
Probabilistic Algorithms and the Interactive

Museum Tour-Guide Robot Minerva

S. Thrun1, M. Beetz3, M. Bennewitz2, W. Burgard2, A.B. Cremers3, F. Dellaert1

D. Fox1, D. Hähnel2, C. Rosenberg1, N. Roy1, J. Schulte1, D. Schulz3

1School of Computer Science 2Computer Science Dept. 3Computer Science Dept. III

Carnegie Mellon University University of Freiburg University of Bonn

Pittsburgh, PA Freiburg, Germany Bonn, Germany

to appear in: Journal of Robotics Research
initial version submitted June 25, 2000

final version submitted July 25, 2000

Abstract

This paper describes Minerva, an interactive tour-guide robot that was success-
fully deployed in a Smithsonian museum. Minerva’s software is pervasively prob-
abilistic, relying on explicit representations of uncertainty in perception and con-
trol. This article describes Minerva’s major software components, and provides a
comparative analysis of the results obtained in the Smithsonian museum. During
two weeks of highly successful operation, the robot interacted with thousands of
people, both in the museum and through the Web, traversing more than 44km at
speeds of up to 163 cm/sec in the unmodified museum.

1 Introduction

Robotics is currently undergoing a major change. While in the past, robots have predom-
inately been employed in assembly lines and other well-structured environments, a new
generation of service robots has begun to emerge, designed to assist people in everyday
life [34, 58, 79, 86]. These robots must cope to a much larger degree with the uncertainty
that inherently exists in real-world application domains. Uncertainty arises from four pri-
mary sources:

1. Environments. Most interesting real-world environments are unpredictable. This is
the case, for example, if robots operate in the proximity of people. The type environ-
ments considered in this paper are extremely dynamic, imposing significant uncertainty
in the robot’s internal perception of the world.

2. Robots. Robot hardware, too, is unpredictable. Robots are subject to wear-and-tear,
and internal sensors for measuring robot actuation, such as odometry, are often only
approximately correct.

3. Sensors. Sensors are inherently limited. The physical process that generates sensor
measurements typically induces significant randomness on its outcome, making sensor

measurements noisy. Moreover, the range and resolution of sensors are intrinsically
limited. Such limitations make it often impossible to measure important quantities
when needed.

4. Models. Models of physical phenomena such as robots and robot environments are
inherently approximate. Thus, the use of models introduces additional uncertainty, a
fact that is still mostly ignored in robotics.

This article focuses on the probabilistic paradigm for robotics. This paradigm pays tribute
to the inherent uncertainty in robot perception, relying on explicit representations of un-
certainty when determining what to do. Viewed probabilistically, perception is a statistical
state estimation problem, where information deduced from sensor data is represented by
probability distributions. Planning and control is a decision-theoretic utility optimization
problem, in which a robot seeks to maximize expected utility (performance) relative to its
internal beliefs. Our central conjecture is that the probabilistic approach is a viable solution
to a large range of robot problems involving sensing in the physical world [104].

The focus of this article is a specific robot system, developed to evaluate the idea of
probabilistic robotics in a complex real-world setting. Minerva, which is shown in Figure 2,
is an interactive museum tour-guide robot. In the fall of 1998, Minerva was deployed in one
of the largest museum in the US: The Smithsonian Museum of American History in Wash-
ington, DC. Minerva operated in the center area of the museum’s fist floor, guiding visitors
through a decade-old exhibition known as Material World. Figure 1 shows a panoramic view
of the exhibition’s main area. The robot’s task involved attracting people and explaining to
them the various exhibits while guiding them through the museum. The robot also enabled
remote users to visit the museum through a Web link. This link allowed people to watch
images collected in the museum, and to control the robot’s operation. During its 14 day-long
deployment, Minerva traversed more than 44 km through crowds of people, giving 620 tours
to people and visiting more than 2,600 exhibits.

Operating in a museum is a challenging task, different in many aspects from more tra-
ditional operation domains of mobile robots. The museum environment can be densely
crowded, with dozens of people gathering around the machine. Consequently, the robot’s
sensor measurements are extremely erroneous, making simple tasks such as localization
challenging. In fact, people often seek to compromise the system, which imposes additional
challenges on the software design. We did not modify the environment in any way to facili-
tate the robot’s operation. Thus, the robot had to rely on natural cues for its orientation.
A further challenge arose from the need to operate at walking speed while at the same time
avoiding collisions with people at all costs. Collisions with exhibits and other obstacles in
the museum were almost equally undesirable, as many of the museum’s exhibits were fragile
and precious. A particular challenge was the fact that not all obstacles and hazards were
“visible” to the robot’s sensors. For example, the museum possessed a downward escalator
in close proximity to the robot’s operational area. Falling down this escalator was to be
avoided; however, none of the robot’s sensors were able to detect this hazard. Similarly, sev-
eral obstacles were encased in glass cases; however, the robot’s primary obstacle detection
sensors, a pair of laser range finders, use light for measuring range and hence are unable to
detect glass. The presence of such invisible hazards raised the question as to how to avoid
them if they cannot even be detected.

At the same time, the museum environment creates a challenging human robot interac-
tion problem. In the Smithsonian museum, most of the interaction took place over short

2

Figure 1: Panoramic view of the Material World Exhibition, Minerva’s major operation area, which is
located in the entrance area of the Smithsonian’s National Museum of American History (NMAH).

periods of time, e.g., 10 minutes. People who approached the robot were typically inex-
perienced with robotic technology. However, providing visitors with complicated operation
manuals was not an option. Instead, the robot had to be self-explanatory and engaging.
Once leading a tour, the robot had to communicate effectively its intents and goals. People
seemed to enjoy blocking the robot’s path—so how can a robot effectively make progress
even with dozens of people around? At other times, the challenge was to attract people,
e.g., between tours when one group of people had just left. Finally, one challenge was the
design of a Web interface, enabling people all around the world to pay a “virtual visit” to
the museum. Museums are currently bound by their location when trying to attract people.
The use of robots promises to open up museums to people all over the world, which could
fundamentally alter the way museums operate. Minerva, thus, was a unique testbed for
Internet technology using robots in public places.

As apparent from our domain description, uncertainty indeed plays a primary role in
the Minerva project. Minerva’s software was pervasively probabilistic, relying on explicit
representation of uncertainty at various areas of perception, planning, and control. Minerva
employs a probabilistic algorithm for learning maps of its environment. Once a map has been
learned, another probabilistic algorithm, called Markov localization, is used for localizing
Minerva relative to its map. To generate motion, Minerva uses a probabilistic motion planner
that anticipates future uncertainty, thereby reducing the chances of loosing track of the
robot’s position. The motion commands are then processed by a reactive collision avoidance
module, which considers uncertainty when avoiding invisible hazards. Minerva also employs
learning algorithms at the user interaction level, enabling it to learn behaviors for attracting
people, and to compose tours so as to meet the desired tour-length regardless of how crowded
the museum is.

Minerva is a second generation robot, following the successful example of the robot Rhino
developed by the same team of researchers [15]. Rhino was deployed in the Deutsches Mu-
seum in Bonn in 1997, and shared many of the same probabilistic navigation algorithms.
Minerva, however, went beyond Rhino in various ways, from using new probabilistic algo-
rithms for learning maps from scratch, to a much-improved skill set for people interaction.
This article describes the major software components of the Minerva robot, and compares
them to those implemented on Rhino, Minerva’s predecessor. We will argue throughout
that the probabilistic nature of Minerva’s primary software components was essential for its
success.

2 Software Architecture Overview

Minerva’s software architecture consists of approximately 20 distributed modules, which
communicate asynchronously, as shown in Table 1. At the lowest level, various interface
modules communicate directly with the robot’s sensors (lasers, sonars, cameras, motors,

3

(a) (b) (c)

Figure 2: (a) Minerva. (b) Minerva gives a tour in the Smithsonian’s National Museum of American
History. (c) Interaction with museum visitors.

pan/tilt unit, face, speech unit, touch-sensitive display, Internet server, etc.) and effectors.
On top of that, various navigation modules perform functions like mapping, localization,
collision avoidance, and path planning. The interaction modules determine the “emotional
state” of the robot, control its head direction, and determine how to engage the people
around it using sounds or speech. The Web interface consists of modules concerned with
displaying information such as images and the robot’s position on the Web, and with receiv-
ing Web user commands. Finally, the high-level modules perform global mission scheduling
and control.

The main components of the data and control flow are as follows. Sensor readings, in
particular laser range scans, sonar scans, images from a camera pointed towards the ceiling,
and odometry readings, are continuously broadcast across the network of modules. Off-line,
before the deployment, these data are collected by the mapper, which builds a geometric
map of the environment that is used by the localization module and the planning modules.
On-line, during regular runtime, the map is not modified. Instead, the sensor data are sent
to the localization module, which estimates the robot’s pose relative to the map. The pose
estimates are passed on to several modules, most notably the mission planner, the motion
planner, and the reactive collision avoidance module. The mission planner monitors the user
interface and the Web for user commands. It also exchanges information with the interaction
modules, which control Minerva’s face, voice, display, pan/tilt unit, etc. Once a tour has
been chosen, it informs the motion planner of the location of the next exhibit to visit. The
motion planner then generates via-points, which are passed on to the collision avoidance.
The collision avoidance uses the sensor data (sonars, lasers) to “translate” the via-points into
motor commands (forward and rotational velocities). Additionally, a related module uses
the actual location estimates and the map to generate “virtual” obstacles that correspond to
hazards in the map. These virtual measurements are also considerd in collision avoidance.
To accommodate changes in the robot’s path that might arise from unexpected obstacles,
the motion planner concurrently replans and generates new via-points as necessary.

Most of Minerva’s software can adapt to the available computational resources. For ex-
ample, modules that consume substantial processing time, such as the motion planner or
the localization module, can produce results regardless of the time available for computa-
tion. The more processing cycles that are available, however, the more accurate the result.
In Minerva’s software, resource flexibility is achieved by two mechanisms: selective data
processing and any-time algorithms [22, 108]. Selective data processing is achieved by con-

4

high-level control and learning
(mission planning, scheduling)
human interaction modules

(“emotional” FSA, Web interface)
navigation modules

(localization, map learning, path planning)
hardware interface modules

(motors, sensors, Internet)

Table 1: Minerva’s layered software architecture.

sidering only a subset of the available data, which for example is the case in the localization
routine. Other modules, such as the motion planning module, are any-time. That is, they
can quickly draft initial solutions, which are then refined incrementally, so that an answer
is available when needed.

