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Abstract—Robot localization systems typically assume that the
environment is static, ignoring the dynamics inherent in most
real-world settings. Corresponding scenarios include households,
offices, warehouses and parking lots, where the location of
certain objects such as goods, furniture or cars can change over
time. These changes typically lead to inconsistent observations
with respect to previously learned maps and thus decrease the
localization accuracy or even prevent the robot from globally
localizing itself. In this paper we present a sound probabilistic
approach to lifelong localization in changing environments using
a combination of a Rao-Blackwellized particle filter with a hidden
Markov model. By exploiting several properties of this model, we
obtain a highly efficient map management approach for dynamic
environments, which makes it feasible to run our algorithm
online. Extensive experiments with a real robot in a dynamically
changing environment demonstrate that our algorithm reliably
adapts to changes in the environment and also outperforms the
popular Monte-Carlo localization approach.

I. INTRODUCTION

Long-term operations of mobile robots in changing envi-
ronments is a highly relevant research topic as this ability
is required for truly autonomous robots navigating in the real
world. One of the most challenging tasks in this context is that
of dealing with the dynamic aspects of the environment. One
popular approach to robot navigation in dynamic environments
is to treat dynamic objects as outliers [1, 2, 3]. For highly
dynamic objects like moving people or cars, such methods
typically work quite well, but they are less effective for semi-
static objects. By semi-static objects we mean objects that
change their location slowly or seldom like doors, furniture,
pallets in warehouses or parked cars. In many realistic scenar-
ios (see Figure 1), in which robots operate for extended periods
of time, semi-static objects are ubiquitous and we believe that
appropriately dealing with them in a localization approach can
substantially increase the overall navigation performance.

In this paper, we present a novel approach to lifelong
localization in changing environments, which explicitly takes
into account the dynamics of the environment. Our approach is
able to distinguish between objects that exhibit high dynamic
behaviors, e.g., cars and people, objects that can be moved
around and change configuration, e.g., boxes, shelves, or
doors, and objects that are static and do not move around,
e.g., walls.

To represent the environment, we use a dynamic occupancy
grid [4], which employs hidden Markov models on a two-
dimensional grid to represent the occupancy and its dynamics.
We learn the parameters of this representation using a variant
of the expectation maximization (EM) algorithm and then
employ this information to jointly estimate the pose of the

Fig. 1. A mobile robot with a horizontally scanning laser range finder
navigating in a parking lot at noon (top) and at 6 pm (bottom). Note that
despite being at the same spot in both cases, the perceived scans will be
substantially different due to the changed number of parked cars.

robot and the state of the environment during global local-
ization. We furthermore apply a Rao-Blackwellized particle
filter (RBPF), in which the robot pose is represented by the
sampled part of the filter and the occupancy probability of a
cell is represented in the analytical part of the factorization. In
addition, we propose a map management method that is based
on a local map representation and that is able to minimize
memory requirements as well as to forget changes in a sound
probabilistic way. We achieve this by considering the mixing
times of the associated Markov chain.

Compared to previous approaches, our algorithm has several
desirable advantages. First, it improves the robustness and
accuracy of the pose estimates. Second, our method is able
to provide an up-to-date map of the environment around the
current robot location. Finally, our map management method
considerably reduces the runtime of the process whilst min-
imizing the memory requirements. As a result, our approach



allows a robot to localize itself and to simultaneously estimate
a local configuration of the environment in an online fashion.

This paper is organized as follows. After discussing related
work in Section II, we provide a more precise formulation of
the problem in Section III. We then present an overview about
the dynamic occupancy grid representation in Section IV. In
Section V, we explain the algorithm for the joint estimation
and the map management. Finally, in Section VI, we present
extensive experiments carried out with a real robot, showing
that our approach significantly outperforms state-of-the-art
localization methods in changing environments in terms of
the accuracy and robustness of the localization process and
the consistency of the generated maps.

II. RELATED WORK

Localization in dynamic environments has been an active
topic in robotics research in the last decade. Many proposed
approaches treat dynamic objects as outliers and hence filter
out observations of dynamic objects. The observations of
the static part of the environment are then used to per-
form map building, localization and navigation. For example,
Fox et al. [1] used an entropy gain filter and a distance
filter based on the expected distance of a measurement,
while Schultz et al. [2] considered local minima of range
measurement as observations from dynamic objects if they do
not match an already available map. Montemerlo et al. [5] used
observations of humans for people tracking while localizing
the robot. The tracking of people simplifies the rejection of
readings due to dynamic objects and increases reliability in
populated environments. They employed a conditional particle
filter to estimate the position of people conditioned to the pose
of the robot, thus also enabling tracking in the presence of
global uncertainty of the robot pose.

The main limitation of those approaches, however, is that
they rely on the static world assumption for the underlying
navigation system. In environments that change configurations
over time or where the dynamics are low, e.g., parking
lots, warehouses, apartments and cluttered environments, the
changes may persist over long periods of time and could be
useful to localize the robot. In extreme situations, the parts
of the static environments that are visible are not informative
enough for a reliable navigation and reasoning about changes
is of utmost importance. In this paper we address those limi-
tations and propose a localization system able to reason about
changes and use that information to improve the localization
performances.

Other approaches specifically focus on separating the static
and dynamic aspects of the environment by building two
maps. Wolf and Sukhatme [6] proposed a model that maintains
two separate occupancy grids, one for the static parts of
the environment and the other for the dynamic parts. Wang
et al. [7] formulated a general framework for mapping and
dynamic object detection by employing a system to detect if
a measurement is caused by a dynamic object. Montesano et
al. [8] extended the previous approach by jointly considering
the problem of dynamic object detection with the one of

mapping and including the error estimation of the robot in
the classifier. Similarly, Gallagher et al. [9] built maps for
individual objects that can then be overlaid to represent the
current configuration of the environment. Hähnel et al. [3],
on the other hand, combined the EM algorithm and a sensor
model that considers dynamic objects to obtain accurate maps.
The approach of Anguelov et al. [10] computes shape models
of non-stationary objects. In their approach, the authors created
maps at different points in time and compared those maps
using an EM-based algorithm to identify the parts of the
environment that change over time.

Although those approaches do not simply consider observa-
tions of dynamic objects as outliers, they still rely on a static
representation of the environment to perform navigation. Their
main advantage over filtering dynamic observations is that they
are able to provide a better static map of the environment and
the detection of dynamic observations can be done in a more
reliable way. However, they still share the same limitations
of the static world assumptions when deployed in changing
environments or where the dynamics are low.

In order to overcome the limitations due to the static world
assumptions, some authors worked on how to model the
dynamics of the environment in a single unified representation.
Chen et al. [11] and lately Brechtel et al. [12] extended the
occupancy grid paradigm to include moving objects. Their
approach, the Bayesian occupancy filter, is based on the idea
that since occupancy is caused by objects, when those objects
move, the corresponding occupied cell of the map should
move accordingly. From this point of view, They propose an
object-centered representation of the dynamics, and every cell
in the environment need to be tracked over time. Moreover,
the state transitions are assumed to be given a priori and
no algorithm to learn them from data is presented. On the
contrary, we follow a map-centric approach and model how
the environment changes in an agnostic way with respect to
the cause of the change.

