-
cal motion patterns. In the work of Rosencrantzet al. [2003] a team of robots
tries to locate and tag “enemies” which are not always in their perceptual field of
view. The movements for the observer robots are coordinated so that the infor-
mation gain is maximized and the search time minimized. Feyrer and Zell[2000]
use an artificial potential field to pursue people in real-time using a combination
of vision and laser data while avoiding collisions with obstacles. Furthermore,
some multi-robot systems have been developed that keep track of multiple mov-
ing objects[Parker, 1997, Murrieta-Cidet al., 2002, Jung and Sukhatme, 2002]
or surround a moving target[Pirjanian and Matarić, 2000]. Those systems also
focus on the generation of appropriate actions in order to be able to keep track of
moving targets.
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4.6 Conclusion

In this chapter we presented a method for adapting motion strategies of a mobile
robot according to the activities of people in its vicinity. Our approach uses the
motion patterns learned from real data which were introduced in the previous
chapter. These patterns are utilized to predict the motions of people sensed by the
robot. To compute cost-optimal paths that minimize the risk of interfering with
a person we consider the configuration time-space of the robot. The integration
of the estimated motion patterns of the people into the path planning allows the
robot to adapt its behavior more appropriately and at an earlier stage than purely
reactive approaches.

Our technique has been implemented and applied to data recorded by our
mobile robot equipped with a laser-range sensor. The current implementation
is highly efficient and allows the robot to quickly react to its sensory input. In
several experiments we demonstrated that the behavior of a mobile robot can ap-
propriately be adapted by predicting the motions of people in the vicinity. The ex-
periments furthermore illustrated advantages over standard reactive systems and
over systems that do not take into account the motion patterns and instead predict
the trajectories of people only linearly.
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Chapter 5

Using Hidden Markov Models to
Estimate the Positions of Multiple
Persons

5.1 Introduction

Mobile robots that provide service to people can carry out their tasks more ef-
ficiently if they know where the people are. In this chapter we investigate the
problem of how a robot can effectively maintain a probabilistic belief about the
positions of the people in its environment. The robot is equipped with know-
ledge about typical motion behaviors of people in form of Hidden Markov Mod-
els (HMMs) [Rabiner and Juang, 1986], which are derived from given motion
patterns. The motion patterns which are learned using the technique presented in
Chapter 3 can be regarded as the “input” to the derivation process presented this
chapter. We do not learn the structure and parameters of the HMMs used here.
Instead, they are automatically derived from the learned motion patterns. The
HMMs are updated based on vision and laser information. By incorporating vi-
sion data the robot is able to distinguish between different persons. Thus, different
motion patterns can be used for the individual persons which move through the
environment. In contrast to the approach presented in Chapter 4, using the HMMs
the robot not only is able to estimate the positions of people and infer their fu-
ture movements when they are in its field of view. The robot maintains a belief
about the positions of the people atanypoint in time. It can robustly estimate the
positions of multiple persons even if they are currently outside its field of view.
While the robot is carrying out its task it applies a decision-theoretic approach to
actively select points in the environment that are expected to provide information
about the positions of people.
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This chapter is organized as follows. In Section 5.2 we first introduce Markov
Chains and Hidden Markov Models. Section 5.3 contains a description of how we
derive HMMs from the learned motion patterns to predict motions of people. In
Section 5.4 we explain our technique to detect and identify people using sensor
data. Section 5.5 introduces our strategy how to decide if and which observa-
tion action should be executed to update the robot’s belief. Section 5.6 describes
experimental results illustrating the robustness of our approach to maintain an
accurate belief about the positions of people using laser and vision data with a
mobile robot. Finally, Section 5.7 contains a discussion of related work.

5.2 Markov Chains and Hidden Markov Models

In this section we first explain the key concepts of Markov Chains and then intro-
duce Hidden Markov Models, which are an extension of Markov Chains.

5.2.1 Markov Chains

A Markov chain[Cox and Miller, 1965] is a finite state machine and is used to
model the behavior of a system. The parameters of this model are the initial state
distribution and the probabilities for each state transition. Letξt denote the state
of the system at time stept. ξt is a random variable ranging over the set of possible
statesρ = {ρ1, . . . , ρN}. The initial state distribution indicates for eachρi ∈ ρ
the probability that the systems starts in this particular state, i.e., it specifies the
probabilityP (ξ1 = ρi) for all ρi. The transition probabilities of a Markov chain
indicate which state follows which other state, i.e., they specify for each pairρj
andρi the probabilityP (ξt+1 = ρj|ξt = ρi) that the next state isρj given that the
current state isρi.

For any sequence of statesξ = {ξ1, ξ2, . . . , ξT} we can write the probability
of ξ as:

P (ξ) = P (ξT , . . . , ξ1)

= P (ξT |ξT−1, . . . , ξ1) · . . . · P (ξ2|ξ1) · P (ξ1), (5.1)

by applying the product rule (see Appendix A.2.2) several times. The key property
of a Markov chain is that the probability of the value of the successor stateξt+1

depends only on the value of the current stateξt. The history of the states of the
system does not add any new information. Accordingly, the following holds:

P (ξt+1|ξt, . . . , ξ1) = P (ξt+1|ξt). (5.2)
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Applying this to Eq. (5.1) yields:

P (ξ) = P (ξT , . . . , ξ1)

= P (ξT |ξT−1) · P (ξT−1|ξT−2) · . . . · P (ξ2|ξ1) · P (ξ1). (5.3)

The property that only the current state gives information about the future behav-
ior of the system is called theMarkov property. Thus, in applications in which the
Markov property is satisfied, knowledge about the history of the states of the sys-
tem does not add any new information and does not help to predict future states.
In our application domain the Markov property is generallynot satisfied.

To illustrate this, see the situation depicted in the left image of Figure 5.1.
Suppose the person starts moving at locationA. When it reaches locationB one
cannot predict which direction the person will go assuming that the next state (the
next position of the person) only depends on the current state. However, if we
know that the person started at locationA and given we have information about
typical motion patterns of people (see center image of Figure 5.1), we can infer
that the person will go to the right as depicted in the right image of Figure 5.11.

We model the fact that the behavior of the person varies depending on the
actual intention the person has by taking into account the learned motion patterns.
We encode in each state the position and additionally the motion patterns to which
it belongs. As a result, our model is able to differentiate between various motion
patterns the person might follow and automatically chooses the correct transitions.
Using this representation of a person’s state the Markov property is satisfied.

5.2.2 Hidden Markov Models (HMMs)

When using a Markov chain to model the behavior of a system it is assumed that
there is a one-to-one correspondence between states and observations. This is no
longer satisfied for Hidden Markov Models (HMMs)[Rabiner and Juang, 1986].
Thus, when using an HMM to model the behavior of a system, it is assumed that
it is not possible to tell what state the system is in when an observation is made.

We have to use an HMM since the current states of the people are not directly
observable. The robot’s sensors are generally not working perfectly and we cannot
completely be sure about the position of a person when sensor information is
provided. Thus, we have to compute a probability distribution over the possible
positions given an observation.

In addition to the initial probability distribution and the state transition model,
the observation probabilities are further parameters which have to be specified
when using an HMM. For each state of the system a probability distribution

1Note that such observations that the incorporation of higher level knowledge improves the
prediction performance have also been reported by Buiet al. [2001] and Murphy[2002].
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Figure 5.1: If one assumes that the next state only depends on the current state
the next position of the person cannot be predicted when it is at locationB (left
image). However, if we know that the person started at locationA and if we take
into account the different motion patterns (see center image) than it is easy to
conclude that the person will go to the right (right image).

over the possible observations has to be defined. Letzt denote the observa-
tion at time stept. Assuming there areW possible observations we havezt ∈
{o1, . . . , oW}. The observation model specifies for each pair ofow and ρi the
probabilityP (zt = ow|ξt = ρi). To incorporate an observationzt into an HMM
Bayes’ Rule is applied:

P (ξt = ρi | zt = ow) = η · P (zt = ow | ξt = ρi) · P (ξt = ρi). (5.4)

Here η is a normalizer which ensures that the probabilities some up to 1 over
all possible states. Thus, the probability that the system is in stateρi at time
stept, given the observationow, is computed by multiplying the likelihood of the
observationow given the system is in stateρi with the prior probability of the
system to be in stateρi. Figure 5.2 illustrates the dependencies of the individual
components of an HMM.