Minerva’s software does not possess a centralized clock or a centralized communication
module. Synchronization of different modules is strictly decentralized [36, 91]. Time-critical
software (e.g., all device drivers), and software that is important for the safety of the robot
(e.g., collision avoidance), are run on the robot’s on-board computers. Higher-level software,
such as the task control module, is run on stationary off-board computers. This software
organization has been found to yield robust behavior even in the presence of unreliable
communication links (specifically the radio link which connected the on-board and off-board
computers) and various other events that can temporarily delay the message flow or reduce
the available computational resources. The modular, decentralized software organization
eases the task of software configuration. Each module adds a certain competence, but not all
modules are required to run the robot. The idea of decentralized, distributed decision making
has been at the core of research on behavior-based robotics over the last decade [1, 14, 78],
but here modules are typically much lower in complexity (e.g., simple finite state machines).

3 Mobile Robot Localization

3.1 The Localization Problem

A prime example of probabilistic computing in Minerva is localization. Localization is the
problem of determining a robot’s pose from sensor data, where the term pose refers to the
robot x-y-coordinates in the environment along with its heading direction. Localization
enables the robot to find its way around the environment, and to avoid “invisible” hazards
such as the escalator. It is therefore an essential component of Minerva’s and Rhino’s
software architecture. The reader should notice that localization is a key component in many
other successful mobile robot systems (see e.g., [9, 61, 57]). Occasionally, the localization
problem has been referred to as “the most fundamental problem to providing a mobile robot
with autonomous capabilities” [21].

The literature distinguishes three types of localization problems, in increasing order of
difficulty:

1. Position tracking. Here the initial robot pose is known, and the goal of localization
is to compensate small odometry error as the robot moves. Typically, the uncertainty
in position tracking is local, making unimodal state estimators such as Kalman filters
applicable [2, 44, 61, 85].

5

2. Global localization. If the robot does not know its initial pose, it faces a global
localization problem. To localize itself from scratch, a robot must be able to cope with
ambiguities and multiple beliefs during localization.

3. Robot kidnapping [35]. This problem is a variant of the global localization problem
in which a well-localized robot is tele-ported to some random pose without being told.
It is harder than the global localization problem, since the robot might falsely believe
it is somewhere else. Robot kidnapping simulates catastrophic failure of a localization
routine and tests a robot’s ability to recover from such failures—a critical ability for
truly autonomous robots.

Minerva’s localization algorithm can cope with all three localization problems.

3.2 Probabilistic Localization

Approached probabilistically, the localization problem is a density estimation problem, where
a robot seeks to estimate a posterior distribution over the space of its poses conditioned on
the available data. Denoting the robot’s pose at time t by st and the data leading up to
time t by d0...t, the posterior is conveniently written as

p(st|d0...t,m). (1)

Here m is the model of the world (e.g., a map). We will denote this posterior bt(st), and
refer to it as the robot’s belief state at time t. For now we will assume the robot is given a
map. Further below, we will describe our approach for learning a map from data.

Minerva uses laser range scans and images collected from a camera pointed towards the
ceiling for localization. Such sensor data come in two flavors: Data that characterizes the
momentary situation (e.g., camera images, laser range scans), and data relating to change
of the situation (e.g., motor controls or odometer readings). Referring to the former as
observations and the latter as action data, let us without loss of generality assume that both
types of data arrive in an alternating sequence:

d0...t = o0, a0, o1, a1, . . . , at−1, ot. (2)

Here ot denote the observation and at denotes the action data item at time t.
To estimate the desired posterior p(st|d0...t,m), our approach resorts to a Markov as-

sumption, which states that the past is independent of the future given knowledge of the
current state. The Markov assumption is often referred to as the static world assumption,
since it assumes the robot’s pose is the only state in the world that would impact more
than just one isolated sensor reading. Clearly, this is not the case in the museums full of
people. However, for now we will consider only the static case; an extension for dealing with
environment dynamics is described further below.

Armed with the necessary assumptions, the desired posterior is now computed using
a recursive formula, which is obtained by applying Bayes rule and the theorem of total
probability, exploiting the Markov assumption twice:

bt(st) = p(st|o0, . . . , at−1, ot,m)
Bayes

= ηt p(ot|o0, . . . , at−1, st,m) p(st|o0, . . . , at−1,m)
Markov

= ηt p(ot|st,m) p(st|o0, . . . , at−1,m)

6

Figure 3: Probabilistic generalization of mobile robot kinematics: Each dark line illustrates a commanded
robot path, and the shaded area shows the posterior distribution of the robot’s pose. The darker an area,
the more likely it is. The path in the left diagram is 40 meters and the one on the right is 80 meters long.

Tot.Prob.
= ηt p(ot|st,m)

∫
p(st|o0, . . . , at−1, st−1,m) p(st−1|o0, . . . , at−1,m) dst−1

Markov
= ηt p(ot|st,m)

∫
p(st|at−1, st−1,m) p(st−1|o0, . . . , ot−1,m) dst−1

= ηt p(ot|st,m)

∫
p(st|at−1, st−1,m) bt−1(st−1) dst−1. (3)

Here ηt is a constant normalizer, which ensures that the result sums up to 1. Within the
context of mobile robot localization, the result of this transformation

bt(st) = ηt p(ot|st,m)

∫
p(st|at−1, st−1,m) bt−1(st−1) dst−1 (4)

is often referred to as Markov localization [16, 39, 52, 56, 94], but it equally represents the
basic update equation in Kalman filters [54], Hidden Markov models [76], and dynamic belief
networks [23, 83]. Kalman filters [54], which are historically the most popular approach for
position tracking, represent beliefs by Gaussians. The vanilla Kalman filter also assumes
Gaussian noise and linear motion equations; however, extensions exist that relax some of
these assumptions [51, 66]. Kalman filters have been applied with great success to a range
of tracking and mapping problems in robotics [62, 96]; though they tend not to work well
for global localization or the kidnapped robot problem. Markov localization using discrete,
topological representations for b were pioneered (among others) by Simmons and Koenig [94],
whose mobile robot Xavier traveled more than 230 kilometers through CMU’s hallways over
a period of several years [92, 93].

To implement Equation (4), one needs to specify p(st|at−1, st−1,m) and p(ot|st,m). Both
densities are usually time-invariant, hence the time index can be omitted. The first density
characterizes the effect of the robot’s actions a on its pose and can therefore be viewed as
a probabilistic generalization of mobile robot kinematics; see Figure 3 for examples. The
other density, p(o|s,m), is a probabilistic model of perception. Figure 4 illustrates a sensor
model for range finders, which uses ray-tracing and a mixture of four parametric densities
to calculate p(o|s,m). In our implementation, both of these probabilistic models are quite
crude, using uncertainty to account for model limitations. For brevity, we omit a more
detailed description of these models and instead refer the reader to [39].

Figure 5 illustrates how Minerva localizes itself from scratch (global localization). Ini-
tially, the robot does now know its pose; thus, p(s0) is distributed uniformly. After incor-

7

(a) o

0

0.025

0.05

0.075

0.1

0.125

100 200 300 400 500

Approximated
Measured

pr
ob

ab
ili

ty
p(

o
| s

)
i

measured distance [cm]

expected distance

(b) (c)

Figure 4: Probabilistic sensor model for laser range finders: (a) The density p(o|s,m) relates the actual,
measured distance of a sensor beam to its expected distance computed by ray tracing, under the assumption
that the robot’s pose is s. A comparison of actual data and our (learned) mixture model shows good
correspondence. Diagram (b) shows a specific laser range scan o, for which diagram (c) plots the density
p(o|s,m) for different locations in the map.

porating one sensor reading (laser and camera) according to the update rule (4), p(s1) is
distributed as shown in Figure 5a. While this distribution is multi-modal, high probability
mass is already placed near the correct pose. After moving forward and subsequently incor-
porating another laser range measurement, the resulting posterior p(s2) is centered on the
correct pose, as shown in Figure 5b.

3.3 Monte Carlo Localization

Of fundamental importance for the design of probabilistic algorithms is the choice of the rep-
resentation. During the museum exhibit, we used a piecewise constant grid-representation
for representing the belief b, described in detail in [39]. More recently, we developed an alter-
native representation which is both more efficient than grids and more accurate. Therefore,
we will describe it here.

The Monte Carlo localization algorithm (MCL) is a version of Markov localization that
uses samples to approximate the belief b [24, 25, 29, 37, 60]. It is based on the SIR algorithm
(SIR stands for sampling/importance resampling) originally proposed in [82], and is a
version of particle filters [30, 31, 64, 75]. Similar algorithms are known as condensation
algorithm [49, 50] in computer vision, and survival of the fittest in AI [55]. The basic idea of

8

(a) (b)

robot -robot -

Figure 5: Global localization: (a) Pose posterior bt(st) after integrating a first laser scan (projected into
2D). The darker a pose, the more likely it is. (b) shows bt(st) after integrating a second sensor scan. Now
the robot knows its pose with high certainty/accuracy.

MCL is to approximate b(s) with a weighted set of samples (particles), so that the discrete
distribution defined by the samples approximates the desired one. The weighting factors are
called importance factors [82]. The initial belief is represented by a uniform sample of size
k, that is, a set of k samples drawn uniformly from the space of all poses, annotated by the
constant importance factor k−1. MCL implements the update equation (4) by constructing
a new sample set from the current one in response to an action item at−1 and an observation
ot:

1. Draw a random sample st−1 from the current belief bt−1(st−1), with probability given
by the importance factors of the belief bt−1(st−1).

2. For this st−1, randomly draw a successor pose st, according to the distribution p(st|at−1, st−1,m).

3. Assign the (unnormalized) importance factor p(ot|st,m) to this sample and add it to
the new sample set representing bt(st).

4. Repeat Step 1 through 3 k times. Finally, normalize the importance factors in the
new sample set bt(st) so that they add up to 1.

Figure 6 shows MCL in action. Shown in the first diagram is a belief distribution (sample
set) at the beginning of the experiment when the robot does not (yet) know its position.
Each dot is a three-dimensional sample of the robot’s x-y-location along with its heading
direction. The second diagram shows the belief after a short motion segment, incorporating
several sensor measurements.. At this point, most samples concentrate on the center region
in the museum. However, the symmetry of this region makes it impossible to disambiguate
them. Finally, the third diagram in Figure 6 shows the belief a few moments later, where
all samples focus on the correct pose.