Biber and Duckett [13] proposed a model that represents the
environment on multiple timescales simultaneously. For each
timescale a separate sample-based representation is maintained
and updated using the observations of the robot according to
an associated timescale parameter. Our approach differs from
theirs in the sense that we fuse all the different maps into a
unified representation and provide tools to estimate the optimal
timescale parameter for each cell. Moreover their approach has
higher memory and computational requirements than ours. In
global localization settings, multiple hypotheses over the state
of the environment are needed, thus memory requirements are
an important aspect to be considered.

Yang and Wang [14] proposed the feasibility grids to facili-
tate the representation of both the static scene and the moving
objects. A dual sensor model is used to discriminate between
stationary and moving objects in mobile robot localization.
Their work, however, assumes that the position of the robot is
known with a certain accuracy to compute and update the maps
and therefore is not suited to be used for global localization
problems.



Recently, Saarinen et al. [15] proposed to model the en-
vironment as a set of independent Markov chains, one per
grid cell, each with two states. The state transition parameters
are learned on-line and modeled as two Poisson processes.
A strategy based on recency weighting is used to deal with
non-stationary cell dynamics. Their representation is very
similar to the one used in our paper but differs from the way
the occupancy probabilities are computed and the transitions
learned. The focus of the presented work, however, is to show
that Markov chain based representations can be effectively
used for localization. Both representation could be used and
we believe would produce similar results.

Some other works have been introduced in the past with
the aim to address global localization problems in dynamic
environments. However, to the best of our knowledge, none
of them is general enough to work with different dynamics
and objects or in real-world scenarios. Murphy et al. [16]
proposed to apply a Rao-Blackwellized particle filter solution
to the SLAM problem and showed that it could also deal with
dynamic maps in a theoretical way. Their approach, however,
assumes that the probabilities of changing state is independent
from the current state of the environment and is given a
priori. Moreover, they only presented results in small scale
environments and with known initial position. In this paper we
extend their representation and show how it can be used for
global localization introducing a novel memory management
strategy.

To handle the complexity of the Rao-Blackwellized particle
filter solution in practical applications, some authors propose
to focus on only some dynamic aspects or restrict the dynamics
to a set of static configurations. Avots et al. [17], used the Rao-
Blackwellized particle filter to estimate the pose of the robot
and the state of doors in the environment. They represented
the environment using a reference occupancy grid where the
location of the doors is known, but not their state (i.e.,
opened or closed). Petrovskaya and Ng [18] proposed a similar
approach where instead of a binary model, a parametrized
model (i.e., opening angle) of the doors is used. Stachniss
and Burgard [19] clustered local grid maps to identify a
set of possible configurations of the environment. The Rao-
Blackwellized particle filter is then used to localize the robot
and estimate the configuration of the environment from the
set. In contrast to their methods, we estimate the state of the
complete environment, and not only of a small, specific area
or element. Additionally, we also learn the model parameters
from data and we are able to generalize over unforeseen
environment configurations.

Meyer-Delius et al. [20] kept track of the observations
caused by unexpected objects in the environment using tem-
porary local maps. The robot pose is then estimated using
a particle filter that relies both on these temporary local
maps and on a reference map of the environment. The work,
however, still relies on a static map for global localization and
temporary maps are only created when a failure in position
tracking occurs.

An interesting approach to lifelong mapping in dynamic

environments has been presented by Konolige et al. [21].
The approach focuses mainly on visual maps, and presents a
framework where local maps (views) can be updated over time
and new local maps are added/deleted when the configuration
of the environment changes. Using similar ideas, Kretzschmar
et al. [22], applied graph compression using an efficient
information-theoretic graph pruning strategy. The approach
can be used with a bias on more recent observations to obtain a
similar behavior of the work of Konolige et al. [21]. Those two
approaches, however, mainly focus on the scalability problems
arising in long-term operations and not on the dynamical
aspect of environments changing over time.

The approach of Walcott-Bryant et al. [23] follows a similar
idea as well. They introduce a novel representation, the Dy-
namic Pose Graph (DPG), to perform SLAM in environments
with low dynamics over long periods of time. Their approach,
DPG-SLAM, assumes that data association is solved using
scan matching and that the starting position of the robot is
known and coincides with the last pose of the previous run.
On the contrary, our approach can deal with different dynamics
(low, medium and high) and does not require the knowledge
of the initial position of the robot.

Churchill and Newman [24] presented a different point of
view to the problem of lifelong mapping. They reason that
a global reference frame is not needed in navigation and
introduce experiences, i.e., robot paths with relative metrical
information. Experiences can be connected together using
appearance-based data association methods and places that
change over time are represented by a set of different ex-
periences.

Their work is similar in spirit and generalizes both Stachniss
and Burgard [19] and Meyer-Delius et al. [20]. In our paper
we take another perspective, where we propose a model-based
approach in contrast to the data-driven one of Churchill and
Newman [24]. We believe that having a unified model of
the environments is important for human robot interaction.
Navigation tasks, e.g., go to a specific position or follow a
specific path, only need to be defined once in model-based
approaches. Using the experience approach, on the contrary,
requires the user to define the same task on every experi-
ence the robot recorded. This may increase the complexity
of human-robot interaction and reduce the reliability of the
system, since maintaining the task consistence across different
experiences is not trivial. Moreover, with our approach, we are
also able to predict how part of the environment will look in
the future, by directly modeling their rate of change.

III. PROBLEM STATEMENT

Imagine a robot that continuously performs tasks during a
session, i.e., until its battery runs out. It then gets back to its
charging station and, when charged, continues to perform the
previous tasks in the next session. To perform its tasks, the
robot knows the positions of several locations of interest and
plans paths to reach them avoiding obstacles. These locations
need to be consistent between several sessions, to reduce the
teaching effort of the user. One way to ensure this is to use a



single map and express those locations in a global reference
frame. Localizing the robot in the global frame allows then
to know the displacement between the current robot pose and
the locations of interest.

In static environments, the map does not change between
different sessions. This simplifies the problem and a readily
available solution is to build a map of the environment during
the first session using a SLAM algorithm [25] and then use
the computed map for localization in the remaining sessions.
This solution is very mature, effective, and robust to minor
changes in the environment and dynamic objects [26]. Never-
theless, if the amount of changes increases and low dynamic
phenomena appear (i.e., boxes that stay for long, parked cars,
moved furniture, etc . . . ) such a solution loses reliability and
precision. The robot starts to get de-localized and invalid paths
are planned, since the map does not represent the current state
of the environment.

In those cases, since the environment changes over time
and the map needs to be updated, a straightforward solution
would be to always use a SLAM algorithm and rely on
loop closure techniques to join the trajectories of subsequent
sessions together. This approach has several shortcomings,
which we will show in more details in Section VI. A first
problem consists in scalability issues. In case a graph-based
approach for SLAM is used, the amount of data that needs
to be processed grows linearly with the length of the traveled
path. Data compression techniques have been developed to
discard measurements according to the entropy of the map
distribution or some decay value. Those techniques represent
a step towards the solution although the more general explo-
ration vs. exploitation aspect – when to stop mapping and
start localizing – still remains. Filtering based approaches for
SLAM may be better fitted in this case, since the trajectories
are marginalized out and their complexity scales with the size
of the environment. However, filtering approaches do not scale
well with respect to the size of the environment and do not
offer the flexibility of graph-based approaches to select which
observations to use at the moment to have an up-to-date map.