5.3 Deriving an HMM from Learned Motion Pat-
terns

In Chapter 3 we described our approach to learning motion patterns of people.
In the following we show how to derive the transition probabilities of the HMMs
from these learned patterns that can be used to predict the motions of people.

As explained before, people usually do not permanently move. Rather they
typically move between resting places where stay for a certain period of time.
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zt zt+1

Figure 5.2: Illustration of dependencies in an HMM.

To derive an HMM from the learned motion patterns of a person we therefore
distinguish two types of states. The first class of states correspond to the resting
places. To connect these states we introduce so-called intermediate states which
lie on the trajectories given by the learned motion patterns. In our current system
we use a sequence ofLm intermediate statesρ1

m, . . . , ρ
Lm
m for each motion pattern

θm. The intermediate states are distributed overθm such that the distance between
two consecutive states is∆ρ = 50cm. Given this equidistant distribution of the
intermediate states and assuming a constant speedv with standard deviationσv
of the person, the transition probabilities of this HMM depend on the length∆t

of the time interval between consecutive updates of the HMM as well as onv
andσv. In our current system this value is set to∆t = 0.5sec. Accordingly, we
compute the probabilityP (ρ′m|ρm,∆t) that the person is in stateρ′m afterρm in
the direction of the motion pattern given its current state isρm and given that the
time∆t has elapsed as:

P (ρ′m|ρm,∆t) =

∫ ρ′m+
∆ρ
2

ρ′m−∆ρ
2

N (ρm + v ·∆t, σv, ρ) dρ. (5.5)

HereN (ρm + v · ∆t, σv, ρ) is the quantity obtained by evaluating the Gaussian
with meanρm + v ·∆t and standard deviationσv atρ.

The transition probabilities for the resting places are computed based on a
statistics about the average time period that elapses until the person starts to move
on a particular trajectory after arriving at the corresponding resting place.

5.4 Person Detection and Identification

In Chapter 4 we introduced the Kalman filter approach to track the positions of
people. One obvious drawback of this approach is that it can only represent Gaus-
sian (unimodal) probability distributions. In several situations it can be more ap-
propriate to represent the belief about the position of a person by a multimodal
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distribution. This can be the case if, for example, the person is not in the field
of view anymore. Thus, one advantage of using HMMs is that they can represent
such multimodal beliefs. Furthermore, by using HMMs one is able to utilize even
negative information to update the belief. Such negative information is, for exam-
ple, obtained in situations in which the robot does not detect a specific person. In
these situations the robot can update the statesin its field of view as well as the
statesoutsideits field of view with this observation. Accordingly, the probabilities
of the states outside the field of view will increase whereas the probabilities of the
states in the field of view will decrease. In the following we describe how we use
HMMs to maintain a belief about the positions of multiple persons.

To keep track of multiple persons in an environment, one in principle would
have to maintain a belief over the joint state space of all persons. This approach,
however, is usually not feasible since the complexity of the state estimation prob-
lem grows exponentially with the number of persons. Additionally, learning the
joint transition probability distribution would require a huge amount of training
data. Therefore, we approximate the posterior by factorizing the belief over the
joint state space and consider independent beliefs over the states of all persons.
Thus, we use an individual HMM to represent the belief about the position of each
person. To maintain the individual beliefs we need to be able to update the HMMs
for the persons based on observations made by the robot, which requires the abil-
ity to reliably detect people and to identify them. To achieve this, our current
systems combines laser and vision information.

To detect people in the laser-range scans obtained with the robot our system
extracts features which are local minima that correspond to the people’s legs. We
also need to be able to identify a person in order to appropriately update the belief
about the location of that person. To achieve this we employ the vision system of
our robot and learn an image database beforehand. For each person this database
contains one histogram which is built from 20 images. To identify a person, we
proceed as follows. Every time the laser-based people detection system reports a
feature in the field of view of the camera, an image is collected and the following
three steps are applied:

1. Segmentation:We extract a rectangular area containing the person from the
image. To determine the area in the image corresponding to a feature de-
tected by the laser-based people detection system, we rely on an accurate
calibration between the camera and the laser. We use a perspective projec-
tion to map the 3D position of the person in world coordinates to 2D image
coordinates.

2. Color histograms:We compute a color histogram for the area selected in the
previous step. Whereas color histograms are robust with respect to transla-
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Figure 5.3: Typical scene with two persons walking along the corridor (left im-
age) and corresponding estimate of the laser-based people detection system (right
image).

tion, rotation, scale and to any kind of geometric distortions they are sensi-
tive to varying lighting conditions. To handle this problem we consider the
HSV (Hue-Saturation-Value) color space. In this color model the intensity
factor can be separated so that its influence is reduced. In our current system
we ignore this factor and consider only the hue and saturation values. As a
result our system shows a quite robust behavior even under varying lighting
conditions.

3. Database matching:To determine the likelihood that the area extracted in
the segmentation step contains a particular person, we compare the his-
togram computed in step 2 to all prototypes existing in the database. As
a measure of similarity between a query histogramq with a prototypeπ in
the database we use the normalized intersection norm[Swain and Ballard,
1991]. This quantity is computed as:

H(q, π) =

∑B
b=1 min(qb, πb)∑B

b=1 πb
, (5.6)

whereq andπ are color histograms both havingB bins. One advantage of
this norm is that it also allows to compare partial views, i.e.,when the person
is close to the camera and only a part of it is visible.

As an application example consider the situation depicted in the left image
of Figure 5.3. In this particular situation two persons (personB and personC)
were walking along the corridor within the perceptual field of the robot. The
right image of Figure 5.3 shows the estimate of the laser-based people detection
system at the same point in time. The corresponding image obtained with the
robot’s camera is shown in the left image of Figure 5.4. The two segments of
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Figure 5.4: Segmentation of the two persons from the image grabbed with the
camera of the robot (left image) and the similarity between the color histograms
(see Figure 5.5) of the extracted segments and the data base prototypes (right
image).
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Figure 5.5: Corresponding color histograms for the left and right segment shown
in Figure 5.4 (left image).

the image that correspond to the two features detected by the laser-based people
detection system are also shown in this image. Figure 5.5 depicts the resulting
color histograms of the two extracted segments. The right image of Figure 5.4
plots the similarities between these histograms and the three prototypes stored in
the data base.

Since we consider independent beliefs over the states of the persons we have
to determine which feature is caused by which person and we have to update
each HMM depending on the likelihood that the corresponding person has been
observed. For that purpose we apply Joint Probabilistic Data Association Filters
(JPDAFs)[Cox, 1993] which are introduced in the following.

Let ξt = {ξt1, . . . , ξtR} denote the state of theR persons we are tracking at
time t. Eachξtr is a random variable ranging over the state space of a single per-
son. A measurement at timet is denoted aszt = {zt1, . . . , ztSt}. Here,St is the
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number of features detected at timet. In our case, eachzts is the position of a fea-
ture provided by the laser-based people detector together with the corresponding
similarity values provided by the vision system. If the detected feature is not in
the field of view of the camera we assume that the similarity values are uniformly
distributed over all data base images.

To incorporate observationsz(1:t) into the HMM of personr we apply the
recursive Bayesian update scheme (see also Eq. (5.4)):

P (ξtr | z(1:t)) = η P (zt | ξtr) P (ξtr | z(1:t−1)). (5.7)

Here,η is a normalization factor andz(1:t) denotes the sequence of all measure-
ments up to timet.

