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Abstract—The majority of existing approaches to mobile
robot localization assume that the world is static, which clearly
does not hold in most real-world application domains. In this
paper we present a probabilistic approach to global localization
in reconfigurable environments, where the robot pose and
the environment state are jointly estimated using a Rao-
Blackwellized particle filter. The environment is represented as
a spatial grid and a hidden Markov model is used to represent
the occupancy state and state transition probabilities of each
grid cell. The HMM parameters are estimated offline using
the EM algorithm. Experimental results show that our model
is better suited for representing reconfigurable environments
than standard occupancy grids. Furthermore, the results show
that the explicit representation of the environment dynamics
can be used to improve localization accuracy in reconfigurable
environments.

I. INTRODUCTION

An accurate model of the environment is essential for

many mobile robot navigation tasks. Although the environ-

ment generally is dynamic, most existing navigation ap-

proaches assume it to be static. They typically build the

map of the environment in an offline phase and then use

it without considering potential future changes. There are

robust approaches that can handle inconsistencies between

the map and the actual measurements. However, a largely

inconsistent model can lead to unreliable navigation or even

to a complete localization failure. Moreover, some areas can

be semi-static (e.g., furnitures can move, cars can be parked)

and this information can be used by the robot to improve its

navigation performance.

In this paper we consider the problem of modeling a

mobile robot’s environment taking the dynamics of the

environment explicitly into account. We present a proba-

bilistic model that represents the occupancy of the space and

characterizes how this occupancy changes over time. We then

show how this information can be used to jointly estimate the

pose of the robot and the configuration of the environment

during a global localization task.

The environment is represented as a two-dimensional grid

where each cell uses a hidden Markov model (HMM) to

represent the belief about the occupancy state and state

transition probabilities. Our model, called dynamic occu-

pancy grid, is a generalization of a standard occupancy grid.

Figure 1 illustrates the fundamental difference between these
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Fig. 1. Bayesian network describing the dependencies between the states
of a cell c and observations z in standard and dynamic occupancy grids.

two models: while occupancy grids characterize the state of

a cell as static, our representation explicitly models state

changes.

In addition to the explicit representation of the envi-

ronment dynamics, the HMM framework provides efficient

algorithms for estimating the model parameters. Given that,

we can use a Rao-Blackwellized particle filter (RBPF) to

jointly reason about the robot pose, which represents the

sampled part of the filter, and the occupancy probability of

a cell, represented in the analytical part of the factorization.

The contribution of this work is a global localization

approach that estimates the pose of the robot and, at the same

time, explicitly infers how the state of the world changes over

time. To the best of our knowledge, this is the first approach

to address this problem. Previous attempts either focused on

how to filter spurious observations due to dynamic objects or

addressed the easier problem of pose tracking. We describe

our model and how the representation can be updated as new

observations become available. We further propose a local

map representation that is able to forget changes in a sound

probabilistic way, using the mixing times of the associated

Markov chain, and to minimize memory requirements.

We evaluate our approach in simulation and using real-

world data. The results demonstrate that our model can rep-

resent dynamic environments more accurately than standard

occupancy grids. Furthermore, we show that it outperforms

standard Monte Carlo localization in complex real world

environments with consistent changes over time.

II. RELATED WORK

Most mobile robot navigation systems rely on a map of

the environment built beforehand in an offline phase. To

deal with subsequent changes in the environment, sensor

measurements caused by dynamic objects are usually filtered

out. Robust approaches rely on probabilistic sensor models

that identify the measurements inconsistent with the map.

For example, Fox et al. [1] use an entropy gain filter, while

Burgard et al. [2] use a distance filter based on the expected

distance of a measurement. Despite the success of these



techniques, they discard valuable information about the envi-

ronment. Instead of filtering out inconsistent measurements,

Montemerlo et al. [3], use them for people tracking while

localizing the robot. They show that the state of dynamic

objects in the environment can be used to increase the

robustness of the pose estimation process. Motivated by this

idea, we utilize all sensor measurements to keep the map of

the environment up-to-date while simultaneously localizing

the robot within the updated map.