The MCL algorithm is in fact quite efficient [24, 25, 37]; slight modifications of the basic
algorithms [60, 106] require as few as 100 samples for reliable localization, consuming only a
small fraction of time available on a low-end PC. Our implementation is any-time [22, 108],
meaning that it can adapt to the available computational resources by dynamically adjusting
the number of samples k. With slight modifications—such as sampling from the observa-
tion [106]—MCL has been shown to recover gracefully from global localization failures, such

9

(a) (b)

(c)

Figure 6: Global localization of a mobile robot with the MCL algorithm, using a camera pointed at the
ceiling and the ceiling map shown in Figure 10b.

as manifested in the kidnapped robot problem mentioned above, where a well-localized robot
is teleported to some random location without being told. Another feature of MCL (and
Markov localization in general) is that the underlying models—in particular p(s|a, s,m),
p(o|s,m) and the map—can be extremely crude and simplistic, since probabilistic models
carry their own notion of uncertainty. This makes probabilistic algorithms relatively easy
to code. In comparison, traditional robotics algorithms that rely on deterministic models
make much stronger demands on the accuracy of the underlying models.

3.4 Distance filters for Finding People and Filtering Sensor Data

One of the key characteristics of the museum environment is that people populate it. At
peak museum hours, we often counted more than 100 people surrounding the robot. The
presence of people raises additional challenges to the robot’s software. In particular, the
Markov assumption in Markov localization requires a static environment, that is, one where
the robot’s pose is the only state that changes. People induce systematic noise on sensor
data, invalidating the Markov assumption. While plain Markov localization (and MCL) is
usually robust to small disturbances of this kind, it may easily fail when the number of

10

(a) (b) (c)

Figure 7: Distance filtering for locating people. Diagram (a) shows a laser range scan in a crowded situation,
projected at the robot’s most likely position. The distance filter sorts each individual measurement into two
bins: “authentic” measurements, shown in (b), and measurements believe to correspond to people, shown
in (c).

nearby people is large, and if people intentionally attempt to confuse the robot—both of
which frequently happened in the Minerva exhibit.

One approach for accommodating people is to include people’s location in the state s that
is being estimated. While such an approach is completely legitimate, it poses serious com-
putational problems, since the state space is now much larger. It also requires probabilistic
models of the motion of crowds.

Minerva uses an alternative approach. It filters range measurements using a distance
filter [39]. The distance filter sorts individual measurements into two bins: one that is
believed to be “authentic,” by which we mean that the sensor detected a known obstacle,
and one that is believed to originate from a person or another unknown obstacle.

The idea of the distance filter builds on a crucial property of range measurements: Mea-
surement errors induced by people make range measurements shorter, not longer. Thus,
readings are filtered out which, with high probability, are too short. More specifically, let
oα denote a single measurement (beam) taken at angle α relative to the robot. If the pose
st is known, the expectation of this measurement is given by

E[oα|st] =

∫
oα p(oα|st,m) dot (5)

Thus, the probability that a reading oαt is shorter than expected if oαt < E[oα|st]. Of
course, in practice the pose st is unknown, and all we have is the belief bt(st). Thus, the
integral

∫
Ioαt<E[oα|st] bt(st) dst (6)

is the probability that oαt is a shorter-than-expected reading under the belief bt. Here
I is the indicator function, which is 1 iff its argument is true. To accommodate people in
localization, our approach simply discards measurements that with high probability (.99) are
short. It uses only the remaining measurements for localization. A systematic comparison
and evaluation in [39] illustrates that distance filters are extremely effective in filtering our
undesired sensor measurements, while retaining sufficiently many authentic measurements
to ensure accurate and reliable localization. Our comparison also shows that distance filters
are capable of recovering from global localization failures (robot kidnapping).

11

An additional benefit of the distance filter arises from the fact that it aids human robot
interaction. Several of Minerva’s interaction strategies described below rely on the ability
to find people.

4 Concurrent Mapping and Localization

We now return to the question of acquiring maps. Recall that our localization algorithm
relies on a map m of the environment. In Rhino, Minerva’s predecessor, the map was con-
structed by hand. However, manual mapping is tedious, and precludes the rapid installation
of a tour-guide robot. Minerva, in contrast, learns the map from sensor data.

From a statistical standpoint of view, concurrent mapping and localization is an estima-
tion problem, similar to localization. This estimation problem is much higher dimensional
than the robot localization problem. For example, some of the grid maps shown in this
paper are described by 50,000 parameters. What makes this problem particularly difficult
is its chicken-and-egg nature, which arises from the fact that position errors accrued during
mapping, are difficult to compensate [77]. Put differently, localization with a map is rela-
tively easy, as is mapping with known locations. The problem of simultaneously localizing
and mapping, however, is hard.

Currently, the best mapping algorithms are all probabilistic, following the same basic
state estimation framework described above. One popular family of approaches, known as
SLAM algorithms [18, 19, 61, 62, 96], employs Kalman filters [54, 66] for concurrently es-
timating robot poses and maps. Unfortunately, this approach requires that features in the
environment can be uniquely identified—which is a consequence of the Gaussian noise as-
sumption inherent in Kalman filters. For example, it does not suffice to know that the robot
faces a doorway; instead, it must know which doorway it faces, to establish correspondence
to previous sightings of the same doorway. This limitation is of great practical importance.
It is common practice to extract a small number of identifiable features from the sensor
data, at the risk of discarding all other information. Some recent approaches overcome this
assumption by “guessing” the correspondence between measurements at different points in
time, but they tend to be brittle if those guesses are wrong [43, 65]. In the Smithsonian
museum environment, we know of no set of uniquely identifiable features that would give
metric maps of the nature required for localization.

4.1 EM Mapping

Minerva uses an alternative approach for mapping, which is based on the same mathematical
framework as the Kalman filter approach above [105]. In particular, our approach seeks to
estimate the mode of the posterior, m̄ = argmaxm p(m|d), instead of the full posterior
p(m|d). This might appear quite modest a goal compared to the full posterior estimation
in the Kalman filter approach. However, if the correspondence is unknown (and noise is
non-Gaussian), this in itself is a challenging problem.

To see, we note that the posterior over maps can be obtained in closed form:

bt(m) = p(m|d0...t) =

∫
bt(st,m) dst (7)

= η′′t p(m)

∫ ∫
· · ·
∫ t∏

τ=0

p(oτ |sτ ,m)
t∏

τ=1

p(sτ |aτ−1, sτ−1,m) ds1 ds2 . . . dst,

12

where the initial pose is—somewhat arbitrarily—set to s0 = 〈0, 0, 0〉. This expression is
obtained from (4) by integrating over st, followed by recursive substitution of the belief from
time t − 1 to time 0, and resorting of the resulting terms and integrals. For convenience,
we will assume a uniform prior p(m), transforming the problem into a maximum likelihood
estimation problem. Notice that Equation (7) integrates over all possible paths, a rather
complex integration. Unfortunately, we know of no way to calculate m̄ analytically for data
sets of reasonable size.

To find a solution, we notice that the robot’s path can be considered “missing variables”
in the optimization problem; knowing them indeed greatly simplifies the problem. The
statistical literature has developed a range of algorithms for such problems, one of which is
the EM algorithm [27, 68]. This algorithm computes a sequence of maps, denoted m[0], m[1],
. . . , which successively increasing likelihood. The superscript [·] is not to be confused with
the time index t or the index of a particle i; all it refers to is the iteration of the optimization
algorithm.

EM calculates a new map by iterating two steps, an expectation step, or E-step, and a
maximization step, or M-step:

• In the E-step, EM calculates an expectation of a joint log-likelihood function of the
data and the poses, conditioned on the K-th map m[K] (and conditioned on the data):

Q[m|m[K]] = Em[K] [logp(s0, . . . , st, d0...t|m[K]) | d0...t)]. (8)

The key observation is that computingQ involves calculating the posterior distribution
over poses s0, . . . , st conditioned on the K-th model m[K] . We have already seen
how to estimate the posterior over poses given a map, in the section on localization.
Technically, calculating (8) involves two Markov localization runs through the data, a
forwards run and a backwards run, since all data has to be taken into account when
computing the posterior p(sτ |d0...t) (the algorithm above only considers data up to
time τ). We also note that in the very first iteration, we do not have a map. Thus,
Q[m|m[K]] calculates the posterior for a “blind” robot, i.e., a robot that ignores its
measurements o1, . . . , ot.

• In the M-step, the most likely map is computed given the pose estimates obtained in
the E-step. This is formally written as

m[K+1] = argmax
m

Q[m|m[K]]. (9)

Technically, this is still a very difficult problem, since it involves finding the opti-
mum in a high-dimensional space. However, it is common practice to decompose the
problem into a collection of one-dimensional maximization problems, by stipulating
a grid over the map and solving (9) independently for each grid cell. The maximum
likelihood estimation for the resulting single-cell random variables is mathematically
straightforward.

Iterations of both steps tends to increase the log-likelihood. Details of the mathematical
derivation and the implementation of this algorithm can be found in [105].

13

(a) (b)

Figure 8: (a) Raw data collected in a large open hall (the Dinosaur Hall in the Carnegie Museum of Natural
History, Pittsburgh, PA) and (b) map constructed using EM and occupancy grid mapping.

4.2 Occupancy Grid Maps

In a final mapping step, Minerva transforms its maps into occupancy grids [33, 71]. Occu-
pancy grids are widely used in mobile robotics [8, 32, 45, 103, 107]. Most state-of-the-art
algorithms for generating such maps are probabilistic.

Occupancy grid mapping addresses a much simpler problem than the one above, namely
the problem of estimating a map from a set of sensor measurements given that one already

knows the corresponding poses. Let 〈x, y〉 denote a specific grid cell, and m
〈xy〉
t be the

random variable the models its occupancy at time t. Occupancy is a binary concept; thus,

we will write m
〈xy〉
t =1 if a cell is occupied, and m

〈xy〉
t =0 if it is not. Substituting m

〈xy〉
t into

Equation (4) under the consideration that this is a discrete random variable yields

bt(m
〈xy〉
t) = ηt p(ot|m〈xy〉t)

1∑

m
〈xy〉
t =0

p(m〈xy〉|at−1,m
〈xy〉
t−1) bt−1(m

〈xy〉
t−1), (10)

which in static worlds simplifies to

bt(m
〈xy〉) = ηt p(ot|m〈xy〉) bt−1(m〈xy〉) = ηt

p(m〈xy〉|ot) p(ot)
p(m〈xy〉)

bt−1(m〈xy〉). (11)

The second transformation pays tribute to the fact that in occupancy grid mapping, one
usually is given p(m〈xy〉|ot) instead of p(ot|m〈xy〉) [103]. One could certainly leave it at this
and calculate the normalization factor ηt at run-time. However, for binary random variable
the normalizer can be eliminated by noticing that the so-called odds, which is the following
quotient:

bt(m
〈xy〉=1)

bt(m〈xy〉=0)
=

p(m〈xy〉=1|ot)
p(m〈xy〉=0|ot)

p(m〈xy〉=0)

p(m〈xy〉=1)

bt−1(m〈xy〉=1)

bt−1(m〈xy〉=0)
. (12)

As is easily shown [103], this expression has the closed-form solution

bt(m
〈xy〉) = 1−

{
1 +

p(m〈xy〉)

1− p(m〈xy〉)

[
t∏

τ=0

p(m〈xy〉|oτ)

1− p(m〈xy〉|oτ)

1− p(m〈xy〉)
p(m〈xy〉)

]}−1

. (13)

14

(a)

(b)

(c)

Figure 9: (a) Raw data collected in the Smithsonian museum. (b) Data after adjusting the scans using EM.
(c) Final occupancy grid map. This map is approximately 110 meters wide and is the largest we ever built.
However, a smaller map (constructed from a different data set) was used for navigation, due to changes in
the operational area of the robot.