Since we do not know which of the features inzt is caused by personr, we fol-
low the idea of Joint Probabilistic Data Association Filters and integrate the single
features according to the assignment probabilityλsr that featurezts corresponds to
personr:

P (ξtr | z(1:t)) = η
St∑
s=0

λsrP (zts | ξtr) P (ξtr | z(1:t−1)). (5.8)

To computeλsr one considers so-called joint association events. Each such eventψ
is a set of pairs(s, r) ∈ {0, . . . , St}×{1, . . . , R} that determines which feature is
assigned to which person. Note that the featurezt0 is used here to model situations
in which a personr has not been detected, i.e., no feature has been obtained forr.
This is represented in the association event as(0, r).

The set of all joint association events which assign featurezts to personr is
denoted asΨsr. At time t the JPDAF computes the posterior probability that
featurezts is caused by personr according to[Cox, 1993]:

λsr =
∑
ψ∈Ψsr

P (ψ | z(1:t)). (5.9)

As derived in Appendix A.4 the termP (ψ | z(1:t)) can be approximated by:

P (ψ | z(1:t)) ≈ η′
∫
P (zt | ψ, ξt) P (ψ | ξt) P (ξt | z(1:t−1)) dξt. (5.10)

Here,η′ is a normalizer ensuring thatP (ψ | z(1:t)) sums up to one over allψ.
Under the assumption that all assignments have the same likelihood,P (ψ | ξt)
can be approximated by a constant.

The termP (zt | ψ, ξt) denotes the likelihood of making an observation given
the state of the persons and a specific assignmentψ between the features and the
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persons. In order to determine this quantity, we have to consider false alarms
which occur if a feature is not caused by any of the persons that are tracked using
the HMMs. Letγ denote the probability that an observed feature is a false alarm.
The number of false alarms contained in an association eventψ is given byφ =
St−A whereA = R−‖{(0, ·) ∈ ψ}‖ is the number of persons to which features
have been assigned. Thus,γφ is the probability assigned to all false alarms inzt

givenψ. If we assume that the features are detected independently of each other,
the termP (zt | ψ, ξt) can be computed as the product over all association pairs:

P (zt | ψ, ξt) = γφ
∏

(j,i)∈ψ

P (ztj | ξti). (5.11)

By inserting Eq. (5.11) into Eq. (5.10), assuming thatP (ψ | ξt) is constant, and
after inserting the result into Eq. (5.9) we obtain the following equation for the
probability that featurezts is caused by personr:

λsr =
∑
ψ∈Ψsr

η′ γφ ∫ ∏
(j,i)∈ψ

P (ztj | ξti) P (ξt | z(1:t−1))dξt

 . (5.12)

This term can be rearranged to (see Appendix A.5):

λsr =
∑
ψ∈Ψsr

η′ γφ ∏
(j,i)∈ψ

∫
ξt
i

P (ztj | ξti) P (ξti | z(1:t−1))dξti

 . (5.13)

Since we use HMMs to represent the belief about the states of the persons the
integration in Eq. (5.13) corresponds to summing over all states of the HMM for
the particular person.

It remains to describe how the termP (ztj | ξti) is computed. As explained
above, eachztj consists of the positionytj of the featurej at timet and the sim-
ilarity measureH(qtj, πi) between the query histogramqtj of the corresponding
segment in the camera image and the database histogram of personi. In our
current system we use the following approximation to compute the likelihood
P (ytj, H(qtj, πi) | ξti), which has turned out to yield satisfactory results in practice:

P (ztj | ξti) = P (ytj, H(qtj, πi) | ξti) ≈ H(qtj, πi) P (ytj | ξti). (5.14)

Here,P (ytj | ξti) is the probability that the laser-based people detection system
reports a feature detection at locationytj given that the person is in stateξti . We
compute this quantity using a mixture of a uniform distribution and a bounded
Gaussian with meanytj. Note that we also take into account visibility constraints,
i.e., states that are occluded are regarded as states outside the bounded Gaussian.
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In the case that no feature has been obtained for a person we use the likelihood of
false negative observations for such states that are within the range of the robot’s
sensors. For all other states we use the average likelihood that the robot does not
detect a person given it is outside the robot’s sensor range.

5.5 Active Localization of People

As the experiments in Section 5.6.1 will show using the derived HMMs and the
presented observation model the robot is able to track the positions of multiple
persons. The robot is even able to reliably maintain a belief when the people leave
its field of view. However, since the robot becomes uncertain about the position
of a person when it has not been observing the person for a longer period of time,
it should consider to actively perform observation actions to update its belief.
An observation action corresponds to moving to a place in the environment and
obtaining a sensor measurement there. In this context two aspects are relevant.
On one hand, the information gain should be as large as possible, and on the other
hand, the cost of performing observation actions should be minimized.

To determine the uncertainty in the belief about the positions of the people we
consider the entropy of the posteriors which is a general measure for the uncer-
tainty. The entropyH of the posteriorBel r about possible statesρ1, . . . , ρNr of
personr is defined as:

H(Bel r) = −
Nr∑
i=1

Bel r(ρi) · log Bel r(ρi). (5.15)

H is maximal in case of a uniform distribution. The minimal value zero is obtained
if the robot is absolutely certain about the current position of personr.

To take into account the information provided by the sensors of the robot, we
compute the expected information gain which is the expected change of entropy
given that the robot obtains sensor information. The information gainI for the
posteriorBel r given an observationz is defined as:

I(Bel r | z) = H(Bel r)−H(Bel r | z). (5.16)

Here,H(Bel r|z) is the entropy of the posterior about the position of personr after
integrating the observationz.

Note that the problem considered here – choosing the optimal action sequence
– can be regarded as a partially observable Markov decision process (POMDP)
problem (see the article by Kaelblinget al.[1998] for a comprehensive overview).
Since solving the POMDP for applications of the size considered here is not feasi-
ble in practice we follow an approach that makes several simplifying assumptions
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and has been applied successfully for a similar problem in the past[Fox et al.,
1998]. First, we use a restricted set of potential observation actions that the robot
can carry out. Since we assume that the people stay at the resting places most of
the time we only consider observation actions at viewpoints for the resting places.
Furthermore, we consider only one observation per task and do not consider all
potential measurements perceived by the robot while it is carrying out its task.

Additionally, we take the possibility into account that the robot can observe a
resting place whenever it arrives at the final location of its current task. The case
that no part of the HMM can be observed after the robot arrived at its goal can be
regarded as a special case of this.

Since we do not know what the robot will perceive when it has executed its
taska, we have to sum over all possible observationsza to compute the expected
information gain forBel r:

E(Bel r|a) =
∑
za

P (za | Bel r) · I(Bel r | za). (5.17)

To efficiently compute the likelihoodP (za | Bel r) we do not integrate over all
possible measurements. Instead, we consider abstract observations namely that
the robot identifies/does not identify the person given it is at the observed resting
place or not. The corresponding likelihoods are the average detection respectively
failure rates. The overall expected information gainE (a) for the taska is given
by the sum of the individual expected information gains for the posteriors of allR
persons after executinga:

E(a) =
R∑
r=1

E(Bel r|a). (5.18)

The expected utility ofa can now be defined as:

EU (a) = reward(a)− cost(a) + E(a). (5.19)

Here,reward(a) specifies a reward function which depends on the utility of fin-
ishinga andcost(a) are the cost of executinga.

During the execution of its current task, the robot considers additional obser-
vations of resting places. To reduce complexity we compute viewpoints for the
resting places. From these viewpoints the robot can observe if a person is cur-
rently staying at the corresponding resting place.

To compute the viewpoints we proceed as follows: We perform two deter-
ministic value iterations (see for example[Sutton and Barto, 1998]) in the static
2D occupancy grid map of the environment: The start of first value iteration is
the target location of the current task and the start of the second value iteration is
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the robot’s current position. For each resting placel we compute a visibility area,
i.e. the set of grid cells from whichl is visible. The view-point forl is then defined
as the cell in its visibility area which has the lowest move cost. To determine the
move cost for a cell〈x, y〉 we can simply add the costs for reaching〈x, y〉 from
the start location and for reaching the final location from〈x, y〉.

