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Abstract—Place recognition, i.e., the problem of recognizing
if the robot is navigating in an already visited place, is a
fundamental problem in mobile robot navigation. Efficient
solutions to this problem are relevant for effectively localizing
robots and for creating maps in real time. Relatively few methods
have been proposed to efficiently solve this problem in very large
environments using 2D range data. In this paper, we introduce
geometrical FLIRT phrases (GFPs) as a novel retrieval method
for very efficient and precise place recognition. GFPs perform
approximate 2D range data matching, have low computational
cost, can handle complicated partial matching patterns and are
robust to noise. Experiments carried out with publicly available
datasets demonstrate that GFPs largely outperform state-of-the-
art approaches in 2D range-based place recognition in terms of
efficiency and recall. We obtain retrieval performances with more
than 85% recall at 99% precision in less than a second, even on
data sets obtained from several kilometer long runs.

I. INTRODUCTION

Place recognition, namely the problem of understanding if
a robot is revisiting an already known area, is a fundamental
problem in robot navigation tasks such as localization and
SLAM. In the past, relatively few approaches have been
developed for solving this problem in the context of 2D range
data. The majority of solutions present in the literature focus
on the use of cameras and employ feature-based techniques
to compute place signatures for retrieval purposes. While in
theory similar ideas can be applied to 2D range data, special
care needs to be taken in that context. Compared to an image,
a 2D range scan is a partial, scarce and sparse representation of
the real 3D environment. Accordingly, a 2D range scan contains
only little information for distinguishing a place with respect
to another. It is therefore hard to generate appropriate place
signatures that can effectively applied also to large datasets.

In this paper, we introduce geometrical FLIRT phrases
(GFPs) for robust and efficient retrieval in the context of 2D
range scans. GFPs are inspired by the work of geometry-
preserving visual phrases, introduced in [19], and make use
of FLIRT [15], a state-of-the-art 2D range-data keypoint
detector for building up individual scan signatures of large
datasets. Our method improves classical bag of words (BoWs)
retrieval approaches [1] because it encodes not only the FLIRT
words distributions in a scan but it also partially captures
their geometrical arrangement, in a translation and rotation
invariant manner. As a result, GFPs are able to robustly
capture similarities between places whose structures only
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Fig. 1. Experiment on the first half of the Kenmore dataset, depicting the
path of the robot (red) and the recognized places (green) at 99.9% precision.
The computation time is 0.8s per query (one scan vs. 13000+).

partially match or in presence of outliers. This is seamlessly
performed in the retrieval process and with a very low
computational performance impact. Note that our approach
does not aim to perform full geometrical verification between
two scans. It rather aims at providing an effective mean for
checking approximate structures between them. GFPs allow
easy tuning of the structural approximate matching by a
compact formulation of a special kernel function. GFPs yield
a small candidate set that can effectively be checked via a
RANSAC-like method to asses strong geometrical consistency
and to find a valid match. The result of this is a highly effective
place recognition process that can robustly operate on large-
scale data sets such as the one depicted in Fig. 1.

The main contributions of this paper are the introduction
of GFPs as a robust and efficient retrieval technique with
low computational efforts and the presentation of practical
experiments carried out with publicly available datasets that
demonstrate, that GFPs outperform the state of the art both in
retrieval accuracy and query time.

II. RELATED WORK

There is relatively little related work that is concerned with
place recognition using 2D range data. Most of the approaches
rely on the use of visual information (see Williams et al. [16]
for a survey). Nevertheless, few authors did focus on place
recognition and loop closing using 2D laser range finders.
Already in 2003, Neira et al. [8] presented a work on robot
relocation, where geometrical features are used to find the
location of the robot in a stochastic map. The authors use a
combination of hard geometric constraints, feature correlation,
joint compatibility, random sampling and locality to make