A second problem regards data association issues. Algo-
rithms designed for static environments may fail in dynamic
ones since unexplained measurements can be caused by either
incorrect localization or environment changes. Optimization
solutions to SLAM cannot be used effectively, since a single
hypothesis is not sufficient to disambiguate those situations.
Moreover, no assumption can be made on the prior location of
the robot between multiple sessions of the lifelong operation,
since the robot starting position may have been changed as
well. One way of addressing this point is to use multiple-
hypotheses filters for SLAM, where each hypothesis carries
its own map. In the case of medium-sized environments and
unknown initial location, this leads to high memory consump-
tion and scalability issues. Finally, static representations of the
environment are not suited for lifelong navigation in changing
environments. The reason is that they are slow to be updated
when a change happens, since they have a memory effect
and they need to observe an occupied cell as free as many

times as it was observed as occupied to change its state. An
experimental evaluation of these shortcomings with additional
insights is presented in Section VI.

In this paper, we aim at presenting another point of view
for the lifelong localization problem. We argue that addressing
it as a pure SLAM or localization problem is suboptimal
and that is because this problem is neither an instance of a
SLAM problem nor of a pure localization problem. It is, in our
opinion, a hybrid problem that lies in-between them and needs
to be tackled in a particular way. In the remainder of the paper,
we will describe our solution to the problem by first describing
a map representation tailored for dynamic environments and
then an efficient and effective algorithm to jointly estimate the
pose of the robot and the environment configuration.

IV. OCCUPANCY GRIDS FOR CHANGING ENVIRONMENTS

Occupancy grids [27] are one of the most popular repre-
sentations of a mobile robot’s environment. They partition
the space into rectangular cells and store, for each cell, a
probability value indicating whether the underlying area of
the environment is occupied by an obstacle or not.

One of the main disadvantages of occupancy grids for our
problem is that they assume the environment to be static. To
be able to deal with changes in the environment we utilize a
dynamic occupancy grid [4], a generalization of an occupancy
grid that overcomes the static-world assumption by explicitly
accounting for changes in the environment. In the remainder
of this section, we give a short overview on the representation
and in the next section we will describe how it can be used
for global localization.

The map consists of a collection of individual cells, mt =

{c(i)t }, where each cell is modeled using an hidden Markov
model (HMM) and requires the specification of a state tran-
sition probability, an observation model, and an initial state
distribution. We adopt the same assumptions of the occupancy
grid model, namely the independence of the individual ob-
servations, given the map, and the independence among the
cells. Those assumptions are needed for having an efficient
inference during localization. We believe those are reasonable
assumptions and, during our experiments, we did not observe
any critical issues either in localization or in the accuracy of
the map.

Let ct be a discrete random variable that represents the oc-
cupancy state of a cell c at time t. The initial state distribution
p(c0) specifies the occupancy probability of a cell at the initial
time step t = 0 prior to any observation.

The state transition model p(ct | ct−1) describes the evolu-
tion of the cell between consecutive time steps. In their paper,
the authors assume that changes in the environment are caused
by a stationary process, that is, the state transition probabilities
are the same for all time steps t. Since a cell is either free (free)
or occupied (occ), the state transition model can be specified
using only two transition probabilities, namely

po|fc = p(ct = occ | ct−1 = free) (1)



and
pf |oc = p(ct = free | ct−1 = occ) . (2)

Note that, by assuming a stationary process, these probabilities
do not depend on the absolute value of t. Therefore, the
dynamics of a cell at any time can be captured by its transition
matrix

Ac =

[
1− pf |oc p

f |o
c

p
o|f
c 1− po|fc

]
. (3)

This transition model generalizes the one utilized by Mur-
phy et al. [16] and Chen et al. [11] where po|fc = p

f |o
c .

The observation model p(z | c) represents the likelihood of
the observation z given the state of the cell c. In our case, it
corresponds to the sensor model of a laser range finder. Given
the limited field of view of the sensor, we additionally consider
the case where no direct measurement is observed by the
sensor. Explicitly considering this no-observation case allows
us to update and estimate the parameters of the model using
the HMM framework directly without having to artificially
distinguish between cells that are observed and cells that are
not. The probabilities can be specified by three matrices

Bz =

[
p(z | c = occ) 0

0 p(z | c = free)

]
, (4)

where z ∈ {hit,miss, no-observation}.
The update of the occupancy state of the cells follows

a Bayesian approach. The goal is to estimate the posterior
distribution p(ct | z1:t) over the current occupancy state ct of
a cell given all the available evidence z1:t up to time t. The
update formula is:

p(ct | z1:t) =

η p(zt | ct)
∑
ct−1

p(ct | ct−1) p(ct−1 | z1:t−1) , (5)

where η is a normalization constant. The structure of HMMs
allows for a simple and efficient implementation of this
recursive approach. Utilizing the matrix notation and defining
the posterior at time t as the vector

Qt =
[
p(ct = occ | z1:t) p(ct = free | z1:t)

]
, (6)

one can compute the posterior at time t+ 1 as

Qt+1 = QtAcBzt+1
η . (7)

Note that the map update for occupancy grids is a special
case of our update equations, where the sum in (5) is replaced
with the posterior p(ct | z1:t−1), or equivalently, the matrix
Ac in (7) is replaced with the identity matrix I .

Figure 2 depicts the transition probabilities of a small hall
(2a, 2b), and an enlarged portion of it (2c, 2d), where darker
colors correspond to higher probabilities. During the data
acquisition, some desks have been moved around and people
have been walking in the room. Subfigures 2a and 2c show
pf |o and Subfigures 2b and 2d show po|f of the whole envi-
ronment and an enlarged portion, respectively. Comparing 2a
and 2b we see some areas with high probabilities for pf |o and

(a) po|fc (b) pf |oc

(c) po|fc (d) pf |oc

Fig. 2. State transition probabilities in a small hall where people usually
go from the office in the top left corner to one of the two exits on the
right. The left and right images correspond to the distributions po|fc and
p
f |o
c respectively: the darker the color, the larger the state change probability.

Subfigures (c) and (d) shows an enlarged portion of the top left corner, to
better highlight the effect of fast moving objects.

low probabilities for po|f in the middle of the room. They
correspond to furniture being moved around and left there.
The high transition probabilities from free to occupied reflect
the possibility of the cell to change state quickly (something
may appear there), while the low transition probabilities from
occupied to free reflect the long persistence of the object.

On the other hand, if we compare 2a and 2b we see a
different behavior: some cells have a high probability for both
po|f and pf |o. This means that as soon as objects are observed
there, their state switches to occupied in the next step (an
object appeared) and then quickly returns to free (the object
quickly moved away).

A. Parameter Estimation

As mentioned above, an HMM is characterized by the state
transition probabilities, the observation model, and the initial
state distribution. We assume that the observation model only
depends on the sensor used and not on the location. Therefore
it can be specified beforehand and is the same for each HMM.
We also assume the same uniform initial state distribution for
each cell. Thus, the parameters to be learned are the state
transition probabilities of the cell.