The action of moving to the viewpoint corresponding to a resting placel to get
an observation is referred to asa1 and the action of driving froml to the original
target location is referred to asa2. Letal = a1⊕a2 be the whole action consisting
of a2 executed aftera1. The expected utility ofal is given by:

EU(al) = reward(a1 ⊕ a2)− cost(a1 ⊕ a2) + E(a1 ⊕ a2). (5.20)

Note that botha1 anda2 depend on the resting placel. However, to enhance
readability we omitted the argumentl. The expected information gain fora1 ⊕ a2

can be computed as:

E(a1 ⊕ a2) =
R∑
r=1

∑
za1

∑
za2

P (za1 | Bel r) · P (za2 | Bel r) · I(Bel r | za1 , za2). (5.21)

During the execution of its current taska the robot moves to the viewpoint corre-
sponding to resting placel∗ with

l∗ = argmax
l∈{l1,...,lN}

EU(al) (5.22)

wheneverEU(al∗) > EU(a). Here,l1, . . . , lN are the resting places.

5.6 Experimental Results

To analyze the applicability of the HMMs for the prediction of the locations of
a person we performed several experiments with our B21r robot Albert (see Ap-
pendix A.1) in our office environment. The Hidden Markov Model used to carry
out these experiments was computed based on data recorded in our office en-
vironment. During the acquisition phase the average speed of the person was
v = 107cm/sec with a standard deviation ofσv = 25cm/sec. The possible tran-
sitions of the Hidden Markov Model that was derived from the learned motion
patterns in the office environment is shown in Figure 5.6. Whereas the numbered
squares indicate the eight resting places, the small circles on the trajectories are
the intermediate states.

The experiments described in this section are designed to illustrate that our
approach can be used to maintain a robust belief about the positions of multiple
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Figure 5.6: Possible transitions of the Hidden Markov Model derived from learned
motion patterns. The numbered squares indicate the eight resting places. The
small circles on the trajectories correspond to the intermediate states.

persons. We furthermore demonstrate that by using our decision-theoretic ap-
proach a mobile robot can choose appropriate observation actions that reduce its
uncertainty.

5.6.1 Tracking People

The first experiments are designed to illustrate that our approach enables a robot
to reliably estimate the positions of people in its environment, even when they
leave its field of view.

Tracking a Single Person

In the first experiment, a single person was moving in our department and the task
of the robot, was to estimate the positions of this person. Especially, we were
interested in the probability that the person stayed at the correct resting place.

Figures 5.7 and 5.8 show a scene overview (left hand side) for a part of an
experiment in which the person was walking through the environment. The robot
could only cover a part of the environment with its sensors but even though it
was able to maintain and update the belief about the position of the person at any
point in time. The center images of the figures depict the results of the laser-
based feature detection system and the images on the right hand side show the
corresponding beliefs about the position of the person after integrating the obser-
vations. In this case we did not use vision information because we assumed only
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one person was moving in the environment. In the images on the right hand side
the red dot corresponds to the position of the person provided by the laser-based
feature detection system. The size of the squares of the intermediate states of the
HMM represents the probability that the person is currently in the correspond-
ing state. Additionally, the resting places are labeled with the probability that the
person stays at this particular place.

In the images depicted the first two rows of Figure 5.7 the robot observed the
person walking through the corridor. Accordingly, it assigned high likelihood to
the states close to the detected feature. After the person entered the room and
moved outside the field of view of the robot most of the probability mass “wan-
dered” to resting place 7 (third and forth row of Figure 5.7) which was according
to the transition probabilities encoded in the HMM. In the situation shown in the
images of the first two rows depicted in Figure 5.8 the robot still had not been
perceiving the person. As can be seen, even if the robot was not observing the
person it inferred that, according to the transition probabilities, there was a high
chance that the person left resting place 7 in direction of resting place 6. Finally,
the person entered the corridor again (penultimate row of images). Thus, the robot
could update its belief according to the new observations.

Figure 5.9 plots for different resting places the probability that the person
stayed at this particular place over time. The red, green, and blue curve corre-
spond to resting places 3, 7, and 6 respectively. Whereas the x-axis represents the
individual time steps, the y-axis indicates the probability. The graph also includes
the ground truth, which is indicated by the corresponding horizontal line-pattern
at the .9 level. The images shown in Figures 5.7 and 5.8 correspond roughly to
the time steps 37-57. As can be seen from the figure, the system can reliably de-
termine the location of the person. During this experiment the robot predicted the
correct position of the person in 93% of the time.

Estimating the Locations of Multiple Persons

As an application example with multiple persons consider the situation depicted
Figure 5.10. In this experiment the database of the robot consisted of three per-
sons. For all three persons we used identical motion patterns and transition prob-
abilities in the HMMs. In the situation described here the robot was initially quite
certain that personsA andB were in the room containing resting place 3. Then
the robot observed a person leaving the room (see images in the first row of Fig-
ure 5.10). The grey circles labeled with names indicate the position provided by
the laser-based feature detection system. Since the robot did not get vision in-
formation at this particular time step it was uncertain who the person was. Note
that we use uniform similarity values for all database images in such situations.
The intensity of the circle represents the similarity between the extracted segment
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Figure 5.7: Albert tracking a person while she is moving through the environment.
The center images depict the results of the laser-based feature detection system.
The images on the right hand side show the evolution of the belief over the position
of the person after integrating the observations. The size of the squares represents
the probability that the person is currently in the corresponding intermediate state
and the resting places are also labeled with the probability that the person stays
currently there. Even if the robot does not observe the person any more it is able
correctly infer that the person is going to resting place 7 (last row). See Figure 5.8
for the continuation of the experiment.
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Figure 5.8: Continuation of the experiment shown in Figure 5.7. Even if the robot
is not observing the person (situations in the first two rows) it is able to maintain
a belief about her position. As soon as the person enters its field of view again the
robot updates its belief accordingly (last two rows).
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Figure 5.9: Evolution of the probability of the person to be at the different resting
places over the time. The ground truth is indicated by the horizontal line-pattern
at the .9 level.

and the database images of the person corresponding to the HMM (the darker
the more likely). Again, the size of the squares represents the probability that
the person is currently in the corresponding intermediate state and the probabil-
ities of the resting places are indicated by numbers. In the images shown in the
second row a second person entered the corridor. Now the robot received vision
information and updated the individual HMMs according to the data association
probabilities computed by the JPDAF. At that time step we had the following in-
formation from the vision-based people identification system: The person which
had first entered the corridor was personA with a likelihood of .65 and personB
with likelihood .31, the second person was personA with a likelihood of .2 and
personB with likelihood .76 (note that our database contained a further person).
In the situation shown in the images in the third row the robot was still observing
the two persons. At that time step we had the following likelihoods: The person
which had first entered the corridor was personA with a likelihood of .73 and
personB with likelihood .23, the second person was personA with a likelihood
of .21 and personB with likelihood .75. During the next time steps both persons
left the field of view of the robot but nevertheless the robot was able to maintain
an adequate belief about their positions (see images in the fourth and fifth row of
the figure).
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Figure 5.10:This figure shows an experiment with two persons. Whereas the left column
depicts the belief about the position of personA the right column shows the belief about
the position of personB. The circles labeled with names are detected features. The grey
value of each circle represents the similarity to the person corresponding to the HMM.
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5.6.2 Deciding to Perform Observation Actions

During the following experiments the robot considered to interrupt its current task
to perform an observation actions every 0.5 seconds. In the experiments shown
here we assume thatreward(a) is equal for all actionsa. The results obtained
illustrate that our system allows the robot to actively perform observation actions
and to use these actions to reduce its uncertainty about the current positions of the
people in its environment.