15

(a) (b)

Figure 10: (a) Occupancy map of the center portion of the Smithsonian museum. (b) Mosaic of the
museum’s ceiling. The various bright spots correspond to lights. The center portion of the ceiling contains
an opening—the lights there are approximately 15 meters higher.

For example, Figure 8a shows a raw data set of a large hall (approximately 50 meters wide),
along with the result of first applying EM, and then occupancy grid mapping using the poses
estimated with EM (Figure 8b). Figure 9 shows a map of a fraction of the Smithsonian
museum. These data were collected approximately six months before the exhibition, to
develop and test our navigation routines. Figure 9a shows the raw data. Here the robot
accrued an odometry error of 70 meters and approximately 180 degrees. Figure 9b shows the
result of EM mapping. The final occupancy grid map is shown in Figure 9c. This map is over
110 meters wide. While it is geometrically somewhat inaccurate (see the upper boundary of
the area on the left, which should be a straight line), it is sufficiently accurate for navigation
purposes. However, this map does not cover the robot’s entire operation range, which was
defined after gathering these data. Thus, we collected a different data set just days before
the exhibition began. The resulting map is shown in Figure 10a. This map is approximately
65 meters wide.

4.3 Ceiling Maps

Rhino, Minerva’s predecessor, relied on lasers for localization. To deal with the large open
spaces, Minerva additionally had a camera pointed at the ceiling, which we used approxi-
mately half of the time to augment the laser for localization. The ceiling map is a large-scale
mosaic of a ceiling’s texture. Such ceiling mosaics are more difficult to generate than occu-
pancy maps. This is because the height of the ceiling is unknown, which makes it difficult
to translate coordinates in the image plane into real-world coordinates.

A typical ceiling mosaic is shown in Figure 10b. Our approach uses the (previously
learned) occupancy map to pre-adjust errors in the odometry. While those poses are not
accurate to the precision that can be attained using the high-resolution vision sensors, they
eliminate the difficult-to-solve global alignment problem. The likelihood p(m|d) of the ceiling
map is then maximized by searching in the space the following parameters: the pose s at
which each image was taken, the height of ceiling segments, and two additional parameters
per image specifying variations in lighting conditions. Our approach employs the well-known
Levenberg-Marquardt algorithm [28] for optimization. As a result, the images are brought
into local alignment, the ceiling height is estimated, and a global mosaic is constructed.

16

Figure 10b shows the ceiling mosaic of the robot’s operational range. A typical run for
an environment of its size involves optimizing over about 3000 unknown variables, which
requires approximately 30 minutes of processing time on a state-of-the-art computer. In
follow-up research, we developed a probabilistic mosaicing algorithm which does not require
pre-adjustment using occupancy grid maps [26].

5 Planning and Navigation

Minerva employs three modules concerned with planning and navigation: a low-level reactive
collision avoidance module, a motion planner for moving from one exhibit to another, and
a mission planner for scheduling tours and battery changes.

5.1 Collision Avoidance

Minerva’s collision avoidance module controls the momentary motion direction and velocity
of the robot to avoid collisions with obstacles—people and exhibits alike. Many collision
avoidance methods for mobile robots consider only the kinematics of a robot, without taking
dynamics into account [10]. This is legitimate at speeds where robots can stop almost
instantaneously. However, at velocities of up to 163 cm/sec, inertia and torque limits impose
constraints on robot motion, which may not be neglected. To control the robot in tight run-
time conditions, this module is reactive in that it considers only a small number of recent
sensor readings.

Minerva’s collision avoidance method, called µDWA is described in depth in [38]. It has
been directly adopted from the Rhino software [15]; therefore we will only sketch it here.
In essence, the input to µDWA is raw proximity sensor readings along with a desired target
location, based on which µDWA sets the robot’s velocity (translation and rotation). It does
this by obeying a collection of constraints, which come in two flavors: hard and soft. Hard
constraints establish the basic safety of the robot (e.g., the robot must always be able to
come to a full stop before impact) and they also express dynamic constrains (e.g., torque
limits). Soft constraints are used to trade off the robot’s desire to move towards the goal
location, and its desire to move away from obstacles into open space. In combination, these
constraints ensure safe and smooth local navigation.

A key issue in collision avoidance is invisible hazards. Recall that certain hazards, such as
downward escalators, are invisible to Minerva’s sensors; yet it is essential that the robot avoid
them. These hazards are part of the map, where a person has marked them, so avoiding them
requires the collision avoidance to translate map coordinates into local robot coordinates.
At first glance, one might be tempted to perform this translation using a simple geometric
transformation, which considers the robot’s most likely position ŝt = argmaxst bt(st) only.
However, such an approach is brittle in the face of uncertainty. It would also fail to take
advantage of the probabilistic nature of Minerva’s localization approach.

Rather than relying on a single estimate of position for avoiding invisible hazards, Min-
erva employs a safer rule that guarantees the robot’s safety with high probability, even if
the robot is highly uncertain as to where it is. The basic idea is to avoid places that with
probability > 0.01 are hazardous. This is achieved by adding “virtual” range measurements
to the physical measurements, which with high probability (> 0.99) are shorter than an
actual noise-free measurement of the distance to the nearest hazardous place.

17

One of the advantages of the probabilistic framework is that the computation of such
virtual measurements mathematically straightforward. Let us consider the virtual measure-
ment at angle α relative to the robot. Let σ(α, st,m) denote the distance to the nearest
invisible hazard in the direction α, assuming that the robot’s pose is st. Since σ assumes
knowledge of the robot’s pose, it is easily computed using ray tracing. In practice, of course,
one does not know the pose st; instead, all one is given is the posterior bt(st). The following
term calculates the probability that our noise-free virtual sensor would return a measurement
oαt that is larger than a, under the belief bt(st):

p(oαt > a) =

∫
Iσ(α,st,m)>a bt(st) dst (14)

Here I denotes the indicator function which is 1 iff its argument is true. If we chose a virtual
sensor measurement a for which p(oαt > a) ≥ 0.99, we can be 99%-certain that the “true”
distance to the nearest hazardous region in the direction α is larger than a. Put differently,
our approach generates virtual measurements

sup
a
{ p(oαt > a) ≥ 0.99 } (15)

by maximizing a under the constraint that the true distance is underestimated with prob-
ability at least 99%. Virtual measurements are generated for all angles α, at an angular
resolution of 2 degrees. Using these virtual measurements, the robot is safe with probability
99%, even though it may be uncertain as to where it is relative to the map. This approach,
which takes advantage of the explicit representation of uncertainty in the robot’s pose esti-
mate, was found to be essential for ensuring the robot’s safety, both in the Rhino and the
Minerva project [15].

5.2 Motion Planning

Minerva’s motion planner computes globally consistent motion commands that guide the
robot from one exhibit to the next. Uncertainty plays a major role in Minerva’s motion
planning algorithm. While Rhino operated in a narrow museum, always in safe proximity
sufficiently many known objects to guarantee accurate localization, the Smithsonian museum
contained a large, open, featureless region in its center. Here the danger of getting lost is
significant, specifically at peak opening hours where this space is filled with hundreds of
people. Thus, to minimize the danger of getting lost, Minerva’s path planner seeks the
proximity of known obstacles. Minerva’s motion planner is called a coastal planner [80, 81].
The analogy is to ships, which typically stay close to the coast to avoid getting lost (unless
they are equipped with a global positioning system).

Possibly the most general framework for probabilistic planning is known as partially
observable Markov decision processes, or in short POMDP [70, 95, 97]. Recently, POMDPs
have become popular in AI [53, 63]. POMDPs address the problem of choosing actions so as
to minimize a scalar cost function, denoted C(s). In robot motion planning, we use C(s) = 0
for goal locations s, and −1 elsewhere. Since reaching a goal location typically requires a
whole sequence of actions, the control objective is to minimize the expected cumulative cost:

J =
t+T∑

τ=t+1

E[C(sτ)]. (16)

18

Here the expectation is taken over all future states. T may be ∞, in which case cost is often
discounted over time by an exponential factor.

The basic idea of POMDPs is to construct a value function in belief space, using a
generalized version of value iteration [7, 48]. A value function, denoted by V , measures the
expected cumulative cost if one starts in a state s drawn according to the belief distribution
b, and acts optimally thereafter. Thus, the value V (b) of the belief state is the best possible
cumulative costs one can expect for being in b. This is expressed as

V (b) =

∫ t+T∑

τ=t+1

E[C(sτ)|st = s] b(s) ds. (17)

Following [7, 99], the value function can be computed by recursively adjusting the value of
individual belief states b according to

V (b) ←− min
a

∫
[V (b′) + C(b′)] p(b′|a, b,m) db′, (18)

which assigns to V (b) the expected value at the next belief, b′. Here the immediate cost
of a belief state b′ is obtained by integrating over all states C(b′) =

∫
C(s′) b′(s′) ds′.

The conditional distribution p(b′|a, b,m) is the belief space counterpart to the next state
distribution, which is obtained as follows:

p(b′|a, b,m) =

∫
p(b′|o′, a, b,m) p(o′|a, b,m) do′, (19)

where p(b′|o′, a, b,m) is a Dirac distribution defined through Equation (4), and

p(o′|a, b,m) =

∫ ∫
p(o′|s′,m) p(s′|a, s,m) b(s) ds′ ds. (20)

Once V has been computed, the optimal policy is obtained by selecting actions that minimize
the expected V -value over all available actions:

π(b) = argmin
a

∫
V (b′) p(b′|a, b,m) db′. (21)

While this approach defines a mathematically elegant and consistent way to compute the
optimal policy from the known densities p(s′|a, s,m) and p(o′|s′,m)—which are in fact
the same densities used in mapping and localization—there are two fundamental problems.
First, in continuous domains the belief space, which is the space of all distributions, is an
infinitely dimensional space. Consequently, no exact method exists for calculating V in the
general case. Second, even if the state space is discrete—which is commonly assumed in the
POMDP framework—the computational burden can be enormous. This is because for state
spaces of size n, the corresponding belief space is a (n − 1)-dimensional continuous space.
The best known solutions, such as the witness algorithm [53], can only handle problems of
the approximate size of 100 states, and a planning horizon of no more than T = 5 steps. In
contrast, state spaces in robotics routinely possess orders of magnitude more states, even
under crude discretizations. This makes approximating imperative.