Orthogonal to the work on localization in dynamic en-

vironments, many authors have addressed the problem of

modeling such environments. Hähnel et al. [4], for example,

combine the EM algorithm and a sensor model that considers

dynamic objects to obtain accurate maps. The approach

of Anguelov et al. [5] computes shape models of non-

stationary objects. They create maps at different points in

time and compare those maps using an EM-based algorithm

to identify the parts of the environment that change over

time. Wolf and Sukhatme [6] propose a model that maintains

two separate occupancy grids, one for the static parts of the

environment and the other for the dynamic parts. Biber and

Duckett [7] propose a model that represents the environment

on multiple timescales simultaneously. For each timescale

a separate sample-based representation is maintained and

updated using the observations of the robot according to an

associated timescale parameter. In our work, we use the grid-

based representation described by Meyer-Delius et al. [8]

to represent dynamic environments. Besides being able to

continuously adapt to changes over time, this model provides

also an explicit characterization of the dynamics of the

environment that can be learned from data.

Whereas most of the work on mapping dynamic envi-

ronments assumes that a good estimate of the robot’s pose

is available, most of the work on mapping where the pose

of the robot is not available (i.e., SLAM) assumes that the

environment is static. Only few authors address the problem

of jointly estimating the pose of the robot and the state of

a dynamic environment. Avots et al. [9], for example, use a

Rao-Blackwellized particle filter to estimate the pose of the

robot and the state of doors in the environment. They repre-

sent the environment using a reference occupancy grid where

the location of the doors is known, but not their state (i.e.,

opened of closed). Petrovskaya and Ng [10] propose a similar

approach where instead of a binary model, a parametrized

model (i.e., opening angle) of the doors is used. Similar to

these approaches, we also use a Rao-Blackwellized particle

filter to estimate the pose of the robot and the state of

the environment. In contrast to their methods, however, we

estimate the state of the complete environment, and not only

of small, specific areas or elements. Additionally, we also

learn the model parameters from data.

III. DYNAMIC OCCUPANCY GRID

Occupancy grids (as they were introduced by Moravec

and Elfes [11]) are a regular tessellation of the space into

a number of rectangular cells. They store in each cell the

probability that the corresponding area of the environment is

Fig. 2. State transition probabilities of the parking lot of the University
of Freiburg. The left and right images correspond to the distributions
p(ct = f | ct−1 = f) and p(ct = o | ct−1 = o) respectively. The darker
the color, the larger the probability for the occupancy to remain unchanged.

occupied by an obstacle. To avoid a combinatorial explosion

of possible grid configurations, the approach assumes that

neighboring cells are independent from each other.

Occupancy grids rest on the assumption that the environ-

ment is static. As mentioned above, they store for each cell

c of an equally spaced grid the probability p(c) that c is

occupied by an obstacle. To probabilistically model how the

occupancy changes over time in dynamic environments, the

approach relies on an HMM (see Rabiner [12]) to explicitly

represent both the belief about the occupancy state and state

transition probabilities of each grid cell as illustrated in

Figure 1.

An HMM requires the specification of a state transition,

an observation, and an initial state distribution. Let ct be a

discrete random variable that represents the occupancy state

of a cell c at time t. The initial state distribution or prior

p(ct=0) specifies the occupancy probability of a cell at the

initial time step t = 0 prior to any observation.

The state transition model p(ct | ct−1) describes how the

occupancy state of cell c changes between consecutive time

steps. We assume that the changes in the environment are

caused by a stationary process, that is, the state transition

probabilities are the same for all time steps t. These prob-

abilities are what allows us to explicitly characterize how

the occupancy of the space changes over time. Since we

are assuming that a cell c is either free (f) or occupied

(o), the state transition model can be specified using only

two transition probabilities, namely p(ct = f | ct−1 = f) and
p(ct = o | ct−1 = o). Note that, by assuming a stationary

process, these probabilities do not depend on the absolute

value of t. Figure 2 depicts transition probabilities for the

parking lot at our faculty. The darker the color, the larger

the probability for the corresponding occupancy to remain

unchanged. The figure clearly shows the parking spaces, driv-

ing lanes, and static elements such as walls and lampposts

as having different dynamics. The “shadows” in the upper

left and lower right areas of the maps were mostly caused

by maximum range measurements being ignored.