Performing an Observation Action During Task Execution

The goal of the first experiment is to illustrate that our algorithm can effectively
guide the robot to viewpoints that provide information about positions of people
when needed. The task of the robot was to move from the position marked with
t = 0 in Figure 5.11 to resting place 4. In the initial situation the viewpoint of rest-
ing place 3 had the highest expected utility because the robot was uncertain about
the current position of personA (see initial belief in Figure 5.12) and because the
additional move cost for viewpoint 3 were very low. Therefore, the robot decided
to observe resting place 3 at time stept = 50. The robot detected personA and as
can be seen in Figure 5.12 updated its belief accordingly. If, in contrast to this, the
robot in the same situation does not perform an observation action at viewpoint 3
and moves directly to its target location, its belief about the position of personA
would not improve over time. This fact is illustrated in Figure 5.13. In all the fig-
ures we only show posteriors of the relevant resting places to enhance readability.
In a similar experiment, in which the robot was quite sure that personAwas in her
office, it did not stop at the viewpoint because the expected utility was not high
enough. Note that the posterior probability for being at resting place 7 decreased
at time stept = 20 (Figures 5.12 and 5.13), because the robot did not observe
personA there when it traveled along the corridor and happened to look into the
room containing resting place 7.

Actively Searching for a Person

The second experiment has been designed to illustrate that the robot can deal
with ambiguities and that it can decrease its uncertainty about the positions of the
person by integrating negative information. Here the robot was standing in the
middle of the corridor looking to the east (see right image of Figure 5.14) and
had currently no task to execute. At around time stept = 20 the robot observed
a person walking to the east. A scene overview is depicted in the left image of
Figure 5.14. According to the camera information the detected person was most
likely personB, who had previously been staying at resting place 4. The resulting
posterior about the position of personB after integrating a part of the observation
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Figure 5.11: The robot decides to stop at the viewpoint to check whether personA
is in her room at resting place 3 or not while it is executing a task.
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Figure 5.12: Evolution of the probability of personA to be at different resting
places over time for the experiment shown in Figure 5.11. As can be seen at time
stept = 50 when the robot detects personA at resting place 3 it updates its belief
accordingly.
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Figure 5.13: Evolution of the probability of personA to be at different resting
places over time when the robot doesnot stop at the viewpoint to perform an
observation action.

sequence is depicted in Figure 5.15. The circle labeled personB corresponds to
the position provided by the laser-based feature detection system. At around time
stept = 30 personB disappeared out of the field of view of the robot and walked
through the office containing resting place 7 to resting place 6. Since the robot
was uncertain to which resting place personB was going to, it decided to search
for him.

According to the transition probabilities of the resting places, the robot be-
lieved that personB most likely walked to resting place 6. Still, the probability of
resting place 7 was quite high (see Figure 5.16). Even the probability of resting
place 3 increased since the robot did not assume that its sensor information is per-
fect and since it knew that – according to the HMM – personB sometimes walks
to resting place 3 and stays there for a short period of time. Since the viewpoint
corresponding to resting place 7 had the highest expected utility (see Figure 5.17),
the robot decided to move there to perform the corresponding observation action
(see right image of Figure 5.14). In this example, the robot did not observe per-
sonB at resting place 7 so that, after the update of the HMM, personB was most
likely at resting place 6. Figure 5.16 shows the evolution of the belief about the
position of personB during this experiment. As can be seen, the probability of
personB to be at resting place 6 rapidly increased at time stept = 73 when the
robot checked resting place 7 and did not detect him there.
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Figure 5.14: The left image shows personB walking down the corridor. It enters
the room containing resting place 7 and walks to resting place 6 in the neighbor
room. Since the robot is uncertain where personB is going to after he moved
out of the field of view, the robot decides to search for him. Since the viewpoint
corresponding to resting place 7 has the highest expected utility the robot moves
there to perform an observation action (right image).

Figure 5.15: The robot detects that personB walks away through the corridor.
Shown here is the belief about the position of personB after integrating part of
the observation sequence.
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Figure 5.16: Evolution of the probability of personB to be at different resting
places over time. When the robot does not detect a person at resting place 7 (time
stept = 73) it infers that personB is probably staying at resting place 6.
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Figure 5.17: Expected utilities of different viewpoints at the time step where the
robot decides to move. Herea is the current task the robot is executing.
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Figure 5.18: In this experiment the robot detects a person in the corridor. Since
the robot is uncertain who the person is the probability that personB still stays
at resting place 4 remains high even if it was him who walked down the corridor.
Shown here is the belief about the position of personB after integrating part of
the observation sequence.

Keeping Track of Multiple Person

The final experiment described in this section is designed to illustrate that the
robot can actively maintain a belief about the positions of multiple persons. In
this particular experiment the robot was keeping track of two persons and was
standing at the same place as in the beginning of the previous experiment.

Initially the robot believed that personA andB were most likely at resting
place 4. At around time stept = 15 the robot observed one person walking to the
east along the corridor and entering the office containing resting place 7. Since
the similarity measures between the extracted segment in the camera image and
the database histograms of personA andB were ambiguous, the robot was rather
uncertain which person it had observed. The similarity between the corresponding
segment in the camera image and the database image of personB was only slightly
higher than the similarity to the database image of personA. More precisely, the
likelihood that the detected person was personB was 0.57 and the likelihood of
personA was 0.43. Therefore, the probability of personB, who actually walked
down the corridor, to be at resting place 4 remained high. Figure 5.18 depicts the
posterior about the position of personB after integrating part of the observation
sequence. At around time stept = 25 the robot decided to turn to resting place 4
to check which person was still there (Figure 5.19 depicts the situation). The robot
identified personA at time stept = 35 and updated its belief accordingly. As can
be seen in the upper image of Figure 5.20 the probabilities that personB was at
the resting places 6 and 7 immediately increased after the inspection of resting
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Figure 5.19: Initially the robot was quite certain that personsA andB both were
in the room containing resting place 4 (see initial belief in Figure 5.20). After the
robot observed a person walking away it turns to resting place 4 to check which
person is still there.

place 4. The lower image shows the evolution of the belief about the position
of personA. As can be seen from the graph the robot was now very sure that
personA was at resting place 4.

When the robot starts turning to resting place 4 after time stept = 25 when the
person left its field of view we do not use observations to update the HMMs. This
is because the laser-based feature detection system has too many false positive
detections while the robot is turning. As a result, the probabilities for both persons
to be at resting place 4 decrease according to the transition probabilities.

5.7 Related Work

The problem of localizing people in the environment of mobile robots has been
studied intensively in the past. Several techniques exist to keep track of moving
people in the surrounding of a mobile robot (for example[Rosales and Sclaroff,
1998, MacCormick and Blake, 1999, Klugeet al., 2001, Lindstr̈om and Eklundh,
2001, Montemerloet al., 2002b, Fodet al., 2002, Schulzet al., 2003a]). We
introduced them in Chapter 3. These approaches can only deal with temporary
occlusions and cannot keep track of the positions of the people when they are not
in the perceptual field of view of the robot anymore. In contrast to that using
our derived HMMs which model typical motion behaviors the robot is able to
maintain an estimate about the positions of multiple persons even if they are not
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Figure 5.20: The upper image shows the evolution of the probability of personB
to be at different resting places over time for the case that the robot is uncertain
who the detected person is and therefore decides to inspect resting place 4. When
the robot observes personA there the probabilities of resting places 6 and 7 im-
mediately increase for personB (time stept = 35). The lower image shows that
at the same time the probability of personA to be at resting place 4 seriously
increases.
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in the sensor range of the robot for a long period of time.
Rosencrantzet al. [2003] use variable-dimension particle filters to track the

location of the moving objects under prolonged periods of occlusion. However,
they are not able to estimate the probability of certain positions when the objects
are outside the sensor range. They can only predict that the objects are in spe-
cific areas (rooms). Furthermore, they do not distinguish between the tracked
objects. Schulzet al. [2003b] presented a technique which uses a combination of
anonymous sensors (like laser-range finders) and ID-sensors to track and identify
multiple persons. This approach can reliably estimate the IDs and trajectories of
people in the range of the anonymous sensors even if currently no information
from the ID-sensors is available.