Coastal navigation is a POMDP algorithm that relies on an approximate representation
for belief states b. The underlying assumption is that the exact nature of the uncertainty
is irrelevant for action selection; instead, it suffices to know the degree of uncertainty as

19

(a) (b)

Figure 11: Coastal plans: the robot actively seeks the proximity of obstacles to improve its localization.
The large open area in the center of the Smithsonian museum is approximately 20 meters wide and usually
crowded with people.

expressed by the entropy of a belief state H[b]. Thus, coastal navigation represents belief
states by the following tuple:

b̄ = 〈 argmax
s

b(s); H[b] 〉. (22)

While this approximation is coarse, it causes value iteration to scale exponentially better to
large state spaces than the full POMDP solution, while still exhibiting good performance in
practice [80, 81].

Figure 11 shows an example trajectory calculated by the coastal navigation algorithm
for the center region of the museum. The goal of motion is to reach a target location
with high probability. By considering uncertainty, the coastal planner generates paths that
actively seek the proximity of known obstacles so as to minimize the localization error—at
the expense of an increased path length when compared to the shortest path. Experimental
results described elsewhere [81] have shown that the success rate of the coastal planner is
superior to conventional shortest path planners that ignore the inherent uncertainty in robot
motion.

5.3 Mission Planning

Minerva’s high-level controller performs two important tasks:

1. During everyday normal operation, it schedules tours and monitors their execution.
The target duration for tours was six minutes, which was determined to be the duration
the average visitor would enjoy following the robot. Unfortunately, the rate of progress
depends critically on the number and the behavior of the surrounding people. This
makes it necessary to compose tours on-the-fly.

2. The high-level controller also has to monitor the execution of tours, and change the
course of actions when an exception occurs. Examples include the battery voltage,
which, if below a critical level, forces the robot to terminate its tour and return to the
charger. An exception is also triggered when the confidence of Minerva’s localization
routines drop below a critical level (luckily an extremely rare event), in which case the
tour must temporarily be suspended to invoke a strategy for re-localization [5].

20

average min max
static 398 ± 204 sec 121 sec 925 sec
with learning 384 ± 38 sec 321 sec 462 sec

Table 2: This table summarizes the time spent on individual tours. In the first row, tours were pre-composed
by static sequences of exhibits; in the second row, tours were composed on-the-fly, based on a learned model
of travel time, successfully reducing the variance by a factor of 5.

Minerva’s plan-based controller, a structured reactive controller (src) [3] built on top of
RPL [67], is a collection of concurrent, percept-driven control routines that specifies routine
activities and can adapt itself to non-standard situations. Minerva executes three kinds
of high-level control processes: scheduled tour plans that work well in standard situations,
monitoring processes that detect non-standard situations, and plan adaptors that are re-
sponsible for managing the tour plans during their execution. Thus, Minerva carries out
museum tours with the constraint that, when circumstances change, a runtime plan adapta-
tion process is triggered. For example, such a situation might occur when the robot suffers
an unexpected delay while traveling from one exhibit to another, or when tour requests are
added or modified on-line. During the 14 day-long deployment Minerva’s plan-based con-
troller performed roughly 3,200 execution time plan revisions, including the insertion of plans
for new user requests, the removal of plans for accomplished requests, and tour reschedul-
ing. The controller communicated with the rest of the software using HLI, a component
of GOLEX [46]. More recently, we have extended this framework to include probabilistic
representations [6, 4]; however, those extensions were not used in the Minerva project.

To meet the desired length for individual tours, Minerva’ mission planner composes tours
on-the-fly. To do so, it learns the time required for moving between pairs of exhibits, based
on data recorded in the past (using the empirical mean as estimator). After an exhibit
is explained, the interface chooses the next exhibit based on the remaining time. If the
remaining time is below a threshold, the tour is terminated and Minerva instead returns to
the center portion of the museum. Otherwise, it selects exhibits whose sequence best fit the
desired time constraint.

Table 2 illustrates the effect of dynamic tour decomposition on the duration of tours.
Minerva’s environment contained 23 designated exhibits, and there were 77 sensible pairwise
combinations between them (certain combinations were invalid since they did not fit together
topic-wise). In the first days of the exhibition, all tours were static. The first row in Table 2
illustrates that the timing of those tours varies significantly (by an average of 204 seconds).
The average travel time, shown in Table 3, was estimated using 1,016 examples, collected
during the first days of the project. The second row in Table 2 shows the results when tours
were composed dynamically. Here the variance of the duration of a tour is only 38 seconds.
Minerva’s high-level interface also made the robot return to its charger periodically, so that
we could hot-swap its batteries.

6 Human Robot Interaction

Interaction with people is Minerva’s primary purpose. It is therefore surprising that previous
tour-guide robots’ interactive capabilities were rather limited. The type of interaction faced
by a tour-guide robot is spontaneous and short-term: Visitors of the Smithsonian museum

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 26 68 14 28
2 23 38 13
3 81 66 51 66 60
4 76 22
5 62 49
6 41 44
7 44 1 55 42 51
8 44 63
9
10
11 34 16 69
12 61 53 69 72 32 87 55
13 28
14 33 39
15 60
16 46 68
17 59 13 57
18 46 42 31 36 31 12
19 1 25 58 69 12
20 57 62 37
21 55 24 20 15 74
22 208 66 46 38 38 23 56 39
23 113 76 59 24 46 59

Table 3: Time (in sec) it takes to move from one exhibit to another, estimated from 1,016 examples collected
in the museum. These times, plus the (known) time used for explaining an exhibit, form the basis for the
decision-theoretic planner.

typically had no prior exposure to robotics technology, and they could not be instructed
beforehand as to how to operate the robot. The robot often interacts with crowds of people
as well as individual visitors. In them museum, most people spent less then 15 minutes (even
though some spent hours or even days). This type of interaction is characteristic for robots
that operate in public places, such as receptionists, information kiosks, and merchandising
robots. It differs significantly from the majority of interactive modes studied in the field,
which typically assume long-term interaction with a single subject.

To maximize Minerva’s effectiveness, we opted to give the robot human-like features such
as a motorized face, a neck, and a simple finite state machine emulating “emotions,” and to
use reinforcement learning to shape her interactive skills.

6.1 The Face

Figure 12 shows Minerva’s face. To engage museum visitors, we sought to present as recog-
nizable and intuitive an interface as possible [11, 87]. Obviously, the face is only a caricature,
containing only schematic features related to the expression of simple emotions. It contains,
we believe, those elements necessary for the degree of expression appropriate for a tour-
guide robot. A fixed mask would be incapable of visually representing mood, and a highly
accurate simulation of a human face would contain numerous distracting details beyond our
control. A physical face was deemed more appropriate than a simulated one displayed on
a computer screen, because people can view it from arbitrary angles (even from the back),
letting museum visitors see it without standing directly in front of the robot. As Figure 12
documents, an iconographic face consisting of two eyes with eyebrows and a mouth is almost
universally recognizable and can portray the range of simple emotions useful for tour-guide
interaction.

22

(a)

(b) (c)

Figure 12: Minerva’s face with (a) happy, (b) neutral, and (c) angry facial expressions.

6.2 Emotional States

When giving tours, Minerva uses its face, its head direction, and its voice to communicate
with people, so as to maximize its progress and please the audience. A stochastic finite state
machine shown in Figure 13 is employed to model simple emotional states (moods), which
allow the robot to communicate its intent to visitors in a social context familiar to people
from human-human interaction [11, 73, 74]. Moods range from happy to angry, depending on
the persistence of the people who block its path. When happy, Minerva smiles and politely
asks for people to step out of the way; when angry, its face frowns and the robot’s voice
sounds angry. Most museum visitors had no difficulty understanding the robot’s intention
and emotional state. In fact, the ability to exhibit such extremely caricatured pseudo-
emotions proved to be one of the most appreciated aspects of the entire project.

6.3 Learning to Attract People

How can a robot attract attention? Since there is no obvious answer, we applied an on-line
learning algorithm. More specifically, Minerva uses a memory-based reinforcement learning
approach [99] (with no delayed reward). Reinforcement is received in proportion of the
proximity of people as determined by Minerva’s people finding module; coming too close,
however, leads to a distinct penalty for violating Minerva’s space. Minerva’s behavior is
conditioned on the current density of people. Possible actions include different strategies
for head motion (e.g., looking at nearest person), different facial expressions (e.g., happy,
sad, angry), and different speech acts (e.g., “Come over,” “do you like robots?”). Learning
occurs during one-minute-long, dedicated mingling phases, which take place between tours.
During learning, the robot chooses with high probability the best-known action (so that it
attracts as many people as possible); however, with small probability the robot chooses a
random action, to explore new forms of interaction. This aproach is similar to the literature
on the exploration-exploitation dilemma in the k-arm bandit literature [101].

During the two weeks in the Smithsonian museum, Minerva performed 201 attraction
interaction experiments, each of which lasted approximately 1 minute. Over time, Minerva
developed a “positive attitude” (saying friendly things, looking at people, smiling). As
shown in Figure 14, acts best associated with a positive attitude attracted the most people.
For example, when grouping speech acts and facial expressions into two categories, friendly
and unfriendly, we found that the former type of interaction performed significantly better
than the first (with 95% confidence). However, peoples response was highly stochastic and

23

Figure 13: State diagram of Minerva’s emotions during travel. “Free” and “blocked” indicate whether a
person stands in the robot’s path.

the amount of data that we were able to collect during the exhibition is insufficient to yield
statistical significance in most cases. Hence, we are unable to comment on the effectiveness
of individual actions.

6.4 Web Interface

One of the goals of the project was to enable remote users to establish a virtual telepresence
in the museum, using the Internet. Therefore, while in the Smithsonian museum Minerva
was connected to the Web at http://www.cs.cmu.edu/∼minerva, where Web users all over
the world controlled Minerva and could look through its eyes. In addition, a stationary zoom
camera mounted on a pan/tilt unit enabled Web users to watch Minerva and nearby visitors
from a distance.