One of the most popular approaches for estimating the
parameters of an HMM from observed data is an instance
of the expectation-maximization (EM) algorithm. The basic
idea is to iteratively estimate the model parameters using the
observations and the parameters estimated in the previous
iteration until the values converge. Let θ̂(n) represent the
parameters estimated in the n-th iteration. The EM algorithm
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Fig. 3. Dynamic Bayesian network describing the localization problem
addressed in the paper. Note the temporal connections among the individual
cells of different steps.

results in the following re-estimation formula for the transition
model of cell c :

p̂(ct = i | ct−1 = j)(n+1) =∑T
τ=1 p(cτ−1 = i, cτ = j | z1:T , θ̂(n))∑T

τ=1 p(cτ−1 = i | z1:T , θ̂(n))
, (8)

where i, j ∈ {free, occ} and T is the length of the observation
sequence. Note that the probabilities on the right-hand side are
conditioned on the observation sequence z1:T and the previous
parameter estimates θ̂(n). The probabilities in (8) can be effi-
ciently computed using a forward-backward procedure [28].

V. LIFELONG LOCALIZATION USING DYNAMIC MAPS

In this paper, we consider, without loss of generality, the
lifelong localization problem as a multi-session localization
and mapping problem. In each session, the robot needs to
estimate the distribution of its pose, xt, and the current
map configuration, mt, given the prior on the robot pose,
x0, the lifelong map, m0, the current observations, z1:t, and
commands, u1:t−1

p(x1:t,mt | z1:t, u1:t−1,m0, x0) . (9)

Its lifelong aspect lies in the fact that the pose of the robot and
the state of environment is not deleted between sessions but
carried on in the next one. This formulation naturally extends
to the case of continuous navigation, where each session can
be seen as one individual measurement.

We explicitly do not put any constraints on x0 and m0. Any
representation and any distribution can be used. For example,
the pose prior x0 can range from being a Gaussian with a
small covariance matrix or a uniform distribution. In the first
case, this may indicate, for instance, that the robot always
starts from and ends in its charging station. The second case,

on the contrary, indicates that the robot has been moved
between sessions and needs to perform global localization.
In a similar way, the lifelong map m0 represents our prior
knowledge over the environment and may be updated at the
end of each session. This map can be represented in a data-
driven fashion, as a distribution over previously observed
configurations [24, 19], or in a model-based fashion, e.g.,
employing the hidden Markov model maps [4]. A graphical
model representation of the problem is illustrated in Figure 3.

Our problem shares the same state space of SLAM, i.e.,
the robot pose and the state of the map, and one can exploit
the same factorization used in Rao-Blackwellized particle
filters [16, 29]. The key idea is to separate the estimation of
the robot trajectory from the map estimation process,

p(x1:t,mt | z1:t, u1:t−1,m0, x0) =

p(mt | x1:t, z1:t,m0, x0)p(x1:t | z1:t, u1:t−1,m0, x0) .
(10)

This can be done efficiently, since the posterior over maps
p(mt | x1:t, z1:t,m0, x0) can be computed analytically given
the knowledge of x1:t, z1:t and m0 and using the for-
ward algorithm for the HMM. The remaining posterior,
p(x1:t | z1:t, u1:t−1,m0, x0), is estimated using a particle filter
that incrementally processes the observations and the odometry
readings. Following Doucet et al. [30], we can use the motion
model x(i)t ∼ p(xt|x(i)t−1, ut−1) as proposal distribution π(xt)
to obtain a sample of the robot pose. This recursive sampling
schema allows us to recursively compute the importance
weights using the following equation

w
(i)
t = w

(i)
t−1

p(zt | x(i)1:t, z1:t−1,m0, x0)p(x
(i)
t | x

(i)
t−1, ut−1)

π(x
(i)
t )

= w
(i)
t−1

p(zt | x(i)1:t, z1:t−1,m0, x0)p(x
(i)
t | x

(i)
t−1, ut−1)

p(x
(i)
t | x

(i)
t−1, ut−1)

= w
(i)
t−1p(zt | x

(i)
1:t, z1:t−1,m0, x0) . (11)

The observation likelihood is then computed by marginaliza-
tion over the predicted state of the map leading to

p(zt | x(i)1:t, z1:t−1,m0, x0) =∫
p(zt | x(i)t ,mt)p(mt | x(i)1:t−1, z1:t−1,m0, x0)dmt

=
∏
j

N (zjt ; ẑ
j
t , σ

2) , (12)

where zjt is an individual range reading, ẑjt is the range to its
closest cell in the map with an occupancy probability above a
certain threshold and we have that

p(mt | x(i)1:t−1, z1:t−1,m0, x0) =∫
p(mt | mt−1)p(mt−1 | x(i)1:t−1, z1:t−1,m0, x0)dmt−1

= p(mt | m(i)
t−1) . (13)

The term m
(i)
t−1 represents the map associated with particle i

and is computed in the previous time step. The map motion



Algorithm 1: RBPF-HMM for Changing Environments
In: The previous sample set St−1, the lifelong map m0,

the current observation zt and odometry ut
Out: The new sample set St

1 St = {}
2 foreach s

(i)
t−1 in St−1 do

3 < x
(i)
1:t−1,m

(i)
t−1, w

(i)
t−1 >= s

(i)
t−1

// State prediction

4 x
(i)
t ∼ p(xt|x

(i)
t−1, ut−1)

5 x
(i)
1:t = x

(i)
t ∪ x

(i)
1:t−1

6 foreach ct−1 in m(i)
t−1 do

7 p(ct | z1:t−1) =
∑

ct−1∈{f,o}

p(ct | ct−1)p(ct−1 | z1:t−1)

8 end

// Weight computation

9 w
(i)
t = w

(i)
t−1

∏
j

N (zjt ; ẑ
j
t , σ

2)

// Map update

10 foreach ct in m(i)
t do

11 p(ct | z1:t) = ηp(zt | ct)p(ct | z1:t−1)
12 end
13 St = St ∪ {< x

(i)
1:t,m

(i)
t , w

(i)
t >}

14 end

// Normalize the weights
15 normalize(St)

// Resample

16 Neff =
1∑

i(w
(i)
t )2

17 if Neff < T then
18 St = resample(St)
19 end

model p(mt | m(i)
t−1) is computed using the HMM as described

in Section IV. Note that the disappearance of the integral is
not an approximation but a direct consequence of using the
likelihood field model [31] and the Dirac distribution for the
particle.

To improve the robustness against objects with high dynam-
ics, we applied a robust likelihood function when computing
the weights. This approach is similar in spirit to the works in
which high dynamic objects are treated as outliers [1, 2].

The overall process for global localization proposed in this
paper is summarized in Algorithm 1.

Note that our representation resembles the one used for
SLAM and for Monte Carlo localization approaches. The
presented problem, however, differs from them with respect
to the assumptions made. In the common SLAM formulation,
one assumes to have no information on the map (uniform
distribution) and to know the initial pose with certainty (Dirac
distribution). In global localization, on the contrary, the map

is assumed to be static and known (Dirac distribution) and a
weak prior on the initial pose is available (uniform distribution
on the free space or Gaussian). Our problem is somewhat in
between, since we assume a weak prior on the initial pose,
like in global localization, and a weak prior on the map (the
dynamic occupancy grid in our case).