Galata and Hogg[2001] use Variable Length Markov Models (VLMMs) to
model structured behaviors. One problem to be solved in the context of VLMMs
is the estimation of the optimal size of the time window in order to correctly
predict the next states. In contrast to this, we follow a conservative approach and
assume all steps in the past to be relevant. Buiet al.[2001] use an Abstract Hidden
Markov Model (AHMM) to track and predict trajectories of people given camera
information. Thereby they do not distinguish between different persons. This
model uses a hierarchical representation for the higher-level and lower-level goals
of people. Whereas the higher-level goals in such an AHMM correspond to the
resting places of the people, the lower-level goals correspond the states along the
paths between the resting places. Since we do not apply any abstractions because
of the limited size of our model, we use a single HMM in which we encode in
each state the position of the person and its intention.

Additionally, as mentioned in Chapter 4 several approaches to maintain the
visibility of moving objects exist[Lavalleet al., 1997, Parker, 1997, Pirjanian and
Mataríc, 2000, Feyrer and Zell, 2000, González-Bãnoset al., 2002, Murrieta-Cid
et al., 2002, Jung and Sukhatme, 2002].

All these approaches are either passive in the sense that they just maintain a
belief about the positions of the targets being tracked or are reactive and gener-
ate short-term plans to maintain or maximize the visibility of the objects being
tracked. Our approach, in contrast, deals with the problem of actively maintaining
an accurate belief about the positions of people while the robot has to carry out
navigation tasks such as office delivery.

5.8 Conclusion

In this chapter we first explained the basic concepts of Hidden Markov Models.
We then introduced a method for automatically deriving an HMM from typical
motion patterns of people. To update the resulting HMMs based on laser-range
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data and vision information we apply Joint Probabilistic Data Association Filters.
Furthermore, we considered the problem of actively maintaining an accurate be-
lief about the positions of multiple person in the environment of a mobile robot.
Our approach uses a decision-theoretic approach to determine observation actions
that are carried out while the robot is executing its tasks. The utility of an obser-
vation action is computed by trading-off move costs and the expected reduction
of uncertainty.

In practical experiments we demonstrated that, by using our HMMs, a mobile
robot equipped with a laser-range sensor and a vision system can reliably estimate
the positions of multiple persons even if it cannot observe them for a long period
of time. Furthermore, the experimental results demonstrate that our decision-
theoretic approach generates effective actions that seriously reduce the uncertainty
in the belief about the positions of people.
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Chapter 6

Conclusions

In this thesis we focused on mobile robots which share their workspace with hu-
mans or with other robots. While considering the problem of path planning for
teams of mobile robots we assume the existence of a central system which com-
putes collision-free paths for all robots. However, searching for the optimal path
in the composite state space of all robots is generally not feasible since this joint
state space grows exponentially with the number of robots. To make the search
tractable we therefore consider prioritized approaches which assign a unique pri-
ority to each robot. The paths of the robots are successively computed in the order
implied by the priority scheme and by taking into account the paths of the robots
with higher priority. As we illustrated in various experiments, the order in which
the paths of the robots are planned has a serious influence on whether a solution
can be found at all and on how long the resulting paths are. We therefore de-
veloped a method which performs a hill-climbing search in the space of priority
schemes. We interleave the search for an optimal priority scheme with the plan-
ning of the paths of the robots. To find solvable schemes even for large teams of
robots, constraints derived from the task specification are used to guide the search.
We demonstrated in extensive experiments on real robots as well as in simulations
that our approach enables prioritized path planning methods

• to seriously increase the number of planning problems which can be solved
and

• to generate efficient solutions even for complex multi-robot problems.

In the second part of this work we focused on mobile robots acting in environ-
ments populated by humans. In contrast to a multi-robot system, the future trajec-
tories of people are not known. Therefore, in order to not interfere with people,
a robot needs to be able to locate and track people and to react appropriately to
their activities. We observed that people usually do not move randomly. Instead,
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they follow specific trajectories or motion patterns corresponding to their inten-
tions. Obviously, a robot can improve its behavior by knowing about such typical
motion patterns of people. This way, the robot can make better prediction about
future motions of the people and also about the positions of the people when they
are currently not in its field of view.

We presented a technique for learning collections of trajectories that charac-
terize typical motion patterns of people. Our approach clusters data recorded with
laser-range finders using the popular expectation maximization algorithm. We de-
scribed how to use the learned motion patterns to derive a belief about potential
trajectories of people. Afterward, we explained how to incorporate this belief into
the path planning process of a mobile robot. We furthermore introduced a method
for automatically deriving Hidden Markov Models (HMMs) from the motion pat-
terns of people. These HMMs are used by a mobile robot to estimate the positions
of multiple persons even when they are outside its sensor range. To update the
HMMs based on laser-range data and vision information we apply Joint Proba-
bilistic Data Association Filters. In practice, the robot becomes uncertain about
the position of a person when it has not been observing the person for a longer
period of time. We therefore proposed a decision-theoretic approach to determine
observation actions that are carried out while the robot is executing its tasks.

Practical experiments carried out with a mobile robot and using different en-
vironments demonstrate:

• that our method is able to learn typical motion patterns of people,

• that the navigation behavior of the robot can be improved by predicting the
motions of people based on the learned motion patterns,

• that the derived HMMs can be used to reliably maintain a probabilistic be-
lief about the current positions of multiple persons even if they are currently
not in its field of view, and

• that our technique generates effective actions that seriously reduce the un-
certainty in the belief about the positions of people.

Despite this encouraging results, several areas for improvements exist. For ex-
ample, one reasonable extension is to incorporate information about the current
time in order to make our models more predictive. In many cases, the behavior of
the people varies depending on the time of day. Furthermore, it should be moni-
tored how reliably the HMMs predict the motions of people. Since the behavior
of people can change over time the transition probabilities of the HMMs should
be adapted accordingly.

Recently, radio frequency identification (RFID) tags have been become rather
popular. While these ID-sensors provide the identity information of a person
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within the range of a receiver, they do not provide an accurate location infor-
mation. Therefore, it would be interesting to use this technology in combination
with our HMMs to estimate and predict the positions of people. These aspects are
subject for future research.

In summary, we presented techniques which facilitate the coexistence of robots
and humans in real world environments as well as the interaction between them.
Our approach is useful for service robots that are designed to coexist with humans
and to fulfill various tasks such as delivery, cleaning, entertainment, and assistance
of people in their everyday activities.
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Appendix A

A.1 The B21r Robot Albert

speakers

laser range sensor

bump sensors

infrared sensors

ultrasound sensors

bump sensors

ultrasound sensors

stereo camera  system

motorized face

Figure A.1: Mobile robot Albert which has been used to carry out the experiments.
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Parameter Value

Laser scanner 1 SICK PLS (1◦ resolution)
Camera system stereo color camera system
Number of ultrasound sensors 48
Number of infrared sensors 24
Number of bump sensors 56
CPU 450 MHz Pentium II
Translational velocity max.90 cm/sec
Rotational velocity max.167◦/sec
Drive 4-wheel synchro-drive
Radius 26.25 cm
Height 150 cm
Weight approx.120 kg

Figure A.2: The mobile Robot Albert.