While the museum was open to visitors, Minerva was controlled predominately by the
visitors of the museum, which could select tours using a touch-sensitive screen mounted at
Minerva’s back. Every third tour, however, was selected by Web users via a voting scheme:
Votes for individual tours were counted, and the most popular tour was chosen. At all times,
the web page displayed current camera images recorded by Minerva and by the off-board
camera, and a museum map with the robot’s position. To facilitate updating the position of
Minerva several times a second, Web users downloaded a robot simulator written in Java,
and used TCP communication and server-push technology to communicate the position of
the robot in approximately real time [88].

During several special scheduled Internet events, all of which took place when the museum
was closed to visitors, Web users were given exclusive control of the robot. Using the interface
shown in Figure 15a, they could schedule target points, which the robot approached in the
order received. The number of pending target points was limited to five. All rows in Table 4
marked “Web only” correspond to times where Web users assumed exclusive control over
the robot. In one case, Minerva moved at an average velocity of 73.8 cm/sec. Its maximum
velocity was 163 cm/sec, which was attained frequently. Such high velocities, however, were
only attained when the museum was closed. When visitors were around, the speed was

24

 happy "clap hands" neutral horn upset/demanding
−50

−40

−30

−20

−10

0

10

20

30

40
Sound output: reward mean with 95% confidence

re
w

ar
d

sound type

Figure 14: Statistics of people’s response to different styles of interaction (from friendly on the left to
upset/demanding on the right). The data were input to a reinforcement learning algorithm, which learned
interaction patterns on-line.

reduced to less than 70 cm/sec (walking speed) to avoid people perceiving the robot as a
threat.

7 Statistics

Table 4 surveys the overall statistics of Minerva’s 13 days-long performance. As can be seen,
the robot traveled a total of 44 km, at top speed of 163 cm/sec and an average speed of 38.8
cm/sec. Minerva’s speed was limited to 70 cm/sec during opening hours, but limited only
by hardware limitations when the museum was closed and the robot was controlled through
the Internet. Figure 15b shows the robot’s path between two battery charges; a battery
charge lasted approximately two hours.

Since the Rhino robot was developed by the same research team and employed many
of the same basic navigation modules, a comparison between both robots seems in order.
Navigation in the Smithsonian museum posed completely new challenges that were not
present in the Deutsches Museum Bonn. Minerva’s environment was an order of magnitude
larger, with a particular challenge arising from the large open area in the center portion of
the museum. Minerva also had to cope with an order of magnitude more people than Rhino.

To accommodate these difficulties, Minerva’s navigation system was more sophisticated.
In particular, Rhino did not use camera images for localization, and its motion planner
did not consider information gain when planning paths. In addition, Rhino was supplied
with a manually derived map; it lacked the ability to learn maps from scratch. We believe
that these extensions were essential for Minerva’s success. Rhino also lacked the ability to
compose tours on-the-fly, and it was also unable to detect exceptions such as battery drain
(which caused problems) [15].

While in the Rhino project, we carefully counted the number of collisions and other
failures, this was impossible in Minerva’s case, since we were often not present during robot
operation. However, we recall two occasions at which the robot lost its position, both times

25

(a) (b)

Figure 15: (a) Web control interface. Users can authenticate themselves in on the left side of the window,
and subsequently specify target locations by clicking in the map. The map shows current robot position,
pending target locations, and a dialogue box displays the current speed of the robot. On the right. users
can watch images recorded using the robot’s camera (top image) and by a stationary camera with zoom
mounted on a pan/tilt unit (bottom image). (b) Multi-hour path of the robot in the museum.

involving huge crowds of people that persistently blocked virtually all of the robots sensors
for extended periods of time (e.g., 20 minutes). A misadjusted low-level motion controller
in the robot’s base, which was inaccessible to us, made the robot’s motion a bit jerkier than
that of Rhino. However, this did not affect Minerva’s overall performance.

A key difference between both robots relates to their interactive capabilities. As men-
tioned above, Rhino’s interaction was more rudimentary. It lacked a face, did not exhibit
“emotional states,” and it did not actively attract or engage people. As a result, Minerva
was much more effective in attracting people and making progress. When compared to the
Rhino project, we consistently observed that people cleared the robot’s path much faster.
We found that both robots maintained about the same average speed (Minerva: 38.8 cm/sec,
Rhino: 33.8 cm/sec), despite the fact that Minerva’s environment was more crowded. These
numbers illustrate the effectiveness of Minerva’s interactive approach to making progress.

In comparison with Rhino, people also appeared more satisfied and amused. According
to a poll involving 63 people (36 male, 27 female), 93.7% liked Minerva, while the remaining
6.3% were undecided. When asked whether people were satisfied with the robot, 77.8%
answered yes, 15.9% were undecided, and only 6.3% responded with no. 39.7% of the
visitors would be willing to pay $1,000 or more, if they could purchase a robot like Minerva
(with the same level of capability) for their private home. When asked what level of animal
(from a list of five options) Minerva’s intelligence was most comparable to, we received the
following answers: human: 36.9%; monkey: 25.4%; dog: 29.5%; fish: 5.7%; amoeba:2.5%.
Unfortunately, we did not ask people the same questions at the Rhino exhibition. A similar
evaluation of the effectiveness of robot emotions for robots operating in public places can
be found in [73, 74].

Minerva also possessed an improved Web interface, which enabled Web users to specify
arbitrary target locations instead of choosing locations from a small pool of pre-specified
locations. Rhino’s Web interface prescribed a small set of 13 possible target locations, which
corresponded to designated target exhibits. When under exclusive Web control, Minerva
was more than twice as fast as Rhino (see Table 4). In everyday operation, however, the
maximum speed of both robots was limited to the same speed.

26

date uptime travel time distance avg. speed tours exhibits mode
Aug 24 7:16:08 2:34:36 2,881.13 m 31.3 cm/sec 52 174
Aug 25 7:41:52 2:17:05 2,725.90 m 33.1 cm/sec 55 169
Aug 26 6:57:35 2:39:24 2,642.23 m 27.6 cm/sec 28 102
Aug 27 5:40:58 1:33:00 1,147.12 m 31.7 cm/sec 53 203

1:56:21 0:50:55 1,755.98 m 57.5 cm/sec 28 104 Web only
Aug 28 6:48:59 2:08:14 2,416.15 m 31.4 cm/sec 54 192
Aug 29 5:40:23 1:50:22 2,436.92 m 36.7 cm/sec 59 219
Aug 30 6:42:36 2:17:58 3,305.44 m 39.9 cm/sec 66 231
Aug 31 7:25:57 2:09:02 3,372.91 m 43.6 cm/sec 77 258
Sept 1 7:11:54 2:22:40 3,707.19 m 43.3 cm/sec 61 230
Sept 2 4:28:07 1:27:33 1,954.19 m 37.2 cm/sec 37 137
Sept 3 9:56:53 3:25:08 5,332.76 m 43.3 cm/sec 54 203
Sept 4 1:13:15 0:52:34 2,143.86 m 68.0 cm/sec 103 Web only

6:49:35 2:04:49 2,611.71 m 34.9 cm/sec 48 168
2:17:04 1:17:00 3,411.41 m 73.8 cm/sec 175 Web only

Sept 5 6:15:46 1:42:34 2,173.90 m 35.3 cm/sec 49 156
total 94:23:20 31:32:54 44,018.8m 38.8cm/sec 620 2,668

Table 4: Summary statistics of Minerva’s operation. The rows labeled “Web only” indicate times when the
museum was closed to the public, and Minerva was under exclusive Web control. At all other times, Web
users and museum visitors shared the control of the robot. Minerva’s top speed was 163 cm/sec.

8 Related Work

There is a huge body of related work, most of which is systematically surveyed in a recent
article on Rhino [15] (over 160 references). Probably the first tour-guide robot was Ian
Horswill’s Polly [47], a small mobile robot that guided visitors through the AI Lab at MIT.
To our knowledge, Rhino was the first museum tour-guide robot [15]; it operated in the
Fall of 1997. Rhino inspired Sage/Chips (the name was changed while the robot was in
operation) [72], which had its debut in 1998 in the Carnegie Museum of Natural History in
Pittsburgh, PA (see map in Figure 8). Sage, or Chips, has now operated with interruptions
for approximately two years. However, its environment has been modified significantly to aid
the navigation, and it also lack a Web interface. Others have developed proto-type robots
that interact with people at fairs and trade shows (e.g., [73, 74, 86]).

Web interfaces have gained serious attention in robotics throught the last years, since
they allow people to tele-operate a robot at a distant site. Three early systems, whose
interfaces were designed along these lines, are the Mercury Project [40] installed in 1994,
Australia’s Tele-robot on the Web [100], which came on-line nearly at the same time, and the
Tele-Garden [41], which replaced the Mercury robot in 1995. While the Mercury robot and
the Tele-Garden enabled Web users to perform different types of digging tasks, excavation
of artifacts and watering and seeding flowers, the Tele-robot on the Web gave Web users
the opportunity to build complex structures from toy blocks. The PumaPaint Project [98]
enables people to draw a painting by controlling a PUMA 760 robot arm.

Minerva’s Web interfaces borrow some ideas from Xavier [93, 92], one of the first inter-
active mobile robots controllable via the Web. Xavier can be advised by Web users to move
to an office and to tell a knock-knock joke after arrival. Xavier collects requests off-line and
processes them during special working hours. It informs the Web user afterwards about task
completion via email. The Web interface relies on client-pull and server-push techniques to
provide images taken by the robot as well as a map indicating the robot’s current position

27

in regular intervals. In contrast to Xavier, however, our robots provide status information
with smooth visualizations. Our interfaces immediately react to requests and inform users
instantly about the current schedule of the robot. KephOnTheWeb [84, 69], another mobile
robot on the Web, allows virtual visitors to move a Khepera robot and to control several
cameras, using a set of click-able maps. There is also a huge list of Web cameras, which
deliver image streams to the Web. Some of these cameras, such as [42], which is installed on
a robot arm in a museum, can even be controlled by virtual visitors. Other Web interfaces
can be found in a recent magazine issue [90].

The last few decades have led to a flurry of different software design paradigms for
autonomous robots. Early work on model-based robotics often assumed the availability of
a complete and accurate model of the robot and its environment, relying on planners (or
theorem provers) to generate actions [17, 59, 89]. Such approaches are often inapplicable to
robotics due to the difficulty of generating models that are sufficiently accurate and complete.
Recognizing this limitation, some researchers have advocated model-free reactive approaches.
Instead of relying on planning, these approaches require programmers to program controllers
directly. A popular example of this approach is the “subsumption architecture” [12], where
controllers are composed of small finite state automata that map sensor readings into control
while retaining a minimum of internal state. Some advocates of this approach went as far as
refusing the need for internal models and internal state altogether [12, 20]. Observing that
“the world is its own best model” [13], behavior-based approaches usually rely on immediate
sensor feedback for determining a robot’s action. Obvious limits in perception (e.g., robots
cannot see through walls) pose clear boundaries on the type of tasks that can be tackled
with this approach. This leads us to conclude that while the world might well be its most
accurate model, it is not necessarily its most accessible one [102]. And accessibility matters!