A. Map Management

As already mentioned above, the distribution of the initial
pose of the robot is generally unknown and it may be uni-
formly distributed over the environment. This forces us to use a
high number of particles, generally in thousands, to accurately
represent the initial distribution. Since every particle needs
to have its own estimate of the map, memory management
is a key aspect of the whole algorithm. It is worth noticing
that even if memory is becoming cheap and available in large
quantity, the amount needed is still beyond what is currently
available. As an example, in an environment of 200x200 m2,
stored at a resolution of 0.1 m, and using 10, 000 particles
we need about 50 GB of memory. In order to save memory,
we want to only store the cells in the map that have been
considerably changed from the lifelong map m0, which is
shared among the different particles. This is done by exploiting
two important aspects of the Markov chain associated to the
HMM: the stationary distribution and the mixing time.

The occupancy value of a cell converges to a unique
stationary distribution π as the number of time steps for that no
observation is available tends to infinity [32]. This stationary
distribution represents the case where the environment has
not been observed for a long time and is represented by the
limit distribution of our lifelong map m0. In the case of a
binary HMM as the one used in this paper, this distribution is
computed using the transition probabilities[

πf

πo

]
=

1

p
o|f
c + p

f |o
c

[
p
f |o
c

p
o|f
c

]
. (14)

Every time an individual particle observes the state of a
cell for the first time, the state distribution of that particular
cell changes from the stationary one and the particle needs
to store the new state of the cell. In order to reduce memory
requirements, only a limited number of cells should be stored
and a forgetting mechanism should be implemented. This can
be done in a sound probabilistic way, by exploiting the mixing
time of the associated Markov chain. The mixing time is
defined as the time needed to converge from a particular state
to the stationary distribution. The concrete definition depends
on the measure used to compute the difference between
distributions. In this paper we use the total variation distance
as defined by Levin et al. [32]. Since our HMMs have only two
states, the total variation distance ∆t between the stationary
distribution π and the occupancy distribution pt at time t can
be specified as

∆t = |1− po|fc − pf |oc |t∆0 , (15)

where ∆0 = |p(ct = free) − πf| = |p(ct = occ) − πo| is the
difference between the current state p(ct) and the stationary
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Fig. 4. Maps of the parking lot during the different runs. Each image shows the ground-truth map for the corresponding run.

distribution π. Based on the total variation distance, we can
define the mixing time tm as the smallest t such that the
distance ∆tm is less than a given confidence value ε. This
leads to

tm =

⌈
ln(ε/∆0)

ln(|1− po|fc − pf |oc |)

⌉
. (16)

In other words, the mixing time tells us how many steps
are needed for a particular cell to return to its stationary
distribution, given an approximation error of ε, i.e., how many
steps a particle needs to store an unobserved cell before
removing it from its local map and relying on the lifelong
map m0.

The approach employed here is orthogonal to the work
of Eliazar and Parr [33], where map memory consumption
is reduced by exploiting parent-child relationships between
resampled particles. Note, further, that when the global lo-
calization is initialized, each particle still needs to store an
individual map, since no parent particle is present.

Moreover, the map management reduces the computational
complexity as well, since in the naive approach every cell has
to be updated in the prediction step, while in our case we need
to update only the cells belonging to the local maps.

B. Time and Memory Complexity

In this section we describe the time and memory complexity
of the presented algorithm in more detail. First of all, the
algorithm, as the original MCL one, depends on the number
of particles used, which in turns depends on the size of the
free space. Although there exist techniques to estimate this
number based on statistical divergences with respect to a
fixed target distribution [34], this goes beyond the purpose
of this paper. We assume, without loss of generality, that the
number of particles does not change during the execution of
the algorithm.

In a standard RBPF mapping approach [29, 16], each par-
ticle needs to store separately a full map of the environment,
resulting in a constant time prediction and update for each
particle, but at the cost of storing a copy of the map for each

particle. Let N be the number of particles and M the size of
the map, we have an asymptotic time complexity of O(N) and
an asymptotic memory complexity of O(NM). This is also
valid when using plastic maps [11, 12, 13].

However, if we fully exploit the mixing time and the stable
distribution of our model, each particle only need to store a
small local map, consisting of the cells that have been observed
lately. More formally, let k be the maximum mixing time
and A the maximum number of cells observed in each time
step, we have that the average number of cells in the local
map is bounded by kA. Since those values are constant both
with respect to the map size and the number of particles,
we have the same asymptotic time complexity as the naive
implementation, O(N), but with a lower memory complexity
of O(M+N ). The cost that we pay is simply a multiplication
factor for looking up the cells in the local map, which can be
implemented efficiently using kd-trees or hash tables.

Note that this is only achievable thanks to the stationarity of
the HMM. If we remove the stationarity assumption from the
model, the transition matrix depends on the newly observed
cells and would be generally different for each particle. This
can be indeed seen as a limitation of the system. However,
the experimental results show that it does not have a strong
impact in practice.

VI. EXPERIMENTS

We tested our proposed approach in the parking lot of
our university and collected a data set with a MobileRobots
Powerbot equipped with a SICK LMS laser range finder. The
robot performed a run in the test scenario every full hour from
7 am until 6 pm during one day. Figure 4 shows the maps of the
parking lot corresponding to each individual run. The range
data obtained from the twelve runs (data sets d1 through d12)
corresponds to twelve different configurations of the parked
cars, including an almost empty parking lot (data set d1) and
a relatively occupied one (data set d8).

We chose to use the parking lot as our test bed for several
reasons. The parking lot is naturally suited to test algorithms
for localization in changing environments and low dynamic



After three sessions (7-9 am) First data association error (9 am) At the end of the day (6 pm)
Fig. 5. SLAM experiment using a graph-based SLAM algorithm. The picture shows that the robot was able to maintain a consistent map up to the third
session (left). At that time, a first data association error was introduced by the front-end (middle). At the end of the day, the map is inconsistent (right),
due to several data association errors introduced. Blue lines represent the pose graph and the colored area the current laser measurement. Data association
hypotheses that passed the consistency test and that were sent to SCGP [35] are shown as green lines whereas the ones that did not are displayed in red.

objects. The cars have not been artificially moved, thus no
experimental bias on which kind of dynamics or where to
place object has been introduced from us. The environment
presents objects at different rate of changes: during the data
collection we observed static objects (few buildings), low
dynamic objects (parked cars) and high dynamic objects
(moving cars and people). The empty parking lot is extremely
ambiguous and most of the time a robot will navigate in
open space with no measurement available (see Figure 11).
Finally, it represents a variety of useful environments where
low dynamics are present, such as factory floors, warehouses
and environments in logistic and industrial scenarios.

A standard SLAM approach for static environments [29] has
been used to correct the odometry of the robot in each data set
separately. The resulting maps have been manually aligned to
obtain a good estimate of the robot pose to use as ground-truth.
The underlying assumption here is that the parking lot did not
change considerably during a run. Furthermore, the trajectory
and velocity of the robot during each run were approximately
the same to avoid a bias in the complete data set.

Four experiments have been performed. In the first ex-
periment, we analyzed what happens if SLAM is used to
address this problem. In the second experiment, we per-
formed a systematic comparison between our approach and
other localization algorithms on both a global localization
and position tracking problems. In the third and the last
experiment, we compared our approach with state-of-the-art
methods in localization in high dynamic environments and
lifelong mapping respectively.