the algorithm linear in the size of the map. The approach
was extended by Paz et al. [9] to general grid maps keeping
the same complexity. In [3], Bosse and Zlot evaluate several
detector/descriptor-pairs for 2D range data for the task of place
recognition in a graphical, submap-based SLAM application.
They use a voting approach to match submaps, where each
interest point votes for a candidate submap. Association
between interest point is done using kd-trees. Their approach
share same similarities with our work since it may be seen as
“vocabulary-free” BoW, without any geometrical verification
Tipaldi et al. [15] also used a feature-based approach combined
with RANSAC to perform place recognition. The authors
introduced a feature detector and descriptor for 2D range data
that allows for high precision and recall in place recognition.
Bosse and Zlot [2] define global features on individual scan
or local maps instead of local interest points and use those
descriptions to match a set of reference scans/maps to a query
one. They describe local maps using projection histograms
and orientation histograms as descriptors. Matching is done
using cross-correlations between the histogram signatures to
find the most likely match. Those histogram however, are very
sensitive to the view point and showed lower recall rate of a
feature based approach. Granström et al. [4] define a set of
local features for a scan (e.g., area, average range, circularity,
curvature, . . . ) which are used as input for AdaBoost to build
a non-linear classifier capable of detecting loop closure from
pairs of point clouds. In contrast to our approach, their method
is not able to compute a transformation between scans and
has a longer run-time. It is worth noticing that our work is
orthogonal to theirs and both could be combined together.

Our method is inspired by the work of Zhang et al. [19] in
the computer vision community. There, the authors introduce
phrases, geometrically consistent co-occurrences of visual-
words, and present an efficient technique for handling large
image datasets. Also relevant to our approach is the work of
Zhang and Chen [18] in which the authors introduce kernels to
encode high-order spatial relations in a bag-of-visual-features
model for near-duplicate image matching tasks in large datasets.
Both works share the same idea of capturing local and long-
range spatial visual word layouts for improving image matching
with low computational cost. Their technique is able to cope
with translation-only partial matching. Our approach instead
provides invariance to translation and rotation. Other works
[17] search repeated word co-occurrences within limited ranges
and build a word lexicon by employing frequent itemset mining
techniques. Our approach also relates to works that employ
spatial verification in visual BoW [10, 11, 6]. However, these
are hardly suitable for handling the specific nature of a 2D
range scan and its low specificity for place description.

III. PLACE RECOGNITION USING FLIRT DICTIONARIES

The Fast Laser Interest Point Transform (FLIRT) is a multi-
scale interest point operator for 2D range data introduced
by Tipaldi et al. [15]. The operator consists of a detector
based on a geodesic curve approximation of the range signal
and a descriptor based on a polar histogram of occupancy

probabilities. The detector models the scan as a curve in
Cartesian space and applies an integral operator invariant to
sampling density that smooths the input curve into its multi-
scale parametrization. Interest points are then detected by
finding the local maxima of the distance between the smoothed
curve and the original one. For each detected interest point a
linear-polar tessellation of the space around is defined for the
descriptor, with a radius proportional to the scale of the interest
point. For estimating the occupancy probability, a Bayesian
parameter learning approach is used. More details can be found
in the work of Tipaldi et al. [15].

Place recognition using FLIRT features can be performed
in linear time w.r.t. the number of places by applying the
RANSAC algorithm between the query scan and each scan
present in the place database. In practice, RANSAC returns
the place with the minimum reprojection error, whose inlier
set is above a threshold nmin

I . Although the approach is very
efficient, the linear complexity prevents it from being practical
on very large datasets.

In order to overcome this problem, a naive solution would
be to adopt a BoW approach [14]. The idea of such methods is
to create a distribution of feature appearances in a certain place
and to use this distribution as a description of the place itself.
A place is encoded as a set of predefined words belonging
to a precomputed dictionary. Each feature is associated to
the closest word in the dictionary according to the distance
between the word and the descriptor of the feature. Once each
feature has been associated to a word, a histogram of word
frequencies is used as a signature of the place. For recognition,
we first sort all the places in the database according to the
distance of their signature to the signature of the query path.
We then perform RANSAC on the top H matches to verify the
geometrical configuration of the feature and return the most
likely place (or none if the retrieval criterion are not satisfied).

To learn the dictionary we use a training database of 10000
scans randomly sampled from publicly available datasets. On
each of these scans we extract FLIRT features – on average 20
per scan – and we apply the hierarchical K-means algorithm to
find the number of words. We use a 3 layer hierarchy with 5
clusters per level. We compute several dictionaries starting with
different random seeds and select the best dictionary using the
V-measure [12]. The final vocabulary consists of 275 words.

IV. PLACE RECOGNITION WITH FLIRT PHRASES AND
WEAK GEOMETRICAL VERIFICATION

In this section, we introduce the method to recognize places
by means of weak geometrical verification. First, we present
the core formulation of the weak geometrical verification for
matching 2D range scan data. Then, we present an efficient
search structure for matching and retrieval in large datasets.