The observation model p(z | c) represents the likelihood

of the observation z given the state of the cell c. The

observations correspond to measurements obtained with a

range sensor. In this paper, we consider only observations

obtained with a laser range scanner. The cells in the grid



that are covered by a laser beam are determined using

a ray-tracing operation. We consider two cases: the beam

is not a maximum range measurement and ends up in a

cell (a hit) or the beam covers a cell without ending in

it (a miss). Accordingly, the observation model can also

be specified using only two probabilities: p(z = hit | c = f)
and p(z = hit | c = o). We additionally take into account the

situation where a cell is not observed at a given time step.

This is necessary since the transition model characterizes

state changes only for consecutive time steps. Explicitly

considering this no-observation case allows us to update

and estimate the parameters of the model using the HMM

framework directly without having to distinguish between

observations and no-observations. The concrete observation

probability for a no-observation does not affect the results

as long as the proportion between the two remaining proba-

bilities remains unchanged.

From the discussion above it can be seen that standard

occupancy grids are a special case of dynamic occupancy

grids where the transition probabilities p(ct = f | ct−1 = f)
and p(ct = o | ct−1 = o) are 1 for all cells c.

A. Occupancy State Update

The update of the occupancy state of the cells in a dynamic

occupancy grid follows a Bayesian approach. The goal is to

estimate the belief or posterior distribution p(ct | z1:t) over

the current occupancy state ct of a cell given all the available

evidence z1:t up to time t. The update formula is:

p(ct | z1:t) =

η p(zt | ct)
∑

ct−1∈{f,o}

p(ct | ct−1) p(ct−1 | z1:t−1) , (1)

where η is a normalization constant. Exploiting the Markov

assumptions in our HMM, this equation is obtained us-

ing Bayes’ rule with z1:t−1 as background knowledge and

applying the theorem of total probability on p(ct | z1:t−1)
conditioning on the state of the cell ct−1 at the previous

time step t−1. Equation (1) describes a recursive approach to
estimate the current state of a cell given a current observation

and the previous state estimate. This approach corresponds to

a discrete Bayes filter. The structure of our particular HMMs

allows for a simple and efficient implementation of this

approach. Note that the map update for standard occupancy

grids is a special case, where the sum in (1) is replaced by

the posterior p(ct | z1:t−1).
This posterior corresponds to a prediction of the occu-

pancy state of the cell at time t based on the observations

up to time t − 1. Prediction can be considered as filtering

without the processing of evidence. By explicitly considering

no-observations as explained in the previous section, the

update formula can be used directly to estimate the future

state of a cell or estimate the current state of a cell that has

not been observed recently.

B. Parameter Estimation

As mentioned above, an HMM is characterized by the state

transition probabilities, the observation model, and the initial

state probabilities. We assume that the observation model

only depends on the sensor. Therefore it can be specified

beforehand and is the same for each HMM. We estimate the

remaining parameters using observations that are assumed to

correspond to the environment that is to be represented.

One of the most popular approaches for estimating the

parameters of an HMM is an instance of the expectation-

maximization (EM) algorithm. The basic idea is to iteratively

estimate the model parameters using the observations and the

parameters estimated in the previous iteration until the values

converge. Let θ̂(n) represent the parameters estimated at the

n-th iteration. The EM algorithm results in the following

re-estimation formula for the transition model of cell c:

p̂(ct = i | ct−1 = j)(n+1) =
∑T

τ=1 p(cτ−1 = i, cτ = j | z1:T , θ̂
(n))

∑T

τ=1 p(cτ−1 = i | z1:T , θ̂(n))
, (2)

where i, j ∈ {f, o} and T is the length of the observation

sequence used for estimating the parameters. Note that the

probabilities on the right-hand side are conditioned on the

observation sequence z1:T and the previous parameter esti-

mates θ̂(n). These probabilities can be efficiently computed

using the forward-backward procedure [12].

For more details about this model we refer the reader to

the associated technical report by Meyer-Delius et al. [8].

IV. SIMULTANEOUS LOCALIZATION AND DYNAMIC

STATE ESTIMATION

In this section we describe our approach to simultaneously

estimate the robot pose and the dynamic state of the envi-

ronment. Although on first sight one can see the addressed

problem as an instance of the better known simultaneous

localization and mapping (SLAM), there are two main dif-

ferences between them.