A. Comparison with State-of-the-art SLAM Techniques

The aim of this experiment is to demonstrate that the
application of standard SLAM approaches to the lifelong
localization problem is suboptimal and that changes in the
environment can jeopardize state-of-the-art SLAM algorithms
due to false positives in data association. Note that these false

positives are systematic and cannot be avoided by tuning the
parameters of the SLAM front-end, since they are due to
changes in the environment. We will also show that multiple
hypothesis SLAM algorithms like that of Grisetti et al. [29]
lead to inconsistent maps if standard occupancy grids are
used. This is mainly due to the lack of plasticity of the
representation.

In the experiment we employed both, a graph-based and an
RBPF-based SLAM algorithm. The graph-based approach has
been chosen for two reasons. The first reason is that graph-
based algorithms are considered the state of the art for solving
SLAM. The second reason is that this experiment provides
an indirect comparison with the Dynamic Pose Graph [23],
since it relies on scan matching and graph-based optimization.
We chose to use an RBPF-based algorithm in our tests to
demonstrate that multi-hypothesis SLAM algorithms perform
better than the maximum likelihood ones in the presence of
changes. We believe this is due to the fact that they rely on a
lazy mechanism for data association, where wrong associations
can be rejected after observing more data.

For the graph-based algorithm we chose HOG-Man [36] as
SLAM back-end and we follow the approach of Olson [37]
for the front-end. While the back-end was chosen for its on-
line nature, we selected the front-end because of its robustness
to outliers and high precision, since potential data association
candidates are first obtained by means of matching the relative
scans and then fed into a consistency check using single cluster
graph partitioning (SCGP) [35]. They both represent the state
of the art for on-line maximum likelihood mapping and data
association.

With respect to the RBPF-based algorithm, we chose GMap-
ping [29]. This algorithm represents a robust RBPF SLAM
solution and is widely used in several research centers and
companies. For the experiment, we concatenated the 12 ses-
sions collected at the parking lot into one session. The final and
starting pose of the robot were manually aligned to preserve



continuity in the robot path. Both SLAM algorithms were then
tested on the resulting data as it would have been a single robot
run.

Figure 5 shows the performance of the graph-based algo-
rithm. The algorithm is able to correctly track the robot for
the first three sessions and estimates the correct trajectory and
a consistent map of the environment (see the leftmost figure).
This is also due to the fact that during the first two sessions,
the environment did not change substantially, since few cars
were parked there before 9 am. However, around 9 am most
of the people came to work and the parking lot configuration
changed. In the middle figure, we see that the front-end
mistakenly added a loop closing transformation between two
robot poses, leading to an inconsistent map. Note that this is
not necessarily an error of the front end. The two observations
were really almost identical, since a car parked on a spot that
was free in the previous sessions and the system matched it
with the car parked beside it. Finally, the rightmost figure
shows the robot trajectory and the map at the end of the day
(6 pm), when all data has been processed. As we can see, the
map is highly inconsistent and the robot path wrong.

Please note that this performance violates one of the as-
sumption made in DPG-SLAM [23], i.e., that the trajectory
estimation can be done using graph-based SLAM algorithms
in combination with scan matching for detecting loop clos-
ing edges (more details on this assumption are provided in
Walcott-Bryant’s PhD thesis [38], Chapter 4, Section 4.1.3).

This behavior of the system convinced us that to better
address this data association problem a multi hypotheses
approach was needed. To this end, we performed the same
experiment using GMapping [29]. By tuning the number of
particles, we were able to obtain a consistent map of the
environment at the end. However, two limitations are still
present. Firstly, the algorithm was slower than the graph-
based one and certainly not adapted to on-line navigation.
This is mainly due to the number of particles needed and the
continuous map updates. Note that this also impose memory
limitations, due to each hypothesis carrying its own map.
Secondly, the update rate of the map strongly depended on
how often a certain cell has been already observed.

This phenomena are however not present when using the
dynamic occupancy grid. Figure 6 shows the difference be-
tween occupancy grid and the dynamic occupancy grid used
in this paper. The top row shows the actual configuration of
the environment, the middle row the result using the dynamic
occupancy grid and the bottom row using standard occupancy
grids. Both maps are computed using the robot trajectory
estimated by the RBPF algorithm. In the left column of the
figure we see the result on the third session (9 am) and in
the right column the results on the last session (6 pm). As
one can see already at 9 am, the occupancy grid is not able
to correctly represent the environment everywhere, but only
in places where the cars were already present in the previous
sessions (the parking lot is usually filled starting from the
bottom right corner, since it is closest to the entrance). The
phenomenon is even greater towards the end of the day, where
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Fig. 6. SLAM experiment using an RBPF-based SLAM algorithm. Shown
are the ground-truth maps (top), the dynamic occupancy grids (middle),
and standard occupancy grids (bottom). The left column shows the session
recorded at 9 am and the right column the one at 6 pm.

many people left the place. There, the occupancy grid was still
believing that the parking lot is almost full, without removing
the cars that left from the map.

B. Localization Experiment

In order to assess the performance of the localization
approach, we compared it to state-of-the-art localization ap-
proaches both in a global localization and a position tracking
setting. For each data set, we compared our approach (RBPF-
HMM), MCL using the standard occupancy grid (MCL-S),
MCL using the ground-truth map for that specific data set
(MCL-GT), and MCL using the temporary maps [20] (MCL-
TM). In global localization, MCL-TM relies on MCL-S before
convergence, hence we aggregate the two results in Figure 8
and Table I.

For all the aforementioned approaches, we used the Blake-
Zisserman [39] robust function to compute the likelihood.
This choice is motivated by robustness to outliers, hence to
objects with high dynamics. The Blake-Zisserman function
is a combination of Gaussian distribution and a uniform
distribution with one parameter that define the crossover point.

We performed 100 runs for each data set, where we ran-
domly sampled the initial pose of the robot. In order to obtain
a fair comparison, the same seed has been used to generate
the initial pose, as well as to perform all the random sampling
processes for each approach. All the approaches have been
initialized with 10, 000 particles for global localization and
500 particles for pose tracking. They all used the same set
of parameters as well: an occupancy threshold of 0.6 and a



TABLE I
GLOBAL LOCALIZATION EXPERIMENT

Data set MCL-GT RBPF-HMM MCL-S / MCL-TM
Success Error2 σ2 Success Error2 σ2 Success Error2 σ2

01 100% 0.21 0.36 50% 0.26 0.36 50% 0.26 0.18
02 100% 0.19 0.29 40% 0.10 0.08 33% 0.13 0.09
03 100% 0.13 0.19 80% 0.10 0.29 52% 0.19 0.17
04 100% 0.04 0.03 60% 0.08 0.14 53% 0.15 0.19
05 100% 0.07 0.18 54% 0.07 0.09 35% 0.15 0.18
06 100% 0.02 0.01 87% 0.02 0.02 45% 0.06 0.02
07 100% 0.06 0.08 59% 0.12 0.22 43% 0.14 0.20
08 100% 0.05 0.10 71% 0.03 0.02 28% 0.03 0.01
09 100% 0.02 0.01 53% 0.12 0.22 31% 0.06 0.02
10 100% 0.14 0.28 62% 0.13 0.31 34% 0.30 1.01
11 100% 0.11 0.11 38% 0.15 0.21 26% 0.24 0.29
12 100% 0.19 0.32 20% 0.16 0.14 22% 0.27 0.38

Total 100% 0.11 0.19 52% 0.11 0.18 36% 0.17 0.22

Fig. 7. Prior map used in the localization experiments.

crossover parameter of 1m for the Blake-Zisserman. To verify
convergence, we consider the determinant of the covariance
matrix for the translation and rotation part. If the translation
determinant is kept below 0.5 and the angle determinant below
0.3 for a distance of at least 0.2m, we assume the filter to
have converged to a solution. We then compare the estimated
pose with the ground-truth and if this distance is below 1m
and 0.5 rad we consider the run a success, otherwise it is a
failure.

