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Abstract— This paper describestwo robotic systemsdevelopedfor
acquiring accuratevolumetric mapsof underground mines. One sys-
tem is basedon a cart instrumented by laser range �nders, pushed
thr ough a mine by people. Another is a remotely controlled mobile
robot equipped with laser range �nders. To build consistentmaps of
large mines with many cycles,we describean algorithm for estimat-
ing global correspondencesand aligning robot paths. This algorithm
enablesus to recover consistentmaps several hundredsof meters in
diameter, without odometric information. We report resultsobtained
in two mines,a research mine in Bruceton, PA, and an abandonedcoal
mine in Burgettstown, PA.

in Proceedingsof ICRA-2003

I . INTRODUCTION

Thelackof accuratemapsof inactive,undergroundmines
posesa seriousthreatto public safety. Accordingto a re-
centarticle [3], “tens of thousands,perhapseven hundreds
of thousands,of abandonedminesexist todayin theUnited
States.Not even the U.S. Bureauof Mines knows the ex-
actnumber, becausefederalrecordingof miningclaimswas
not requireduntil 1976.” The lack of accuratemine maps
frequentlycausesaccidents,suchasarecentnear-fatalacci-
dentin Quecreek,PA [18]. Evenwhenaccuratemapsexist,
they provide informationonly in 2-D, which is usually in-
suf�cient to assessthe structuralsoundnessof abandoned
mines.

Hazardousoperatingconditionsanddif�cult accessroutes
suggestthatroboticexplorationandmappingof abandoned
minesmaybea viableoption. The ideaof mappingmines
with robotsis not new. Pastresearchhaspredominantlyfo-
cusedonacquiringmapsfor autonomousrobotnavigationin
active mines. For example,Corke andcolleagues[8] have
built vehiclesthatacquireandutilize accurate2-D mapsof
mines. Similarly, Baily [1] reports2-D mappingresultsof
an undergroundareausing advancedmappingtechniques.
Noneof thesetechniquesgeneratevolumetricmapsof mines.

In general,theminemappingproblemis madechalleng-
ing by thelack of globalpositioninformationunderground.
As a result,minemappingmustbeapproachedasa simul-
taneouslocalizationandmapping, or SLAM, problem[10],
[15], [20]. In SLAM, the robot acquiresa mapof its en-
vironmentwhile simultaneouslyestimatingits own position
relative to this map. The SLAM problemis known to be
particularlydif�cult whentheenvironmentpossessescyclic
structure[5], [6], [13], [21]. This is becausecycles pose

hard correspondenceproblemsthat arisedue to the (rela-
tively) largepositionerroraccruedby a vehiclewhenclos-
ing cycles. Mines often containa large numberof cycles,
hencetheability to handlecyclesis essentialfor successful
approachesto mappingmines.

This paperdescribesa SLAM algorithm for acquiring
3-D modelsof undergroundminesthat can accommodate
multiple cycles. Our algorithmusesa scanmatchingalgo-
rithms for constructing2-D mine mapsdescribedin [14].
To closecycles,however, it utilizes an iterative correspon-
dencealgorithm basedon the iterative closestpoint algo-
rithm (ICP) [4], adaptedto theproblemof establishingcor-
respondencein cyclic maps.3-D mapsaregeneratedby ap-
plying scanmatchingto 3-D measurementsafter the 2-D
mappingis complete.

Our algorithmhassuccessfullyenabledtwo roboticsys-
temsto acquire3-D mapsof mines. The �rst suchsystem
consistsof an instrumentedcart,which is pushedmanually
througha mine. This systemis a low-costsolution to the
minemappingproblem,but it canonly bebroughtto bearin
environmentsaccessibleto people.Oursecondsystemcon-
sistsof a ruggedroboticplatformequippedwith laserrange
sensors.Abandonedmines,whendry, areoften subjectto
low oxygenlevels,poisonousgases,andthey maybestruc-
turally unstable. Sincebringing humansinto suchmines
exposesthemto aseriousdangerof life, theemploymentof
autonomousroboticsystemsappearsto benaturalsolution.
This paperprovidesresultsobtainedin two differentmines,
both locatedin Pennsylvania,USA. Oneof theseminesis
a researchmine,accessibleto people.Anotheris a former
deepmine turnedinto a strip mine, inaccessibleto people
but accessibleto roboticvehicles.