A. GFP-based 2D Place Recognition

Our method aims to rapidly quantify similarities between
two 2D range scans, not only by considering them as unordered
collections of local descriptors but also by taking into account
the positional arrangement of keypoints.
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Fig. 2. Visual explanation of invariance with respect to rotation and translation
of the angular order of keypoints in a scan. The figure depicts a 2D range
scan (black dots), two robots (blue (upper) and red (lower) triangles) and the
position of FLIRT keypoints (green crosses) with the associated FLIRT words
(green letters). The angular order of the features in a scan is invariant. In
the example, the blue robot observes the features (in a clockwise fashion) as
{A,B,C,D,E, F} and the red one as {E,F,A,B,C,D}. Feature ordering
is preserved.

A popular approach to check the geometrical similarity
between two scans is by estimating the rigid transformation
between them and checking the resulting reprojection error.
The idea pursued in this work is to avoid this computationally
expensive operation, to find an invariant representation of range
scans and to apply simplified matching operations. Note that
the transformation of the scan in the new representation should
require efficient operations. The proposed solution represents
the scan as a set of FLIRT keypoints with their clockwise order
of appearance in the range scan as a simplified representation.

Throughout this paper, we use the term “weak geometrical
verification” for the process of comparing two scans by
analyzing the clockwise ordering of their FLIRT features. This
process leverages the peculiarity and characteristics of 2D
range data: a 2D range scan is a 1D manifold embedded in a
2D space where it is possible to define an ordering of its data,
see Fig. 2. Can be proved that the set of scans with similar
arrangement of keypoints contains also the ones that match
with a full geometrical verification method.

Our novel theoretical framework makes use of phrases for
a tunable formulation of the weak geometrical verification
principle. The notion of phrases comes from the information
retrieval community [7] and it represents a (high-order)
arrangement of words. In the context of our work, we define
phrases by using FLIRT words (previously generated from
a standard BoW dictionary construction, see Section III). A
phrase pk of order k consists in k clockwise-ordered words
(e.g.: p2 = {LS}, p3 = {GDT}, p4 = {WBFR} etc). Similar
to the BoW document representation, a scan that employs GFPs
is encoded as a histogram Φ(·) of all possible phrases of length
k. Each bin represents the occurrence of a certain phrase pki
in a scan. The similarity between two scans is computed by
calculating the cosine distance between two histograms. The

dimensionality of the histogram Φ(·) is very large, containing
nk bins. Even with k = 2 and a small vocabulary (n = 200),
Φ(·) is so large and sparse that is impractical to use it.

We define the set of FLIRT words associated to the scan
xi as XW

i . Similar to Zhang and Chen [18], it is possible to
formulate the GFP histogram comparison with a function

K(xi,xj) = 〈Φ(XW
i ),Φ(XW

j )〉 (1)

that computes the inner product of two GFP histograms. The
dot product is an operator that is symmetric and positive semi-
definite, so that K(·) satisfies the Mercer condition and defines
a kernel function. Eq. (1) can be normalized by dividing each
histogram by its norm. This kernel has an interesting property:

K(xi,xj) =

nk∑
l=1

Upl
(XW

i )∑
m=1

Upl
(XW

j )∑
q=1

1 (2)

Here, Upl
(XW ) is a function that returns the number of phrases

pl in the set XW . In practice, the dot product of the histograms
K(·) is equal to counting the total number of co-occurring
phrases of the same kind in the two scans. This information
can be exploited for a highly efficient solution of Eq. (1). The
intuition is that when a GFP phrase of order k is present in
two scans there must be a constant shift in the clockwise-order
arrangement of k FLIRT words. Let us consider the clockwise
ordered set X̃W

i of words in the scan. For a word w ∈ X̃W
i

placed at position m in the ordered set, we consider its position
within the ordered set X̃W

j associated with the scan xj and
we compute the following:

Jw = {indices of (w ∈ X̃W
j )} (3)

O = m− Jw (4)
Ω(O) = Ω(O) + 1 (5)

The term Ω(·) is the histogram of offsets that collects word
co-occurrences and it has O = max(Z, T ) << nk bins, where
Z = #X̃W

j and T = #X̃W
i . In practice, in case that co-

occurring words are present with consistent clockwise-ordered
layout in two scans, their difference in index falls into the
same bin of the offset histogram Ω(·) (see Fig. 3 for an
illustration). Thanks to the offset space, it is possible to compare
scans that share complicated interleaved word patterns or large
displacements in the ordered word-sets, and to rewrite Eq. (2):

K(xi,xj) =

O∑
l=1

(
Ω(l)
k

)
(6)

The binomial coefficient is used to count the phrases, con-
stituted by the combinations of m words taken k times, co-
occurring in each offset bin. In this manner, we can easily
compute scan similarities with phrases of all orders (1 to ∞)
with the same computational efforts.