The static maps used for MCL-GT have been computed
using the corrected log files from the SLAM algorithm and
rendering the points into an occupancy grid. The static map
for MCL-S has been computed using all the datasets as they
would be a unique run of the SLAM algorithm over the whole
day. The dynamic map has been estimated using a leave-one-
out cross validation over the corrected log files. For each test
run, all other runs were used to learn the transitions of the
dynamic map. In this way the data on which the RBPF-HMM
algorithm was run was never used for the learning part. The
RBPF-HMM has been initialized using the static map as the
MCL-S as a prior map m0, for a fair comparison. Figure 7
shows the prior map m0.

The results of the global localization experiment are shown
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Fig. 8. Success rate for the global localization experiment. The graph shows
the success rate of the different algorithms. The MCL-GT algorithm is used
as baseline and thus has a 100% success rate. As can be seen our approach
(RBPF-HMM) outperforms MCL-S/MCL-TM.

in Figure 8 and Table I. The figure shows the success rate
of the global localization, as the percentage of time the filter
converged to the true pose. The table shows the numerical
values of the success rate and the residual squared error,
with respective variance, after convergence. The success rate
is reported relative to the result of MCL on the ground-
truth map, in order to have a measure independent of the
complexity of the environment. The results show that our
approach outperforms the standard MCL on static maps both
in terms of convergence rate and accuracy in localization.

Figure 9 and Table II show the results for the position
tracking experiment, where the filter is initialized around the
true pose and keeps tracking the robot. As before, the figure
shows the failure rate, i.e., the percentage of time the robot got
lost during tracking, and the table the numerical values of the
failure rate as well as the residual squared error in the case the
tracking was successful. The results of this experiment show
that the performance of our approach in position tracking is
almost equivalent to MCL with the ground-truth maps, with a



TABLE II
POSITION TRACKING EXPERIMENT

Data set MCL-GT RBPF-HMM MCL-S MCL-TM
Failure Error2 σ2 Failure Error2 σ2 Failure Error2 σ2 Failure Error2 σ2

01 0% 0.04 0.01 3% 0.09 0.03 5% 0.18 0.07 0% 0.25 0.16
02 0% 0.03 0.01 4% 0.08 0.05 24% 0.18 0.10 0% 0.16 0.04
03 0% 0.04 0.01 2% 0.05 0.04 10% 0.09 0.04 12% 0.63 0.45
04 0% 0.02 0.01 0% 0.04 0.01 10% 0.08 0.02 29% 0.63 0.51
05 0% 0.02 0.01 3% 0.03 0.04 13% 0.06 0.02 1% 0.51 0.31
06 0% 0.02 0.01 2% 0.02 0.01 26% 0.09 0.12 0% 0.21 0.05
07 0% 0.02 0.01 0% 0.03 0.01 34% 0.07 0.01 1% 0.44 0.24
08 0% 0.02 0.01 2% 0.02 0.01 35% 0.09 0.15 35% 0.59 0.56
09 0% 0.02 0.01 4% 0.03 0.01 37% 0.07 0.16 4% 0.49 0.31
10 0% 0.02 0.01 0% 0.03 0.01 36% 0.09 0.10 0% 0.32 0.12
11 0% 0.03 0.01 1% 0.05 0.02 42% 0.10 0.05 1% 0.47 0.28
12 0% 0.03 0.01 5% 0.06 0.01 44% 0.15 0.20 0% 0.23 0.04

Total 0% 0.03 0.01 2% 0.04 0.02 27% 0.10 0.08 7% 0.41 0.25
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Fig. 9. Failure rate for the position tracking experiment. The graph shows
the failure rate of the different algorithms. The MCL-GT algorithm is used
as baseline and thus has a 0% failure rate. As can be seen our approach
(RBPF-HMM) outperform MCL-S and MCL-TM.

failure rate of only 2%.
The comparison with the temporary map approach [20]

reveals two important messages. The first message is that the
proposed approach is always more precise in terms of residual
error. This come with no surprise, since the estimation of the
local surrounding is in some sense constrained by the map
geometry and static objects can only appear in places where
they have been seen during learning. On the contrary, the
temporary maps get initialized with the current pose estimate
of the robot and introduce a bias in the estimation that is
almost impossible to remove. The second message is that the
proposed approach is more robust to the changes and to the
initialization. This is evident from the failure rate, where the
temporary maps approach is almost always on par with the
RBPF-HMM but in three cases, and in one case is even worse
than standard MCL. The problem is that if the temporary map
is created from a wrong position, there is no possibility to
recover, the worst case being when the observations matching
the prior map are considered as outliers.

In terms of runtime and size of the local map, we experi-
enced an average mixing time of k = 10 and an average size
of the local map of about 250 cells. The original map size is
369x456 pixels with a resolution of 0.1 m. A standard RBPF
with an occupancy grid map needs about 16GB of memory
in the global localization and little less than 1GB for position
tracking. Our technique, instead, only uses about 24MB for
global localization and 5MB for position tracking, resulting in
a memory saving of about three orders of magnitude.

A frame to frame comparison between the proposed ap-
proach and standard MCL is shown in Figure 10 and in
Extension 1. Both algorithms have the same parameters and
the same seed for the random number generator. As it can be
seen, MCL converges too fast to a wrong solution, believing
that the measurements coming from parked cars (not present
in the a priori map) have been generated by the wall on the
bottom right (frame 8). The proposed approach, on the other
hand, has a slower convergence rate due to the uncertainty
in the map estimate. After a few frames (frame 12) it finally
converges to the right position. In the last frame one can see
the updated map, which better reflects the current configuration
of the environment.

Both experiments show two important aspects of the prob-
lem and of the solution adopted. The first aspect is that the
problem is much more complex than global localization since
the search space is bigger and deciding if a measurement is an
outlier or is caused by a change of the configuration is not a
trivial task. Furthermore, analyzing the performance results
in position tracking, we see that if the filter is initialized
close to the correct solution, i.e., the search is reduced to
the correct basis of attraction, it is able to estimate the
correct configuration. The second aspect is how the algorithm
scales with different amounts of change in the environment
configuration. In the first four sessions, the parking lot is
almost empty and it becomes quite full in the last ones. This
is evident, when analyzing the results of MCL on the static
maps, since the performance gets worse with an increasing
amount of change. On the other hand, the performance of our
approach is less sensitive to the amount of change in case of
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Fig. 10. Comparison between using the ground-truth map (top), the proposed approach (middle) and MCL (bottom) in a global localization setting. The
MCL converges too fast and to a wrong position (frame 8), while the proposed approach needs more time to better estimate the current configuration (frame
12). The last frame shows the updated map with the current configuration, notice how it resemble the ground-truth map for the explored portion.

global localization and is even independent of that in case of
position tracking, as can be seen from the two tables.