I I . THE ROBOT SYSTEMS

Figure1 shows the two robotic systemsusedin our re-
search.On the left is a cart, equippedwith four 2-D laser
range�nders. The laserrange�nders provide information
aboutthe mine crosssectionaheadof the vehicle,andthe
groundandceiling structure.The centerpanelin Figure1
showstheGroundhogrobot,atele-operateddeviceconstruc-
tedfrom thechassisof two ATVs [2]. Therobotis equipped
with two 2-D laserrange�nders, onepointedforward for
2-D mappingandonepointedtowardsthe ceiling for 3-D



Fig. 1. Fromleft to right: Mine mappingcartwith four laserrange®nders,pushedmanuallythroughamine.Groundhogrobotusedfor breachingdif®cult
mineenvironments.Stripminein Burgettstown, PA. Noneof thevehiclesprovideany odometryinformation.

mapping.Theright panelof this �gure shows Groundhog's
descentinto an abandonedmine in Burgettstown, PA. Un-
fortunately, neitherof thesesystemspossessodometersor
inertial sensors.Thus,the locationof the vehiclesrelative
to theirpointsof entrycanonly berecoveredfrom therange
scandata.

I I I . MINE MAPPING ALGORITHM

A. 2-D ScanMatching

In a �rst processingstage,our approachappliesthescan
registrationtechniquedescribedin [14] to recover locally
consistentposeestimates,whichis reminiscentof priorwork
in [4], [13], [17]. This algorithmalignsscansby iteratively
identifyingnearbypointsin pairsof consecutiverangescans,
andthencalculatingthe relative displacementandorienta-
tion of thesescansby minimizing thequadraticdistanceof
thesepairsof points. Theresultof registeringscansin this
way is a relative displacementandorientationbetweentwo
consecutive scans:

� t =
�

� x t � yt � � t
� T

(1)

This relative information makes it possibleto recover an
estimateof the global coordinatesat which a scanwasac-
quired.Wewill denotesuchglobalcoordinatesby

� t =
�

x t yt � t
� T

(2)

wherex t and yt are Cartesiancoordinatesin 2-D, and � t
is the robot's orientationrelative to the global coordinate
systemat time t. The global coordinatesarerecoveredby
applyingthefollowing recursive estimationequation:

� t = f (� t � 1; � t ) (3)

with

f (� t � 1; � t ) =

0

@
x t � 1 + � x t cos� t + � yt sin � t
yt � 1 � � x t sin � t + � yt cos� t

� t � 1 + � � t

1

A (4)

Unfortunately, the pairwisescanregistration techniqueis
unableto recover the global structureof an environment.
This is speci�cally problematicin environmentsthat con-
tain cyclic structure. Figure 3a shows an occupancy grid

map [11] after executing the local ICP scanregistration.
While thismapis consistentat thelocal level, it is inconsis-
tentat thegloballevel dueto inconsistenciesthatariseform
the accumulationof small errorsin the ICP scanmatching
procedure. The remainingproblem is one of correspon-
dence. To acquireglobally consistentmaps,we needto
know the pointsin time the robot traversedthe samemine
segment. This problemis generallyconsideredoneof the
most challengingproblemsin robotics, and hasbeenad-
dressedby severalresearchers[5], [6], [13], [21].

B. BuildingConsistentMapsWith ManyCycles

Ourapproachusesamodi�ed versionof theiterativeclos-
est point algorithm (ICP) to estimatethe correspondence
betweenrobot posesat differentpoints in time. To obtain
a globally consistentmap, our approachiteratesa stepin
which correspondencesare identi�ed, anda stepin which
apathis recoveredfrom thehypothesizedcorrespondences.
This iterative optimizationprocedureis familiar from the
literatureon ICP [4], theexpectationmaximization[9], and
theRANSAC[12] algorithmin computervision(seealso[22]);
the inner-loop optimizationis reminiscentof an approach
in [17]. The iterationof both stepsleadsto a sequenceof
poses� [0]

t ; � [1]
t ; : : : of increasingglobalconsistency.