B. GFP-enabled Efficient Retrieval

An efficient technique used for searching documents in large
databases in a BoW context, is the Term Frequency-Inverse
Document Frequency (TFIDF) with inverted file index [13].



In our case, we consider only IDF phrase weights, that is the
frequency of a certain phrase appearing in the entire corpus. For
efficiency reasons, we define the IDF weight of a phrase as the
sum of the words’ IDF composing it. It is possible to rewrite
the kernel in a way that takes into account IDF weighting. The
function KIDF(xi,xj) is equal to the summation of the IDF
weights of the co-occurring phrases.

For matching two scans, we store the number of clockwise-
arranged co-occurring words in the offset histogram Ω and the
summation of their IDF weights in the weight histogram Ξ.
To clarify, the co-occurrence of the word w in two scans with
offset position m is used to update Eq. (5) and Ξ(·) :

Ξ(m) = Ξ(m) + vw (7)

KIDF(xi,xj) =

O∑
l=1

Ξ(l)
(

Ω(l)−1
k−1

)
(8)

where vw is the IDF weight of the word w. We modified
the inverted file index technique for the GFPs approach by
modifying the indexing structure. The novel inverted file index
G contains the indices of the range scans of the corpus in
which a certain word wm appears and it caches the position
of the word in those scans. In particular:

(wi, vwi ,Swi) ∈ G, (q, lq) ∈ Swi (9)

where lq is the vector containing the indices of the position in
clockwise-order of the word wi in the set X̃W

q relative to the
scan q. The query of a scan xi with a 2D range scan corpus is
very fast. Each word w in X̃W

i is used to select the associated
entry in G and the offsets O are computed for each Sw by
subtracting the index of w with lq . Then, the histograms Ω and
Ξ are updated for each of the scans relevant to all the words in
X̃W

i . Eventually, KIDF scores all the relevant scans by using
Eq. (8). All these scans are ranked with their score to provide
the best matches. The RANSAC scan-matching technique is
then employed to compute the rigid transformation on the top
H GFP-matches, similar to the BoW explained in Sec. III.

Note that the computational effort in the retrieval is bounded
by the number of words in the query scan. The geometrical
verification is very fast because it consists only in a simple
difference between vector indices, and no trigonometric trans-
formations are run. The binomial coefficient is implemented
as a pre-computed look-up table.

V. EXPERIMENTS

In this section we describe our experimental set-up and
show the performances of the proposed approach. For the
experiments, we used six publicly available datasets of 2D scans
consisting of three indoor datasets and three outdoor datasets.
Tab. I lists the datasets used and their size. Each dataset has
been corrected using the SLAM algorithm of Grisetti et al. [5]
to obtain the ground-truth trajectory and evaluate if the solution
retrieved by the system is correct.

A B C D E D G
B H D E U A D G 

1 2 3 4 5 6 7 1-5 -4 -3 -2 -1 0

3

BDE

1

ACo-occ

B

D

E
+

+

A

8

2

DG

D

G
+

Offset space

A B C

D

E

DG

H

D

E

U

DG

A

B

Scan

Clockwise-ordered features

Scan

Fig. 3. Efficient solution to GFP matching. In the figure, two similar scans
are being compared. The clockwise feature arrangement is computed, the
histogram of words co-occurrence Ω and IDF weights Ξ is filled. Note that
with this method, we can successfully match phrases encoded with complicated
interleaved word patterns (eg: BDE). Given the two histograms, we can compute
distance kernels of different orders at the same computational cost (eg: matching
duplets, triplets, etc), see Eqn. 8.

TABLE I
STATISTICS OF THE DATASETS USED IN THE EXPERIMENTS.

Data set Size [m] Scans Path length [m]
FR-079 (in) 50×20 1464 390.803

INTEL-Lab (in) 50×40 2672 360.695
MIT-CSAIL (in) 80×60 1051 382.942
FR-Clinic (out) 550×300 6917 1437.6

Victoria Park (out) 500×500 5751 4206.14
Kenmore (out) 1000×1000 13063 6588.34

A. Experimental Set-Up

We compared place recognition strategies based on BoW
and GFPs. We employ TFIDF scaling for reweighting the bins
of the BoW histograms [13]. In particular we tested standard
TFIDF (BoW-1) and robust variants called “maximum TF
normalization” (BoW-2) and “sublinear TF scaling” (BoW-3).
For GFPs, we used a kernel size of 2 (GFP-2) and 3 (GFP-3).
No particular difference was found for bigger kernels.