A.2 Probability Theory

A.2.1 Bayes’ Rule

The Bayes’ Rule, which is used in this thesis several times, is given by the follow-
ing equation:

P (A | B) =
P (B | A) · P (A)

P (B)
. (A.1)

The denominator is just a normalizing constant that ensures that the posterior of
the left hand side adds up to 1 over all possbile values ofA. Thus, we often write:

P (A | B) = η · P (B | A) · P (A). (A.2)

A.2.2 Product Rule

The following equation is called the product rule:

P (A,B) = P (A | B) · P (B) = P (B | A) · P (A). (A.3)

A.2.3 Marginalization

The marginalization rule is the following equation:

P (A) =
∑
bi

P (A,B = bi). (A.4)
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A.2.4 Law of Total Probability

The law of total probability is a variant of the marginalization rule, which can be
derived using the product rule:

P (A) =
∑
bi

P (A | B = bi) · P (B = bi). (A.5)

A.3 Proof: EM Monotonically Increases the Data
Likelihood

Given the observed datas and the hidden datac the log likelihood ofs under the
modelθ is given by:

lnP (s | θ) = ln
∑
c

P (s, c | θ) (A.6)

using marginalization (see A.2.3). Because of the concavity ofln and using
Jensen’s Inequality1 we get for any distributionq(c) over the hidden variables[Ghahra-
mani, 1998]:

lnP (s | θ) = ln
∑
c

P (s, c | θ) (A.7)

= ln
∑
c

q(c)
P (s, c | θ)
q(c)

(A.8)

=
∑
c

q(c) ln
P (s, c | θ)
q(c)

(A.9)

=
∑
c

q(c) lnP (s, c | θ)−
∑
c

q(c) ln q(c) (A.10)

= F(q, θ). (A.11)

The EM algorithm alternates between maximizingF with respect toq and θ,
starting with some initial modelθ[0]:

E step: q[j+1] = argmaxq F(q, θ[j])

M step: θ[j+1] = argmaxθ F(q[j+1], θ).

1Supposef is a continuous strictly concave function and for1 5 i 5 n :
∑

i ai = 1 and
ai > 0. Then Jensen’s Inequality says:f(

∑
i aixi) =

∑
i aif(xi).
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It is easy to proof that the maximum value forq[j+1] in the E step isP (c | θ[j], s):

F(P (c | θ[j], s), θ[j]) =
∑
c

P (c | θ[j], s) ln
P (s, c | θ[j])

P (c | s, θ[j])
(A.12)

=
∑
c

P (c | θ[j], s) lnP (s | θ[j]) (A.13)

= lnP (s | θ[j])
∑
c

P (c | θ[j], s) (A.14)

= lnP (s | θ[j]) · 1 (A.15)

Thus, by settingq[j+1] =P (c | θ[j], s) the bound in Eq. (A.11) becomes an equality.
Since the second term ofF(q, θ) does not depend onθ we need only to con-

sider the first term, which is denoted asEc[lnP (s, c | θ) | θ, s] in Chapter 3, in
the M-step.

SincelnP (s | θ) = F(q, θ) at the beginning of each M step, and since the
E step does not changeθ, the likelihood is guaranteed not to decrease after one
iteration of EM.

A.4 Approximation of the Probability P (ψ | z(1:t))

Using the law of total probability (see A.2.4) and under the assumption that the
estimation problem is Markovian the probabilityP (ψ | z(1:t)) of an individual
joint association eventψ given the observation sequencez(1:t) can be computed
as[Schulzet al., 2003a]:

P (ψ | z(1:t)) = P (ψ | zt, z(1:t−1)) (A.16)

=

∫
P (ψ | zt, z(1:t−1), ξt) P (ξt | zt, z(1:t−1)) dξt (A.17)

=

∫
P (ψ | zt, ξt) P (ξt | zt, z(1:t−1)) dξt. (A.18)

Accordingly, the stateξt of the persons has to be known in order to determine the
assignmentsψ. On the other hand,ψ has to be known in order to determine the
positions of the tracked persons. To overcome this problemP (ξt | zt, z(1:t−1)) is
approximated by the beliefP (ξt | z(1:t−1)) about the predicted state of the persons,
which is computed using all measurements perceived before time stept:

P (ψ | z(1:t)) ≈
∫
P (ψ | zt, ξt) P (ξt | z(1:t−1)) dξt. (A.19)

= η

∫
P (zt | ψ, ξt) P (ψ | ξt) P (ξt | z(1:t−1)) dξt. (A.20)

Hereη is a normalizer and the last transformation corresponds to Bayes’ Rule.
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A.5 Computation of the Assignment Probabilitiesλsr
The probability that features is caused by personr is given by (the notations
correspond to those introduced in Section 5.4):

λsr =
∑
ψ∈Ψsr

η′ γφ ∫ ∏
(j,i)∈ψ

P (ztj | ξti) P (ξt | z(1:t−1)) dξt

 . (A.21)

Since we assume that the individual state spaces are independent the integral part
can be written as:∫ ∏

(j,i)∈ψ

P (ztj | ξti) P (ξt | z(1:t−1)) dξt (A.22)

=

∫ ∏
(j,i)∈ψ

P (ztj | ξti)
R∏
r=1

P (ξtr | z(1:t−1)) dξt (A.23)

=

∫ ∏
(j,i)∈ψ

P (ztj | ξti) P (ξti | z(1:t−1)) dξt (A.24)

=

∫
ξt
R

. . .

∫
ξt
2

∫
ξt
1

∏
(j,i)∈ψ

P (ztj | ξti) P (ξti | z(1:t−1)) dξt1 dξ
t
2 . . . dξ

t
R .(A.25)

Here Eq. (A.24) uses the fact thatψ assigns each personi one featurej. Let zji
denote the feature which is assigned to personi in ψ. Then Eq. (A.25) can be
written as: ∫

ξt
R

. . .

∫
ξt
2

∫
ξt
1

P (zj1 | ξt1) P (ξt1 | z(1:t−1)) ·∏
(j,i)∈ψ\{(j1,1)}

P (ztj | ξti) P (ξti | z(1:t−1)) dξt1 dξ
t
2 . . . dξ

t
R (A.26)

=

∫
ξt
1

P (zj1 | ξt1) P (ξt1 | z(1:t−1)) dξt1 ·∫
ξt
R

. . .

∫
ξt
2

∏
(j,i)∈ψ\{(j1,1)}

P (ztj | ξti) P (ξti | z(1:t−1)) dξt2 . . . dξ
t
R. (A.27)

These transformations can be applied for eachi so that we finally obtain:
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R∏
i=1

∫
ξt
i

P (zji | ξti) P (ξti | z(1:t−1)) dξti (A.28)

=
∏

(j,i)∈ψ

∫
ξt
i

P (zj | ξti) P (ξti | z(1:t−1)) dξti . (A.29)

Which is the justification for Eq. (5.13). The final transformation is correct ac-
cording to the definition ofzji.
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nation for mobile robots: A geometric algorithm. InProc. of the International
Joint Conference on Artificial Intelligence (IJCAI), 1999.

[Li et al., 2001] C. Li, G. Biswas, M. Dale, and P. Dale. Building models of
ecological dynamics using hmm based temporal data clustering. InProc. of the
Fourth International Conference on Intelligent Data Analysis, 2001.

[Liao et al., 2004] L. Liao, D. Patterson, D. Fox, and H. Kautz. Learning and
inferring transportation routines. InProc. of the National Conference on Arti-
ficial Intelligence (AAAI), 2004. to appear.

[Lindström and Eklundh, 2001] M. Lindström and J.-O. Eklundh. Detecting and
tracking moving objects from a mobile platform using a laser range scanner.
In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2001.

[Liu et al., 1989] Y.H. Liu, S. Kuroda, T. Naniwa, H. Noborio, and S. Arimoto. A
practical algorithm for planning collision-free coordinated motion of multiple
mobile robots. InProc. of the IEEE International Conference on Robotics &
Automation (ICRA), pages 1427–1432, 1989.

[Lumelsky and Harinarayan, 1997] V.J. Lumelsky and K.R. Harinarayan. Decen-
tralized motion planning for multiple mobile robots: The cocktail party model.
Journal of Autonoumous Robots, 4:121–135, 1997.

[MacCormick and Blake, 1999] J. MacCormick and A. Blake. A probabilistic
exclusion principle for tracking multiple objects. InProc. of 7th International
Conference on Computer Vision (ICCV), pages 572–587, 1999.

[MacQueen, 1967] J. MacQueen. Some methods for classification and analysis of
mulivariate observations. InProc. of the Fifth Berkeley Symposium on Math.,
Stat. and Prob., pages 281–296, 1967.