The first difference is the absence of a global reference

frame in the SLAM problem. No global pose is required and

the initial pose of the robot can typically be set freely. On

the contrary, we explicitly address global localization as part

of the estimation aspect. We have a global reference frame

and the initial pose of the robot is unknown and assumed

to be uniformly distributed over the whole environment. The

second difference regards the dimensionality of the map. In

the SLAM problem, the size of the map is not known in

advance and can grow unbounded with time. In our problem

the size of the map is known and we only focus on estimating

the actual configuration of the dynamic objects present in the

environments. Despite the differences, the two problems do

share the same state space, i.e., the robot pose and the state

of the map, and one can exploit the same factorization that

made Rao-Blackwellized particle filters a feasible solution to

the SLAM problem [13], [14].

In the following we show how this factorization can be

exploited and we derive the RBPF that will be used to

estimate the posterior p(x1:t,m1:t | z1:t, u1:t−1,m0) about

the trajectory x1:t of the robot and the configuration of the

environment m1:t, given the observations z1:t, the odometry



measurements u1:t−1 and the prior over the map m0. The

key idea is to separate the estimation of the robot pose from

the map estimation process,

p(x1:t,m1:t | z1:t, u1:t−1,m0) =

p(m1:t | x1:t, z1:t,m0)p(x1:t | z1:t, u1:t−1,m0). (3)

This can be done efficiently, since the posterior over maps

p(m1:t | x1:t, z1:t,m0) can be computed analytically given

the knowledge of x1:t and z1:t and using the forward

algorithm for the HMM. The remaining posterior, p(x1:t |
z1:t, u1:t−1), is estimated using a particle filter which in-

crementally processes the observations and the odometry

readings. Following [15], we obtain a sample of the robot

trajectory by incrementally sampling the current pose from

the motion model x
(i)
t ∼ p(xt|x

(i)
t−1, ut−1) and setting x

(i)
1:t =

{x
(i)
t , x

(i)
1:t−1}. This recursive sampling schema allows us

to recursively compute the importance weights using the

following equation

w
(i)
t = w

(i)
t−1

p(zt | x
(i)
1:t, z1:t−1,m0)p(x

(i)
t | x

(i)
t−1, ut−1)

p(x
(i)
t | x

(i)
t−1, ut−1)

= w
(i)
t−1p(zt | x

(i)
1:t, z1:t−1,m0). (4)

The observation likelihood is then computed by marginaliza-

tion over the predicted state of the map leading to

p(zt | x
(i)
1:t, z1:t−1,m0) =

=

∫

p(zt | x
(i)
t ,mt)p(mt | m

(i)
t−1)dmt

=
∏

j

N (zjt ; ẑ
j
t , σ

2), (5)

were zj is an individual laser reading and ẑjt is the closest

cell in the map to the reading, with an occupancy probability

above a certain threshold. Note that the disappearance of the

integral is not an approximation but a direct consequence of

using the likelihood field model described in [16].

A. Map Management

As we already mentioned above, the initial pose of the

robot is unknown and assumed to be uniformly distributed

in the whole environment. This forces us to use a high

number of particles, generally above thousands, to accurately

represent the initial distribution. Since every particle needs to

have its own estimate of the map, memory management is a

key aspect of the whole algorithm. In order to save memory,

we want to only store the cells in the map that have been

considerably changed from the a priori map m0, which is

shared among the diverse particles. This is done exploiting

two important aspects of the Markov chain associated to the

HMM: the stationary distribution and the mixing time.

As the number of time steps for which no observation

is available tends to infinity, the occupancy value of a cell

converges to a unique stationary distribution π (see [17]).

This stationary distribution represents the case where the

environment has not been observed for a long time and

is represented by our a priori map m0. In the case of a

binary HMM, the one used in this paper, this distribution is

computed using the transition probabilities
[

πf

πo

]

=
1

p+ q

[

q
p

]

, (6)

where for notation simplicity we have

p = p(ct = o | ct−1 = f)

q = p(ct = f | ct−1 = o).