Theinitial posesareobtainedfrom thelocalscanmatcher
describedin the previous section: � [0]

t := � t . Figure 2a
shows thesequenceof poses,subsampledin � ve-metersin-
tervals for computationalef�ciency. In a �rst step,possi-
ble correspondencesareidenti�ed. Our algorithmidenti�es
pairs of poses� [n ]

si and � [n ]
t i

, indexed by si and t i , which
ful�ll multiple criteria: they have to be nearby;they have
to lie on approximatelyparallelpathsegments;andtheline
connectingthemhasto beapproximatelyorthogonalto their
respective paths.Figure2b shows theposepairsidenti�ed
by ouralgorithmin the�rst iteration.

Next, a new setof posesis calculatedthatmatchesthese
correspondences.To calculatesuchposesin closedform,
our approachtransformsthe relative poseinformation � t
into quadraticconstraintsbetweenadjacentposes. More
speci�cally, our approachappliesthe following Taylor ex-
pansion

� t � �̂ [n ]
t + F [n ]

t � 1 (� t � 1 � � [n ]
t � 1) (5)



(a) (b) (c)
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Fig. 2. Globalcorrespondence:(a)Pathof therobot,with anodeplacedevery®vemeters;(b) initial setof correspondences;(c) pathobtainedunderthese
correspondences;(d) new setof correspondencesobtainedusingthenew path;(e) optimalpathunderthesenew correspondences;(f) ®nal pathand
correspondencesafterthreefull iterationsof thealgorithm.

(a) (b) (c)

Fig. 3. (a) Map of thecoalminein Bruceton,PA, basedon scanmatching.This mapis obtainedby incrementalscanmatching,andtheresultingposes
form theinput to our loop closingalgorithm.(b) Map obtainedusingour loop closingroutines.This mapmeasuresapproximately250by 200meters
in sizeandcontainsthreelargeloops.(c) 2-D mapof aminein Burgettstown, PA.

Here�̂ [n ]
t denotesthepose“prediction” f (� [n ]

t � 1; � t ), andF [n ]
t � 1

is thetangentto thefunctionf at � [n ]
t � 1:

F [n ]
t � 1 =

@f (� [n ]
t � 1; � t )

@� t � 1
(6)

=

0

@
1 0 � � x t sin � [n ]

t + � yt cos� [n ]
t

0 1 � � x t cos� [n ]
t � � yt sin � [n ]

t
0 0 1

1

A

Both �̂ [n ]
t andF [n ]

t � 1 areconstantsin theoptimizationto fol-
low. Thegoalof theoptimizationis to identify poses� t that
minimizethequadraticdistanceto theapproximationin (5).
This is achievedby minimizing the following quadraticer-
ror:

P
t (� t � �̂ [n ]

t � F [n ]
t � 1 (� t � 1 � � [n ]

t � 1))T H t

(� t � �̂ [n ]
t � F [n ]

t � 1 (� t � 1 � � [n ]
t � 1)) (7)



Turning the exact calculationin (4) into an optimization
problemenablesus to “bend” the path of the robot. The
matrixH t measuresthepenaltyassociatedwith bendingthe
path. Mathematically, H t characterizesthe negative log-
likelihoodof aGaussiannoisemodelof theICPscanmatcher.
Ideally, H t shouldbe extractedby analyzingthe curvature
of theICP targetfunctionundertranslationandrotation. In
our software,we simply usea �x eddiagonalmatrix for the
penaltyH t .

Thecorrespondencesareincorporatedinto theoptimiza-
tion throughanadditionalquadraticpenaltyfunction. Each
pair(t i ; si ) in thesetof pairwisecorrespondencesismapped
into aquadraticcostfunctionof thetype:

(� t i � � si )
T Z (� t i � � si ) (8)

HereZ is a diagonalpenaltymatrix. Technically, our ap-
proachdoesnot enforce� t i = � si ; instead,it minimizesthe
quadraticdistancebetweentheseposes,with thepenaltyz.
Thetotal costfunctionof incorporatingall correspondences
is givenby

X

i

(� t i � � si )
T Z (� t i � � si ) (9)

To solve the coupledquadraticoptimizationproblem,we
now convenientlyreorderthetermsin (7) and(9). All terms
linearin � t in (7) arecollectedin a largematrixA [n ], andall
remainingconstantsinto thevectorc[n ]. Similarly, all linear
termsin (9) aresubsumedin a matrix B [n ]. Thesumof (7)
and(9) is thenof thefollowing quadraticform:

J [n ] = (A [n ] � � c[n ] )T H (A [n ] � � c[n ] ) + (B [n ] � )T Z B [n ] �

Here� = � 1; � 2; : : : is the vectorof all poses,andH and
Z arehigh-dimensionalversionsof H andZ , respectively.
Minimizing thisquadraticexpressionisnow straightforward.
In particular, wecalculateits �rst derivative

@J
@� t

= A [n ]T H (A [n ] � � c[n ]) + B [n ]T Z B [n ] �

=
h
A [n ]T H A [n ] + B [n ]T Z B [n ]

i
�

� A [n ]T H c[n ] (10)

Settingthis expressionto zerogivesusthenew setof poses
� [n +1] :

� [n +1] =
h
A [n ]T H A [n ] + B [n ]T Z B [n ]

i � 1
A [n ]T H c[n ]

Thiscalculationinvolvesmultiplying andinvertingmatrices
whosedimensionsis arelinearin thenumberof robotposes.
Thesematricesaresparse;however, they canstill behumon-
gous.Oursoftwarethereforesubsamplesthesetof all poses:
As indicatedin Figure2, only a singleposeis includedfor
every � ve metersof robot motion. In the speci�c dataset
shown in Figure 2, this reducesthe numberof posevari-
ablesform 13,116to 381,adimensionthatis easilyhandled

by ef�cient linearalgebralibraries.Adjustedposesfor those
posesnot includedin theoptimizationareeasilyrecovered
throughlinear interpolation. Finally, we note that the lin-
earizationis only anapproximation,andmultiple iterations
of the minimizationmay be required. In our experiments,
wealwaysobtainedgoodresultsin the�rst two iterationsof
theoptimization.

Figure 2c shows the resultingalignmentfor the previ-
ously calculatedcorrespondences.While the path is now
globally consistentin theareawherecorrespondenceswere
identi�ed, it is still inconsistentin otherareas.Iteratingthe
basicalgorithmleadsto the remainingpanelsin Figure2.
As is easily seen,our approachsucceedsin recovering a
globallyconsistentmap.Thealgorithmconvergeswhenthe
correspondencesare identical to the onesestimatedin the
previousiteration.

C. GloballyConsistent2-D OccupancyMaps

Basedontheposeestimatesobtainedin thepreviousstep,
our approachextractsan occupancy grid mapfrom the re-
sults of the path alignment. It doesso by applying once
again thescanmatchingalgorithmusedto establishtheini-
tial relativeposeestimates[14], but thistimeusingtheposes
� [n ]

t obtainedin the global alignmentstepasan additional
constraint. As above, this constraintis representedby a
quadraticpenaltyfunction,whichis easilyincorporatedinto
theclassicalscanmatchingalgorithm(whichalsooptimizes
aquadraticfunction).

Figure3b shows themapobtainedfrom dataacquiredin
theBrucetonresearchmine.Themapmeasures250by 200
metersin size,andhasbeenconstructedwithoutany odom-
etry information.

D. Volumetric3-D Mapping

In a �nal step,our approachrecoversa 3-D mapof the
mine. This mapis obtainedby utilizing theupwardpointed
2-D laserand(in thecaseof theinstrumentedcart)thedown-
wardpointed2-D laser. Goodinitial mapsareobtainedby
usingthe2-D poseinformationto constructa 3-D map,via
theobviousgeometricprojections,asdescribedin [16]. Un-
fortunately, sucha reconstructionis only valid for planar
environments;in non-planarenvironments,bothvolumetric
lasersmay be tilted, andestimatingthe tilt is essentialfor
theaccuracy of theresultingmaps.

Our approachutilizes a forward-pointingvertical laser,
presentlyonly availableon theroboticcart,which provides
averticalcross-sectionof themineastherobotmoves.This
cross-sectionenablestherobotto registerits ceilingand
groundscanswhile simultaneouslyrecoveringits pitch (the
roll cannotpresentlyrecovered). This estimationis per-
formedusinga 3-D variantof thescanmatchingtechnique
describein [14], usingtheresultsof the2-D poseestimation
asastartingpoint.