The probabilistic approach is somewhere between these two extremes. Probabilistic
algorithms rely on models, just like the classical plan-based approach. For example, Markov
localization requires a perception model p(o|s,m), a motion model p(s′|a, s), and a map
of the environment. However, since these models are probabilistic, they only need to be
approximate. This makes them much easier to implement (and to learn) than if we had
to meet the accuracy requirements of traditional approaches. Additionally, the ability to
acknowledge existing uncertainty and even anticipate upcoming uncertainty in planning
leads to qualitatively new solutions in a range of robotics problems, as demonstrated in this
article.

Probabilistic algorithms are similar to behavior-based approaches in that they place a
strong emphasis on sensor feedback. Because probabilistic models are insufficient to predict
the actual state, sensor measurements play a vital role in state estimation and, thus, in
determining a robot’s actual behavior. However, they differ from behavior-based approaches
in that they rely on planning, and in that a robot’s behavior is not just a function of a small
number of recent sensor readings. As an example that illustrates the importance of the latter,
imagine placing a mobile robot in a crowded place full of invisible hazards! Surely, adding
more sensors can remedy the problem. However, such an approach is expensive at best,
but more often it will be plainly infeasible due to lack of appropriate sensors. Minerva’s
predecessor robot Rhino, for example, was equipped with five different sensor systems—
vision, laser, sonar, infrared and tactile—yet it still could not perceive all the hazards and
obstacles in this fragile environment with the necessary reliability (see [15] for a discussion).
Thus, it seems unlikely that a reactive approach could have performed anywhere nearly as
reliably and robustly in this task domain.

28

9 Discussion

This article described the software architecture of a mobile tour-guide robot, which suc-
cessfully operated for a two-week time period at the Smithsonian’s National Museum of
American History. During more than 94 hours of operation (31.5 hours of motion), Minerva
gave 620 tours and visited 2,668 exhibits. The robot interacted with thousands of people,
and traversed more than 44 km. Its average speed was 38.8 cm/sec, and its maximum speed
was 163 cm/sec. The map learning techniques enabled us to develop the robot in 3 weeks,
from the arrival of the base platform to the opening of the exhibition. A Web interface gave
people direct control of the robot when the museum was closed to the public.

So what did we learn? Minerva’s software was pervasively probabilistic. As noted in the
introduction, the probabilistic paradigm pays tribute to the inherent uncertainty in robot
perception, relying on explicit representations of uncertainty when determining what to do.

Our results illustrate that probabilistic algorithms are well suited for high-dimensional
estimation and learning problems; in fact, we know of no comparable algorithm that can
solve problems of equal hardness but does not explicitly address the inherent uncertainty in
perception. Our results also show favorably performance in planning and reactive control
using probabilistic algorithms. Probabilistic representations were essential or reliable local-
ization, and the robot’s ability to safely avoid downward escalators and other “invisible”
hazards in the densely crowded museum.

We conjecture that the probabilistic paradigm is a general, powerful approach to robotics,
highly applicable to a whole range of robot applications involving real-world sensing. Sensors
are inherently limited. Environments are dynamic. Models are inaccurate. Therefore,
uncertainty plays a predominant role in robotics. We hope that the results described in
this paper shed light onto the appropriateness of the probabilistic approach to robotics,
illustrating how a range of challenging problems can be solved in a mathematically consistent
way.

Acknowledgments

We are deeply indebted to the Deutsches Museum Bonn and the Lemelson Center of the
Smithsonian National Museum of American History for their support and enthusiasm for
these projects. We also thank the Real World Interface Division of IS Robotics for lending
us the Minerva hardware free of charge.

This research is sponsored in part by DARPA via AFMSC (contract number F04701-97-
C-0022), TACOM (contract number DAAE07-98-C-L032), and Rome Labs (contract number
F30602-98-2-0137). Additional financial support was received from Daimler Benz Research
and Andy Rubin, all of which is gratefully acknowledged.

References

[1] R. Arkin. Behavior-Based Robotics. MIT Press, Boston, MA, 1998.

[2] K.O. Arras and S.J. Vestli. Hybrid, high-precision localization for the mail distributing mobile
robot system MOPS. In Proceedings of the IEEE International Conference on Robotics &
Automation (ICRA), 1998.

[3] M. Beetz. Structured reactive controllers—a computational model of everyday activity. In
Proceedings of the Third International Conference on Autonomous Agents, 1999.

29

[4] M. Beetz, M. Bennewitz, and H. Grosskreutz. Probabilistic, prediction-based schedule de-
bugging for autonomous robot office couriers. In Proceedings of the 23rd German Conference
on Artificial Intelligence (KI 99), Bonn, Germany. Springer Verlag, 1999.

[5] M. Beetz, W. Burgard, D. Fox, and A.B. Cremers. Integrating active localization into high-
level robot control systems. Journal of Robotics and Autonomous Systems, 1999. forthcoming.

[6] M. Beetz and H. Grosskreutz. Probabilistic hybrid action models for predicting concurrent
percept-driven robot behavior. In Proceedings of the Fifth International Conference on AI
Planning Systems, Breckenridge, CO, 2000. AAAI Press.

[7] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

[8] J. Borenstein. The Nursing Robot System. PhD thesis, Technion, Haifa, Israel, June 1987.

[9] J. Borenstein, B. Everett, and L. Feng. Navigating Mobile Robots: Systems and Techniques.
A. K. Peters, Ltd., Wellesley, MA, 1996.

[10] J. Borenstein and Y. Koren. The vector field histogram – fast obstacle avoidance for mobile
robots. IEEE Journal of Robotics and Automation, 7(3):278–288, June 1991.

[11] C. Breazeal (Ferrell). A motivational system for regulating human-robot interaction. In
Proceedings of AAAI’98, pages 54–61, Madison, WI, 1998.

[12] R. A. Brooks. A robot that walks; emergent behaviors from a carefully evolved network.
Neural Computation, 1(2):253, 1989.

[13] R.A. Brooks. Elephants don’t play chess. Autonomous Robots, 6:3–15, 1990.

[14] R.A. Brooks. Intelligence without reason. In Proceedings of IJCAI-91, pages 569–595. IJCAI,
Inc., July 1991.

[15] W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and
S. Thrun. Experiences with an interactive museum tour-guide robot. Artificial Intelligence,
114(1-2):3–55, 1999.

[16] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the absolute position of a mobile
robot using position probability grids. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence, Menlo Park, August 1996. AAAI, AAAI Press/MIT Press.

[17] J. Canny. The Complexity of Robot Motion Planning. The MIT Press, Cambridge, MA, 1987.

[18] J.A. Castellanos, J.M.M. Montiel, J. Neira, and J.D. Tardós. The SPmap: A probabilistic
framework for simultaneous localization and map building. IEEE Transactions on Robotics
and Automation, 15(5):948–953, 1999.

[19] J.A. Castellanos and J.D. Tardós. Mobile Robot Localization and Map Building: A Multisen-
sor Fusion Approach. Kluwer Academic Publishers, Boston, MA, 2000.

[20] J. Connell. Minimalist Mobile Robotics. Academic Press, Boston, 1990.

[21] I.J. Cox. Blanche—an experiment in guidance and navigation of an autonomous robot vehicle.
IEEE Transactions on Robotics and Automation, 7(2):193–204, 1991.

[22] T.L. Dean and M. Boddy. An analysis of time-dependent planning. In Proceeding of Seventh
National Conference on Artificial Intelligence AAAI-92, pages 49–54, Menlo Park, CA, 1988.
AAAI, AAAI Press/The MIT Press.

[23] T.L. Dean and K. Kanazawa. A model for reasoning about persistence and causation. Com-
putational Intelligence, 5(3):142–150, 1989.

[24] F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the condensation algorithm for robust,
vision-based mobile robot localization. In Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition, Fort Collins, CO, 1999. IEEE.

30

[25] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for mobile robots.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
1999.

[26] F. Dellaert, C. Thorpe, and S. Thrun. Mosaicing a large number of widely dispersed, noisy,
and distorted images: A bayesian approach. Technical Report CMU-RI-TR-99-34, Carnegie
Mellon University, Pittsburgh, PA, 1999.

[27] A.P. Dempster, A.N. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

[28] J.E. Dennis and R.B. Schnabel. Numerical methods for unconstrained optimization and non-
linear equations. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[29] J. Denzler, B. Heigl, and H. Niemann. Combining computer graphics and computer vision
for probabilistic self-localization. Internal Report, 1999.

[30] A Doucet. On sequential simulation-based methods for bayesian filtering. Technical Report
CUED/F-INFENG/TR 310, Cambridge University, Department of Engineering, Cambridge,
UK, 1998.

[31] A. Doucet, N.J. Gordon, and J.F.G. de Freitas, editors. Sequential Monte Carlo Methods In
Practice. forthcoming, 2000.

[32] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal of Robotics and
Automation, RA-3(3):249–265, June 1987.

[33] A. Elfes. Occupancy Grids: A Probabilistic Framework for Robot Perception and Navigation.
PhD thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University,
1989.

[34] G. Engelberger. Services. In Shimon Y. Nof, editor, Handbook of Industrial Robotics, chapter
64., pages 1201–1212. John Wiley and Sons, 2nd edition, 1999.

[35] S. Engelson. Passive Map Learning and Visual Place Recognition. PhD thesis, Department
of Computer Science, Yale University, 1994.

[36] C. Fedor. TCX. An interprocess communication system for building robotic architectures.
Programmer’s guide to version 10.xx. Carnegie Mellon University, Pittsburgh, PA 15213,
December 1993.

[37] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization: Efficient posi-
tion estimation for mobile robots. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), Orlando, FL, 1999. AAAI.

[38] D. Fox, W. Burgard, and S. Thrun. A hybrid collision avoidance method for mobile robots.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
1998.

[39] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic envi-
ronments. Journal of Artificial Intelligence Research, 11:391–427, 1999.

[40] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, and J. Wiegley. Desktop
tele-operation via the World Wide Web. In Proceedings of the IEEE International Conference
on Robotics and Automation, 1995.

[41] K. Goldberg, J. Santarromana, G. Bekey, S. Gentner, R. Morris, J. Wiegley, and E. Berger.
The telegarden. In Proc. of ACM SIGGRAPH, 1995.

[42] S. Goldberg, G.A. Bekey, and Y. Akatsuka. DIGIMUSE: An interactive telerobotic system
for remote viewing of three-dimensional art objects. In Proceedings of the IEEE IROS’98
Workshop on Robots on the Web, 1998.