Every time an individual particle observes the state of a

cell for the first time, the state distribution of that particular

cell changes from the stationary one and the particle needs

to store the new state of the cell. In order to reduce memory

requirements, only a limited number of cells should be stored

and a forgetting mechanism should be implemented. This

can be done in a sound probabilistic way, by exploiting the

mixing time of the associated Markov chain. The mixing time

is defined as the time needed to converge from a particular

state to the stationary distribution. The concrete definition

depends on the measure used to compute the difference

between distributions. In this paper we use the total variation

distance as defined by Levin et al. [17]. Since our HMMs

have only two states, the total variation distance ∆t between

the stationary distribution π and the occupancy distribution

pt at time t can be specified as

∆t = |1− p− q|t∆0, (7)

where ∆0 = |p(ct = f) − πf| = |p(ct = o) − πo| is

the difference between the current state p(ct) and stationary

distribution π. Based on the total variation distance, we can

define the mixing time tm as the smallest t such that the

distance ∆tm is less than a given value ǫ. This leads to

tm =

⌈

ln(ǫ/∆0)

ln(|1− p− q|)

⌉

. (8)

In other words, the mixing time tells us how many steps

are needed for a particular cell to return to its stationary

distribution, that is how many step a particle needs to store

an unobserved cell before removing it from its local state

and rely on the a priori map m0.

V. EXPERIMENTS

We implemented our proposed model and tested it using

data obtained with a real robot. We steered a MobileRobots

Powerbot equipped with a SICK LMS laser range finder

through the parking lot of our faculty. We performed a

run every full hour from 7am until 6pm during one day.

The range data obtained from the twelve runs (data sets d1
through d12) corresponds to twelve different configurations

of the parked cars, including an almost empty parking lot

(data set d1) and a relatively occupied one (data set d8).
We used a SLAM approach [18] to correct the odometry

of the robot and obtain a good estimate of its pose. Range

measurements were sampled at about 1Hz, and the trajectory

and velocity of the robot during each run were approximately

the same to try to avoid a bias in the complete data set.



Fig. 3. Comparison between dynamic and standard occupancy grids. Shown
are the ground truth (top), dynamic occupancy grid (middle), and standard
occupancy grid (bottom) maps at two different points in time.

Figure 3 shows a qualitative comparison between dynamic

and standard occupancy grids for the parking lot data set. We

assumed that the parking lot did not change considerably

during a run and used the occupancy grids obtained from

every data set with the above-mentioned SLAM approach as

ground truth. In the figure, the maps on the left column show

the grids after the third run, that is, after integrating data sets

d1 through d3. The maps on the right show the grids at the

end of the last run, after integrating data sets d1 through

d12. As can be seen, the dynamic occupancy grid readily

adapts to the changes in the parking lot. Thus, it constitutes a

better representation of the environment at any point in time.

Additionally, dynamic occupancy grids provide information

about the occupancy probability of areas that have not been

recently observed. This appears in the grids in the figure

(specially the right column) as light gray areas in the places

where the cars most frequently park.

In order to assess the performances of the localization ap-

proach, we compared it to standard Monte Carlo localization

both in a global localization and pose tracking setting. For

each data set, we compared our approach (MCL-D), MCL

using the standard occupancy grid (MCL-S), and MCL using

the ground-truth map for that specific data set (MCL-GT).

We performed 100 runs for each data set, where we randomly

sampled the initial pose of the robot. In order to obtain a fair

comparison, the same seed has been used to generate the

initial pose, as well as to perform all the random sampling

processes for each approach. All the approaches have been

initialized with 10, 000 particles for global localization and

500 particles for pose tracking. They also used the same set

of parameters, an occupancy threshold of 0.6 and a maximum

distance of 1m for the likelihood field model.

The results of the global localization experiment are shown

in Table I. The table shows the success rate of the global

localization, as the percentage of time the filter converged to

the true pose, and the residual squared error, with respective

variance, after convergence. The success rate is reported

relative to the result of MCL on the ground-truth map,

in order to have a measure independent of the complexity

of the environment. The results show that our approach

outperforms the standard MCL on static maps both in terms

of convergence rate and accuracy in localization.

Table II shows the results for the pose tracking experiment,

where the filter is initialized at the true pose and keeps

tracking the robot. The table shows the failure rate, i.e., the

percentage of time the robot got lost during tracking, as well

as the residual squared error. The results of this experiment

show that the performances of the dynamic maps in pose

tracking are almost equivalent to MCL with the ground-truth

maps, with a failure rate of only 2%.