To evaluate the performances of the different approaches,
we used the following procedure for each of the dataset. At
first, features are extracted from every scan in the dataset, are
associated to the words of the dictionary and the corresponding
signature is computed. Then, for each scan of the dataset, we
compute the similarity of that scan with all the others in the
dataset using the BoW or the GFP histograms.

To assess if two scans represent a valid match we check if
the number of inlier correspondences returned by RANSAC
is above a threshold, nmin

I Once we obtain the set of valid
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matches, the one with the minimum residual error is returned.
A match is finally considered correct with respect to the ground-
truth, if the distance between its estimated pose and the ground
truth pose is within 0.5m and 10 degrees.

B. Results

Fig. 5 shows the precision/recall curve for all datasets and
strategies. The curves have been obtained by changing the
inlier threshold nmin

I . As can be seen, GFPs outperform the
BoW technique. If we analyze the behavior on the smaller
indoor dataset, we notice that GFPs are able to obtain the
same precision/recall values of BoWs but require only one
fifth of RANSAC operations. This is far more evident on the
larger outdoor datasets where BoW is not able to obtain recall
values above 50% when using the same numbers of RANSAC
operations of GFPs. We found that on average BoW needs to
perform RANSAC on half of the scans of the entire dataset to
reach similar results. The reason of this behavior is that 2D
range data offer limited variability in the descriptor space due to
the limited appearance information present in the data. The most
meaningful information is indeed the spatial arrangement of
the points, which is discarded in BoW techniques. Geometrical
phrases, on the contrary, bring back the lost information by
considering the rigid ordering of the words in a scan.

Comparing the three TFIDF schemes for BoW, we can see
that BoW-3 tends to perform slightly better than the others,
although showing the same general behavior. We found out that
using a kernel of dimension 3 for GFPs has a slight decrease
in performances. This is due to the fact that it imposes harder
rigidity constraints and is less robust to outliers and noise in
the detected features.

The experiments on the Kenmore dataset show that the
approach also outperforms state-of-the-art techniques [2, 3],
with a recall rate of 80% at 99% accuracy and 68% at

100% precision, and a retrieval time of only 0.8s. Similar
performances have also been obtained in [4], showing a recall
rate of 84% at 99% accuracy and 30% at 100% precision,
but with a retrieval time of about 20s, more than 20 times
our performances. Finally, the approach also obtains the same
performance as the naive matching approach of Tipaldi et
al. [15] but with a relative speed-up of 10 (see Fig. 4).

Fig. 4 shows the time spent to match one scan with the
entire dataset. We are able to run the approach at 5 to 10 Hz
in typical indoor environments and at 2 to 1 Hz in outdoor
datasets. The reason the algorithm is slower outdoor stems from
the presence of more self-similar places due to the increased
size. The only exception is the Victoria Park dataset, where the
number of detected features is quite low, making the approach
faster at the cost of lower precision/recall values. Note that the
approach is always faster than BoW, extensive FLIRT search
and Granström’s approach [4]. This difference is more evident
in outdoor datasets, where GFPs scales sublinearly.

VI. CONCLUSION

In this paper we presented an efficient and robust method
for place recognition in large scale environments using 2D
range data. Our geometrical FLIRT phrases (GFPs) are based
on the previously developed FLIRT features. We realized
a dedicated retrieval scheme that also performs a weak
geometrical verification. Based on this, our method not only
computes similar places but also calculates a relative pose
transformations between the retrieved and the query places.

Experiments show that our method largely outperforms other
state-of-the-art approaches in retrieval performance and metric
precision. GFPs yield higher recall rates compared to the state
of the art obtaining retrieval performances with 99% precision
at more than 85% recall in less than a second, even data
sets recorded over several kilometers. This corresponds to a
tenfold improvement of the retrieval time. Thanks to the high
performances of this method and the usage of 2D scan data, we
open the door for place recognition lidar data which are less
sensitive to variations of illumination and weather conditions.
In future work, we will explore the use of hashing techniques
and parallel processing to further reduce the retrieval time. The
source code is available on the authors webpages.
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Fig. 5. Results using GFP-2, GFP-3, BoW-1, BoW-2, BoW-3 with different top-H . GFPs always outperforms BoWs at same H , with GFP-2 being the best.
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