C. Comparison with Outlier Rejection Approaches

In this experiment we show how our approach relates to
approaches that rely on a static map of the environment and
discard observations of dynamic objects for localization [1,
2, 6, 7]. Four approaches have been compared. The first two
approaches, “Static + Rejection” and “Static + Robust”, use
MCL on a static map of the environment estimated when the
parking lot was empty (Figure 11). The difference between
them is that Static + Rejection only uses measurements of
static objects to localize and Static + Robust uses the Blake-
Zisserman robust function instead. The last two approaches
correspond to MCL-S and our approach (RBPF-HMM) from
the previous experiment.

We used the same settings of the position tracking exper-
iment, i.e., we performed 100 runs for each data set, where
we randomly sampled the initial pose of the robot. All the
approaches use the same random seed, have been initialized
with 500 particles and an occupancy threshold of 0.6. The

Fig. 11. Static map computed when the paring lot was empty.

particles are initially sampled from a Gaussian distribution
centered at the ground-truth position of the robot and with
covariance Σ = diag(1, 1, 0.5). We let the filter track the
position for 100 steps and then compute the mean error with
respect to the ground-truth. If this error is below 1m and
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Fig. 12. Failure rate for the outlier rejection experiment. The graph shows
the failure rate of the different algorithms. The figure clearly show that outlier
rejection mechanisms are more sensitive to changing environments than the
robust likelihood function. It also show our approach outperforms techniques
based on outlier rejections.

0.5 rad we consider the run a success, otherwise it is a failure.
Figure 12 depicts the results of the experiment. As in the

position tracking experiment, the figure shows the failure rate,
i.e., the percentage of time the robot got lost during tracking.
From the plot and the static map, we can see two clear
messages. The first message is that outlier rejection mechanism
are more sensitive to changes in the environment when no
static part of the environment is visible. This is clear if one
compares the performances of Static + Rejection with Static
+ Robust.

The second message is that the static portion of the envi-
ronment does not contain enough information for the robot
to localize itself and observations of low dynamic objects
improve localization. This is visible in the plot: our approach
(RBPF-HMM) has a better performance than MCL-S, which
in turn has a better performance than Static + Robust. All
the approaches use the same likelihood function and the same
algorithm, the only difference is the amount of information
stored in the map with respect to objects with low dynamics.
For the static map case, no information about the low dynamic
objects is present. In the MCL-S case, objects that have been
observed most of the time are present in the map, due to the
occupancy grid update rule. In our approach, the dynamics of
those objects are explicitly modeled in the dynamic occupancy
grids. This allows us to infer how often we expect to see a
low dynamic object in the environment and for how long.

D. Comparison with Lifelong Mapping using Experiences

The aim of this experiment is to compare the performance of
our approach with the experience map of Churchill and New-
man [24], a state-of-the-art method for lifelong mapping. In
the experience map approach, the environment is represented
by a set of experiences, where each experience is a sequence of
observations connected by visual odometry. During operation,
each experience is equipped with a localizer whose task is to
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Fig. 13. Results for the lifelong mapping experiment using the generous
thresholds (top) and the more restrictive ones (bottom). The plots show the
normalized odometry output added to the map for the approach of Churchill
and Newman [24], which is equivalent of the failure rate of the position
tracking. For the sake of comparison we also plot the performances of our
approach. The plot shows that our approach has a better performance even in
the case when a single experience is needed for localization.

track the position of the robot in the experience, or declare
it “lost” in case of tracking failure. When the system is
not able to localize the robot in at least N experiences, the
current observation sequence becomes a new experience and
is inserted in the map. The approach relies on two main
components: the ability to “close a loop”, i.e., to globally
localize the robot and the ability to navigate locally, i.e., the
ability to track the position of the robot. We use the ground-
truth position to initialize the localizers of every experience
and the MCL algorithm to track the position, since they both
work reliably in the case where no changes are present in
environment.

For each data set, we consider all other datasets as previous
experiences and performed the same 100 runs that were used
in the position tracking experiment. For each run, all the
localizers for every other experience are initialized with a
Gaussian distribution centered at the ground-truth position of
the robot and with covariance Σ = diag(1, 1, 0.5). We track
the position for 100 steps and check how many times the



localizers declared the robot as “lost”. For a fair comparison,
we used the same thresholds of 1m and 0.5 rad to check the
success of position tracking. To give a better picture about
the performances of the two approaches, we also perform
an additional experiment using tighter thresholds: 0.2m and
0.1 rad .

Figure 13 shows the normalized odometry output added
to the map for different values of N , the minimum number
of successful localizers. Note that this number is equivalent
to the failure rate of the system to localize the robot, since
new experiences are added in case of localization failures.
For the sake of comparison, we also included the failure
rate of our approach in the same settings. Note that we
used on purpose the same runs and the same algorithm for
position tracking to have a fair comparison. We also used
the same amount of information about the environment, i.e.,
all the datasets/experiences not used for the testing run. The
only difference in the two approaches is the environment
representation and the way inference over the environment is
performed.

The plot shows that our approach has the best performance,
with the experience map relying only on a single localizer hav-
ing a similar performance. Increasing the number of required
localizers, drastically decreases the performance of the system.
We believe this is due to the local nature of the changes in the
parking lot. Note that the same phenomena have been reported
in the original paper, where the car park was in one of the
regions with high variation. If we analyze the bottom plot with
the tighter thresholds, we see that the gap in performances
between our approach and the experience map increases. We
believe this is due to the fact that the stored maps do not
fully represent the current configuration of the environment,
resulting in higher error in localization. Our approach, instead,
is able to generalize better to unseen environments and can still
achieve high localization accuracy.

The computational complexity of the experience map is
much higher than in our approach. We only require one
localizer and the local update of the map, where the experience
map requires one localizer for each experience. Hence, our
approach scales with the environment size while their approach
scales with the environment size and the number of different
configurations.

The experiment also provides an indirect comparison with
the approach of Stachniss and Burgard [19], since it is a special
case of the experience map, in case a particle filter is used as
localizer and only one experience is needed for localization.

VII. CONCLUSIONS

In this paper, we presented a probabilistic localization
framework for robots operating in dynamic environments. Our
approach recursively estimates not only the pose of the robot,
but also the state of the environment. It employs a hidden
Markov model to represent the dynamics of the environment
and a Rao-Blackwellized particle filter to efficiently estimate
the joint state. In addition, it exploits the properties of Markov

chains to reduce the memory requirements so that the al-
gorithm can be run online on a real robot. Our approach
has two advantages. First, it allows for accurate and robust
localization even in changing environments and, second, it
provides up-to-date maps of them. We evaluated our algorithm
extensively using real-world data. The results demonstrate
that our model substantially outperforms the popular Monte-
Carlo localization algorithm. This makes our method more
suitable for long-term operation of mobile robots in changing
environments.

In future, we would like to extend our model to reason
about objects and not only about individual cells. We will fur-
thermore investigate alternative models to encode the changes
(e.g., Dynamic Bayesian Networks and second order hidden
Markov models). This will provide a novel perspective on how
to reason about correlations in a grid map. In addition, we plan
to look further into the detection of moving object and motion
segmentation.

We also plan on releasing the software package implement-
ing the approach described in this article as open source and
on making the datasets used available at publication time.
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APPENDIX A
INDEX TO MULTIMEDIA EXTENSION

TABLE III
LIST OF MULTIMEDIA EXTENSIONS

Extension Media type Description
1 Video Comparison between RBPF-HMM and MCL-S
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