31

[43] J.-S. Gutmann and B. Nebel. Navigation mobiler roboter mit laserscans. In Autonome Mobile
Systeme. Springer Verlag, Berlin, 1997.

[44] J.-S. Gutmann and C. Schlegel. Amos: Comparison of scan matching approaches for self-
localization in indoor environments. In Proceedings of the 1st Euromicro Workshop on Ad-
vanced Mobile Robots. IEEE Computer Society Press, 1996.

[45] D. Guzzoni, A. Cheyer, L. Julia, and K. Konolige. Many robots make short work. AI
Magazine, 18(1):55–64, 1997.

[46] D. Haehnel, W. Burgard, and G. Lakemeyer. GOLEX: Bridging the gap between logic
(GOLOG) and a real robot. In Proceedings of the 22st German Conference on Artificial
Intelligence (KI 98), Bremen, Germany, 1998.

[47] I. Horswill. Specialization of perceptual processes. Technical Report AI TR-1511, MIT, AI
Lab, Cambridge, MA, September 1994.

[48] R. A. Howard. Dynamic Programming and Markov Processes. MIT Press and Wiley, 1960.

[49] M. Isard and A. Blake. Contour tracking by stochastic propagation of conditional density.
In European Conference on Computer Vision, pages 343–356, 1996.

[50] M. Isard and A. Blake. Condensation: conditional density propagation for visual tracking.
International Journal of Computer Vision, 1998. In press.

[51] A.M. Jazwinsky. Stochastic Processes and Filtering Theory. Academic, New York, 1970.

[52] L.P. Kaelbling, A.R. Cassandra, and J.A. Kurien. Acting under uncertainty: Discrete
bayesian models for mobile-robot navigation. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1996.

[53] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and acting in partially observ-
able stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

[54] R. E. Kalman. A new approach to linear filtering and prediction problems. Trans. ASME,
Journal of Basic Engineering, 82:35–45, 1960.

[55] K. Kanazawa, D. Koller, and S.J. Russell. Stochastic simulation algorithms for dynamic
probabilistic networks. In Proceedings of the 11th Annual Conference on Uncertainty in AI,
Montreal, Canada, 1995.

[56] S. Koenig and R. Simmons. Passive distance learning for robot navigation. In L. Saitta,
editor, Proceedings of the Thirteenth International Conference on Machine Learning, 1996.

[57] D. Kortenkamp, R.P. Bonasso, and R. Murphy, editors. AI-based Mobile Robots: Case studies
of successful robot systems, Cambridge, MA, 1998. MIT Press.

[58] G. Lacey and K.M. Dawson-Howe. The application of robotics to a mobility aid for the
elderly blind. Robotics and Autonomous Systems, 23:245–252, 1998.

[59] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

[60] S. Lenser and M. Veloso. Sensor resetting localization for poorly modelled mobile robots. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San
Francisco, CA, 2000. IEEE.

[61] J. J. Leonard and H. F. Durrant-Whyte. Directed Sonar Sensing for Mobile Robot Navigation.
Kluwer Academic Publishers, Boston, MA, 1992.

[62] J.J. Leonard, H.F. Durrant-Whyte, and I.J. Cox. Dynamic map building for an autonomous
mobile robot. International Journal of Robotics Research, 11(4):89–96, 1992.

32

[63] M.L. Littman, A.R. Cassandra, and L.P. Kaelbling. Learning policies for partially observable
environments: Scaling up. In A. Prieditis and S. Russell, editors, Proceedings of the Twelfth
International Conference on Machine Learning, 1995.

[64] J. Liu and R. Chen. Sequential monte carlo methods for dynamic systems. Journal of the
American Statistical Association, 93, 1998.

[65] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.
Autonomous Robots, 4:333–349, 1997.

[66] P.S. Maybeck. The Kalman filter: An introduction to concepts. In Autonomous Robot
Vehicles. Springer verlag, 1990.

[67] D. McDermott. A reactive plan language. Research Report YALEU/DCS/RR-864, Yale
University, 1991.

[68] G.J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley Series in
Probability and Statistics, New York, 1997.

[69] O. Michel, P. Saucy, and F. Mondada. Khepontheweb : An experimental demonstrator
in telerobotics and virtual reality. In Proceedings of the IEEE International Conference on
Virtual Systems and Multimedia (VSMM’97), 1997.

[70] George E Monahan. A survey of partially observable markov decision processes: Theory,
models, and algorithms. Management Science, 28(1):1–16, 1982.

[71] H. P. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine, pages 61–74,
Summer 1988.

[72] I. Nourbakhsh. An affective mobile robot with a full-time job. Artificial Intelligence, 114(1–
2):95–124, 1999.

[73] T. Ogata and S. Sugano. Between humans and robots—consideration of primitivee language
in robots. In Proceedings of the Conference on Intelligent Robots and Systems (IROS’99),
pages 870–875, 1999.

[74] T. Ogata and S. Sugano. Emotional communication between humans and the autonomous
robot which has the emotion model. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA’99), pages 3177–3182, 1999.

[75] M. Pitt and N. Shephard. Filtering via simulation: auxiliary particle filter. Journal of the
American Statistical Association, 1999. Forthcoming.

[76] L.R. Rabiner and B.H. Juang. An introduction to hidden markov models. In IEEE ASSP
Magazine, 1986.

[77] W.D. Rencken. Concurrent localisation and map building for mobile robots using ultrasonic
sensors. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2129–2197, Yokohama, Japan, July 1993.

[78] J. Rosenblatt. DAMN: A Distributed Architecture for Mobile Navigation. PhD thesis,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, January 1997. Technical
Report CMU-RI-TR-97-01.

[79] N. Roy, G. Baltus, D. Fox, F. Gemperle, J. Goetz, T. Hirsch, D. Magaritis, M. Montemerlo,
J. Pineau, J. Schulte, and S. Thrun. Towards personal service robots for the elderly. In
Proceedings of the Workshop on Interactive Robotics and Entertainment (WIRE), Pittsburgh,
PA, 2000. Carnegie Mellon University.

[80] N. Roy, W. Burgard, D. Fox, and S. Thrun. Coastal navigation: Robot navigation under
uncertainty in dynamic environments. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 1999.

33

[81] N. Roy and S. Thrun. Coastal navigation with mobile robot. In Proceedings of Conference
on Neural Information Processing Systems (NIPS), 1999. to appear.

[82] D.B. Rubin. Using the SIR algorithm to simulate posterior distributions. In M.H. Bernardo,
K.M. an DeGroot, D.V. Lindley, and A.F.M. Smith, editors, Bayesian Statistics 3. Oxford
University Press, Oxford, UK, 1988.

[83] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, Engle-
wood Cliffs, NJ, 1995.

[84] P. Saucy and F. Mondada. KhepOnTheWeb: One year of access to a mobile robot on the
Internet. In Proceedings of the IEEE IROS’98 Workshop on Robots on the Web, 1998.

[85] B. Schiele and J. Crowley. A comparison of position estimation techniques using occupancy
grids. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation,
pages 1628–1634, San Diego, CA, May 1994.

[86] R.D. Schraft and G. Schmierer. Service Robots. A.K. Peters, 2000.

[87] J. Schulte, C. Rosenberg, and S. Thrun. Spontaneous short-term interaction with mobile
robots in public places. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 1999.

[88] D. Schulz, W. Burgard, A.B. Cremers, D. Fox, and S. Thrun. Web interfaces for mobile
robots in public places. IEEE Magazine on Robotics and Automation, 7(1):48–57, March
2000.

[89] J. T. Schwartz, M. Scharir, and J. Hopcroft. Planning, Geometry and Complexity of Robot
Motion. Ablex Publishing Corporation, Norwood, NJ, 1987.

[90] R. Siegwart and K. Goldberg (eds). Robots on the Web. IEEE Magazine on Robotics and
Automation (special issue), 7(1), March 2000.

[91] R. Simmons. Concurrent planning and execution for autonomous robots. IEEE Control
Systems, 12(1):46–50, February 1992.

[92] R. Simmons. Where in the world is xavier, the robot? Machine Perception, 5(1), 1996.

[93] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, and J. O’Sullivan. A layered architecture for
office delivery robots. In Proceedings of the First International Conference on Autonomous
Agents, Marina del Rey, CA, February 1997.

[94] R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable environ-
ments. In Proceedings of IJCAI-95, pages 1080–1087, Montreal, Canada, August 1995. IJCAI,
Inc.

[95] R.W. Smallwood and E.J. Sondik. The optimal control of partially observable markov pro-
cesses over a finite horizon. Operations Research, 21:1071–1088, 1973.

[96] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in robotics.
In I.J. Cox and G.T. Wilfong, editors, Autonomous Robot Vehnicles, pages 167–193. Springer-
Verlag, 1990.

[97] E.J. Sondik. The optimal control of partially observable markov processes over the infinite
horizon: Discounted costs. Operations Research, 26(2):282–304, 1978.

[98] M.R. Stein. Painting on the world wide web: The PumaPaint project. In Proceedings of the
IEEE IROS’98 Workshop on Robots on the Web, 1998.

[99] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

34

[100] K. Taylor and J. Trevelyan. Australia’s telerobot on the Web. In Proceedings of the 26th
International Symposium On Industrial Robots, 1995.

[101] M. A. L. Thathachar and P. S. Sastry. Estimator algorithms for learning automata. In
Proceedings of the Platinum Jubilee Conference on Systems and Signal Processing, Bengalore,
India, 1986.

[102] S. Thrun. To know or not to know: On the utility of models in mobile robotics. AI Magazine,
18(1):47–54, 1997.

[103] S. Thrun. Learning metric-topological maps for indoor mobile robot navigation. Artificial
Intelligence, 99(1):21–71, 1998.

[104] S. Thrun. Probabilistic algorithms in robotics. AI Magazine, 2000. to appear.

[105] S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concurrent mapping and lo-
calization for mobile robots. Machine Learning, 31:29–53, 1998. also appeared in Autonomous
Robots 5, 253–271.

[106] S. Thrun, D. Fox, and W. Burgard. Monte carlo localization with mixture proposal distribu-
tion. In Proceedings of the AAAI National Conference on Artificial Intelligence, Austin, TX,
2000. AAAI.

[107] B. Yamauchi and P. Langley. Place recognition in dynamic environments. Journal of Robotic
Systems, 14(2):107–120, 1997.

[108] S. Zilberstein and S. Russell. Approximate reasoning using anytime algorithms. In S. Natara-
jan, editor, Imprecise and Approximate Computation. Kluwer Academic Publishers, Dor-
drecht, 1995.

35