Fig. 6. Sequenceof 3-D visualizationsof avolumetricminemap.Shown in redarethesensormeasurementsusedfor generatingtheminemap.

(a)

(b)

Fig. 4. (a) 2D Mine mapacquiredby the robotic cart; (b) a hand-drawn
mapof thecorrespondingminesegmentfor comparison.

IV. RESULTS

We obtainedall our datain segmentsof two abandoned
coal mines in Pennsylvania. The BrucetonMine is geo-
graphicallycloseto theQuecreekMine in SomersetCounty.
It is operatedas a researchmine by the U.S. Bureauof
Mines, enablingus to enterrobotic equipmentwithout the
needfor explosion-proofcerti�cation. The Burgettstown
Mine is anabandonedminein a dangerouslyunstablestate.
Humanaccessis prohibitedandthe�oor of themineis cov-
eredin a thick toxic sludgeknown as “yellow boy.” The
entranceto this mine wasdiscoveredonly daysbeforethe

(a)

(b)

Fig. 5. (a)A sectionof the3-D mapproducedusingthemine-cartandour
2-D mappingalgorithms;(b) similar section,using3-D scanmatching
for post-processingtheminemaps.

roboticmappingexpedition,atwhichpoint it wasfully sub-
mersed.In preparationfor the robot mappingexperiment,
waterwaspumpedout of themine. Minesof this typepose
threatsto peopledueto thelow oxygenlevelsandthedanger
of collapse.

Wealreadydiscussedexample2-D mapsacquiredin both
mines,andshown in Figure3. A secondmapis shown in
Figure4, alongwith a hand-drawn mapof thecorrespond-
ing minesection.Thismapwasacquiredby theroboticcart.
Figure 6 shows exampleviews of a 3-D volumetric maps
obtainedusingthis system. The lower hemispheresof the
mapsaremissingbecauseourrobothasnodownwardpoint-
ing laser. Views of a full 3-D mapacquiredby the robotic
cart is shown in Figure5. Herewe illustrate the effect of
the�nal scanregistrationstepin thefull 3-D model—astep



Fig. 7. A sectionof the3-D mapproducedby theGroundhogrobotin the
Burgettstown mine. This robotpossessesno downwardpointedlaser;
hencethemaponly showstheceilinganduppersidewallsof themine.

that requiresa total of four laserrange�nders. From this
map,the total volumeof the mine is easilycalculated;in-
formationthat is typically not availablefrom existing mine
maps.

Mapsof theBurgettstown mineareshown in Figures3c
and7. Thesemapsaremuchsmallerthanthoseof theBruce-
ton mine. However, their signi�cance lies in the fact that
they have beenacquiredin an environmentinaccessibleto
people.Theentranceof themineis shown in Figure1c. Fig-
ure7 showsaview of a3-DmapacquiredbyourGroundhog
robot. As before,only theupperhalf of theminehasbeen
mapped,since the robot possessesno downward pointed
sensor.

V. CONCLUSION

We have presentedsystemsand algorithmsfor robotic
mappingof undergroundmines. Both of our systemsare
equippedwith laserrange�nders to recoverego-motionand
to build accuratemaps. Our approachrelies on 2-D scan
matchingto recover a locally consistentmap,andon a 2-D
global alignmentalgorithmfor generatingglobally consis-
tent maps. The resultingmapsand robot pathsform the
basisfor integrating the 3-D information,acquiredby ad-
ditional scannerspointedat the ceiling and the �oor of a
mine. A �nal optimizationstepfurtherimprovesthespatial
consistency of theresulting3-D minemap.

While we �nd that in the minesexploredso far, our ap-
proachconsistentlyproducesaccuratemaps,thegreedyna-
tureof this algorithmmakesit possibleto getstuckin local
minima. AlgorithmssuchasRANSAC [12] areapplicable
to reducethedangerof gettingstuckin a localminimum,at
theexpenseof increasedcomputationalcomplexity.

We believe thatexisting techniquesfor mobile robotex-
ploration[7], [19], [23] canbe adaptedfor the purposeof
autonomouslyexploring mines. Suchan extensionwould
overcomeacruciallimitationof thepresentapproach,namely
its relianceonhumantele-operation.
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