[Mahalanobis, 1930] P.C. Mahalanobis. On tests and meassures of groups diver-
gence I.Journal of the Asiatic Society of Benagal, 26(541), 1930.

[Martin and Shmoys, 1996] P. Martin and D.B. Shmoys. A new approach to com-
puting optimal schedules for the job-shop scheduling problem. InProc. of the
5th International IPCO Conference, pages 389–403, 1996.

[Maybeck, 1979] P. S. Maybeck.Stochastic Models, Estimation, and Control,
volume 1. Academic Press, 1979.



BIBLIOGRAPHY 141

[McHenry, 1998] M. McHenry. Slice-Based Path Planning. PhD thesis, Univer-
sity of Southern California, 1998.

[McLachlan and Krishnan, 1997] G.J. McLachlan and T. Krishnan.The EM Al-
gorithm and Extensions. Wiley Series in Probability and Statistics, 1997.

[Mitchell, 1997] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[Montemerloet al., 2002a] M. Montemerlo, J. Pineau, N. Roy, S. Thrun, and
V. Verma. Experiences with a mobile robotic guide for the elderly. InProc. of
the AAAI National Conference on Artificial Intelligence, 2002.

[Montemerloet al., 2002b] M. Montemerlo, S. Thrun, and W. Whittaker. Con-
ditional particle filters for simultaneous mobile robot localization and people-
tracking. InProc. of the IEEE International Conference on Robotics & Au-
tomation (ICRA), 2002.

[Moravec and Elfes, 1985] H.P. Moravec and A.E. Elfes. High resolution maps
from wide angle sonar. InProc. IEEE Int. Conf. Robotics and Automation,
pages 116–121, 1985.

[Mozer, 1998] M.C. Mozer. The neural network house: An environment that
adapts to its inhabitants. InProceedings of the American Association for Arti-
ficial Intelligence Spring Symposium on Intelligent Environments, 1998.

[Murphy, 2002] K.P. Murphy. Dynamic Bayesian Networks: Representation, In-
ference, and Learning. PhD thesis, University of California, Berkely, 2002.

[Murrieta-Cidet al., 2002] R. Murrieta-Cid, H.H. Gonźalez-Bãnos, and B. Tovar.
A reactive motion planner to maintain visibility of unpredictable targets. In
Proc. of the IEEE International Conference on Robotics & Automation (ICRA),
2002.

[Nguyenet al., 2003] N.T. Nguyen, H.H. Bui, S. Venkatesh, and G. West. Recog-
nising and monitoring high-level behaviours in complex spatial environments.
In IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2003.

[Nilsson, 1982] N. J. Nilsson.Principles of Artificial Intelligence. Springer Pub-
lisher, Berlin, New York, 1982.

[Nourbakhshet al., 1995] I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish:
An office-navigating robot.AI Magazine, 16(2), 1995.



142 BIBLIOGRAPHY
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[Sánchez and Latombe, 2002] G. Śanchez and J.-C. Latombe. Using a prm plan-
ner to compare centralized and decoupled planning for multi-robot systems. In
Proc. of the IEEE International Conference on Robotics & Automation (ICRA),
2002.

[Schaeffer and May, 1999] C. Schaeffer and T. May. Care-o-bot - a system for
assisting elderly or disabled persons in home environments. InAssistive tech-
nology on the threshold of the new millenium. IOS Press, Amsterdam, 1999.

[Schulzet al., 2000] D. Schulz, W. Burgard, D. Fox, S. Thrun, and A.B Cremers.
Web interfaces for mobile robots in public places.IEEE Robotics and Automa-
tion Magazine, 7(1), 2000.

[Schulzet al., 2003a] D. Schulz, W. Burgard, D. Fox, and A.B. Cremers. Peo-
ple tracking with a mobile robot using sample-based joint probabilistic data
association filters.International Journal of Robotics Research (IJRR), 2003.

[Schulzet al., 2003b] D. Schulz, D. Fox, and J. Hightower. People tracking with
anonymous and id-sensors using rao-blackwellised particle filers. InProc. of
the International Joint Conference on Artificial Intelligence (IJCAI), 2003.

[Schwartz and Scharir, 1983] J.T. Schwartz and M. Scharir. On the ”piano
movers” problem: III. Coordinating the motion of several independent bod-
ies moving amidst polygonal obstacles.International Journal of Robotic Re-
search, 2(3):46–75, 1983.

[Schwartzet al., 1987] J.T. Schwartz, M. Scharir, and J. Hopcroft.Planning, Ge-
ometry and Complexity of Robot Motion. Ablex Publishing Corporation, Nor-
wood, NJ, 1987.

[Schwarz, 1978] G. Schwarz. Estimating the dimension of a model.The Annals
of Statistics, 6(2):461–464, 1978.



144 BIBLIOGRAPHY

[Sebastianiet al., 1999] P. Sebastiani, M. Ramoni, P. Cohen, J. Warwick, and
J. Davis. Discovering dynamics using Bayesian Clustering. InProc. of the
3rd International Symposium on Illigent Data Analysis, 1999.

[Selmanet al., 1992] B. Selman, H. Levesque, and D. Mitchell. A new method
for solving hard instances of satisfiability. InProc. of the National Conference
on Artificial Intelligence (AAAI), 1992.

[Siegwartet al., 2003] R. Siegwart, K.O. Arras, B. Jensen, R. Philippsen, and
N. Tomatis. Design, implementation and exploitation of a new fully au-
tonomous tour guide robot. InProc. of the 1st International Workshop on
Advances in Service Robotics (ASER), 2003.

[Simmonset al., 1997] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, and
J. O’Sullivan. A layered architecture for office delivery robots. InProc. of
the First International Conference on Autonomous Agents, 1997.

[Simmonset al., 2000] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox,
S. Moors, M.and Thrun, and Younes H. Coordination for multi-robot explo-
ration and mapping. InProc. of the National Conference on Artificial Intelli-
gence (AAAI), 2000.

[Smyth, 1997] P. Smyth. Clustering sequences with hidden markov models. In
Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, editors,Advances
in Neural Information Processing Systems, volume 9. The MIT Press, 1997.

[Sony, 2003] Sony. Entertainment robots. http://www.aibo.com/, 2003.

[Souccar and Roderic, 1996] K. Souccar and A.G. Roderic. Distributed motion
control for multiple robotic manipulators. InProc. of the IEEE International
Conference on Robotics & Automation (ICRA), 1996.

[Stachniss and Burgard, 2002] C. Stachniss and W. Burgard. An integrated ap-
proach to goal-directed obstacle avoidance under dynamic constraints for dy-
namic environments. InProc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2002.

[Stauffer and Grimson, 2000] C. Stauffer and W.E.L. Grimson. Learning patterns
of activity using real-time tracking.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(8):747–757, 2000.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto.Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA, 1998.



BIBLIOGRAPHY 145

[Sveska and Overmars, 1995] P. Sveska and M. Overmars. Coordinated motion
planning for multiple car-like robots using probabilistic roadmaps. InProc. of
the IEEE International Conference on Robotics & Automation (ICRA), 1995.

[Swain and Ballard, 1991] M. Swain and D. Ballard. Color indexing.Interna-
tional Journal of Computer Vision, 7(1), 1991.

[Swiss Federal Institute of Technology Lausanne, 2002] Swiss Federal Institute
of Technology Lausanne. Expo 2002. http://robotics.epfl.ch/, 2002.

[Tacke, 2002] M. Tacke. Errechnung der relativen Positionen einer Gruppe von
Laserentfernungsmessern. Studienarbeit. University of Freiburg, 2002. In Ger-
man.

[Tadokoroet al., 1995] S. Tadokoro, M. Hayashi, Y. Manabe, Y. Nakami, and
T. Takamori. On motion planning of mobile robots which coexist and cooperate
with human. InProc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 518–523, 1995.

[Thrunet al., 2000] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. B. Cre-
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