Both experiments show two important aspects of the prob-

lem and of the solution adopted. The first aspect is that the

problem is much more complex than global localization since

the search space is bigger and deciding if a measurement is

an outlier or is caused by a change of the configuration is

not a trivial task. Furthermore, analyzing the performances

in pose tracking, we see that if the filter is initialized close to

the correct solution, i.e., the search is reduced to the correct

subspace, it is able to estimate the correct configuration.

The second aspect is how the algorithm scales with different

amount of change in the environment configuration. In the

first four data sets, the parking lot is almost empty and it

becomes quite full in the last ones. This is evident, when

analyzing the results of MCL on the static maps, since

the performance gets worse with an increasing amount of

change. On the other hand, the performance of MCL on the

dynamic maps is independent from the amount of change,

as can be seen from the tables.

VI. CONCLUSIONS

In this paper we introduced a novel approach to global

localization in reconfigurable environments using a grid map

that explicitly represents how the occupancy of individual

cells changes over time. The model is a generalization of

standard occupancy grids and applies HMMs to update the

belief about the occupancy state of each cell according to

the dynamics of the environment. We described how a Rao-

Blackwellized particle filter can be used to jointly estimate

the robot pose and the configuration of the environment. This

was possible thanks to the reduced memory requirements

obtained by exploiting the properties of the Markov chains.

We evaluated our approach using real-world data. The results

demonstrate that our model can represent dynamic environ-

ments more accurately than standard occupancy grids and

outperforms standard MCL on static maps in both global

localization and pose tracking.



Data set MCL-GT MCL-D MCL-S

Success Error2 σ
2 Success Error2 σ

2 Success Error2 σ
2

01 100% 0.21 0.36 50% 0.26 0.36 50% 0.26 0.18
02 100% 0.19 0.29 40% 0.10 0.08 33% 0.13 0.09
03 100% 0.13 0.19 80% 0.10 0.29 52% 0.19 0.17
04 100% 0.04 0.03 60% 0.08 0.14 53% 0.15 0.19
05 100% 0.07 0.18 54% 0.07 0.09 35% 0.15 0.18
06 100% 0.02 0.01 87% 0.02 0.02 45% 0.06 0.02
07 100% 0.06 0.08 59% 0.12 0.22 43% 0.14 0.20
08 100% 0.05 0.10 71% 0.03 0.02 28% 0.03 0.01
09 100% 0.02 0.01 53% 0.12 0.22 31% 0.06 0.02
10 100% 0.14 0.28 62% 0.13 0.31 34% 0.30 1.01
11 100% 0.11 0.11 38% 0.15 0.21 26% 0.24 0.29
12 100% 0.19 0.32 20% 0.16 0.14 22% 0.27 0.38

Total 100% 0.11 0.19 52% 0.11 0.18 36% 0.17 0.22

TABLE I

GLOBAL LOCALIZATION EXPERIMENT

Data set MCL-GT MCL-D MCL-S

Failure Error2 σ
2 Failure Error2 σ

2 Failure Error2 σ
2

01 0% 0.04 0.01 3% 0.09 0.03 5% 0.18 0.07
02 0% 0.03 0.01 4% 0.08 0.05 24% 0.18 0.10
03 0% 0.04 0.01 2% 0.05 0.04 10% 0.09 0.04
04 0% 0.02 0.01 0% 0.04 0.01 10% 0.08 0.02
05 0% 0.02 0.01 3% 0.03 0.04 13% 0.06 0.02
06 0% 0.02 0.01 2% 0.02 0.01 26% 0.09 0.12
07 0% 0.02 0.01 0% 0.03 0.01 34% 0.07 0.01
08 0% 0.02 0.01 2% 0.02 0.01 35% 0.09 0.15
09 0% 0.02 0.01 4% 0.03 0.01 37% 0.07 0.16
10 0% 0.02 0.01 0% 0.03 0.01 36% 0.09 0.10
11 0% 0.03 0.01 1% 0.05 0.02 42% 0.10 0.05
12 0% 0.03 0.01 5% 0.06 0.01 44% 0.15 0.20

Total 0% 0.03 0.01 2% 0.04 0.02 27% 0.10 0.08

TABLE II

POSITION TRACKING EXPERIMENT
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