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Abstract—Smoothing and optimization approaches are an
effective means for solving the simultaneous localization and
mapping (SLAM) problem. Most of the existing techniques
focus mainly on determining the most likely map and leave
open how to efficiently compute the marginal covariances. These
marginal covariances, however, are essential for solving the
data association problem. In this paper we present a novel
algorithm for computing an approximation of the marginal. In
experiments we demonstrate that our approach outperforms
two commonly used techniques, namely loopy belief propaga-
tion and belief propagation on a spanning tree. Compared to
these approaches, our algorithm yields better estimates while
preserving the same time complexity.

I. INTRODUCTION

In the past, different approaches have been proposed for

solving the simultaneous localization and mapping (SLAM)

problem. One popular class of algorithms are the prob-

abilistic techniques, which deal with the uncertainties in

the problem by estimating a probability distribution over

the possible problem solutions. Whereas these techniques

yield robust solutions, the computational effort required for

tracking this distribution can prevent their application to large

problem instances.

A second class of algorithms for solving the SLAM

problem are the so-called maximum likelihood (ML) ap-

proaches. Instead of maintaining a posterior, the goal of

these approaches is to calculate the maximum likelihood map

based on the observations of the robot and its motions. In

ML algorithms, the problem instances are typically described

by a graph, whose nodes represent either robot poses or

landmark locations. An edge between two nodes represents

a relative measurement of them. Finding a maximum like-

lihood solution to this problem means to determine the

assignment of poses to the nodes of the graph which provides

the best explanation of the measurements. Traditional ML

approaches assume the data associations as given and focus

mainly on estimating the position of the nodes, not their

uncertainty. However, finding potential data associations re-

quires to estimate the marginal probability distribution over

the nodes locations. Still, once the ML configuration of the

nodes is known, the marginals can be computed by inverting

the (sparse) information matrix of the system. Unfortunately,

real world problem instances are often described by graphs

having thousands of nodes. Inverting matrices of this size

can prevent us from applying ML approaches in real time.
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Fig. 1. Marginal covariances computed using the matrix inversion (exact),
loopy belief propagation (LBP), belief propagation on a spanning tree (BP)
and our approach (LIP). Whereas the exact covariances are depicted in
black/dark blue, the approximations are depicted in gray/green. Compared to
LBP our approach is more conservative, while it provides tighter estimated
than BP.

In this paper we describe a novel algorithm for computing

these marginal covariances. Our approach models the SLAM

graph as a Gaussian Markov Random Field and performs

inference on this representation. A similar idea has originally

been proposed by Ranganathan et al. [12], who utilized belief

propagation as inference algorithm. Our approach outper-

forms the technique introduced by Ranganathan et al. [12]

while keeping the same time complexity. Additionally, our

algorithm is able to obtain estimates which are closer to the

exact ones and generally more conservative. This is important

when solving data association problems since over-confident

covariances may result in losing valid associations. Figure 1

provides a motivating example and illustrates the result of our

approach also in comparison to popular alternative solutions

executed on a simple graph.

This paper is organized as follows. In Section II, we

discuss related work. Whereas Section III describes how to

model the SLAM problem as a Gaussian Markov Random

Field, Section IV introduces the approximate inference algo-

rithms based on loopy graphs. We then present our algorithm

called loopy intersection propagation (LIP) in Section V.

Finally, Section VI contains experimental results illustrating

the advantages of our approach.

II. RELATED WORK

The work described in this paper belongs to the family of

ML algorithms. One of the first approaches of this type has

been proposed by Lu and Milios [8]. Later, Howard et al. [6]

used Gauss-Seidel relaxation to localize the robot and build

a map. Duckett et al. [1] proposed Gauss-Seidel relaxation

to minimize the error in the network of constraints. Their

approach has been subsequently extended by Frese et al. [4]

by the introduction of the multi-level relaxation (MLR)

framework, which applies relaxation on different resolutions.

Olson et al. [10] addressed the problem by using gradient

descent on a network described in a form which allows for

efficient analytical updates. Graphical SLAM [3] builds a



graphical model of the smoothing problem. It optimizes the

graph by defining an energy function for each node and then

minimizing this energy.

Whereas these methods mainly focus on estimating the

most likely configuration of the map, they leave open how

to estimate the uncertainty of the solution. To the best of

our knowledge, the only approach which computes both the

ML configuration of the nodes ant their marginal distribution

has been proposed by Ranganathan et al. [12]. They model

the smoothing problem as a Gaussian Markov random field

(GMRF) and use loopy belief propagation on this model.

A complete characterization of GMRFs can be found in the

work by Weiss and Freeman [13] and by Malioutov et al. [9].

III. SLAM AS A GAUSSIAN MARKOV RANDOM FIELD

In this section we describe how the SLAM problem can

be expressed in the Gaussian random Markov field (GMRF)

framework. We first describe the GMRF framework. Then we

model the SLAM problem in its delayed-state formulation

and present the mapping between them.

A general Markov random field (MRF) is a model for de-

scribing the joint probability distribution over set of random

variables. More formally, a MRF represents the conditional

dependence between variables using an undirected graph

G = (V,E). Each vertex v ∈ V in the graph represents

a random variable. An edge {u, v} ∈ E between two nodes

represents a dependency between the random variables u and

v. The edges and the vertices of the graph are labeled with

a set of potential functions φ defined over a subset of V .

GMRFs are a particular case of MRF suitable for describ-

ing multivariate Gaussian distributions. In this case, we just

have singleton potential functions (describing a prior belief)

and pairwise potential functions (describing the relationship

between two different variables). The full joint distribution

can be written as

p(x) =
1

Z

n
∏

i=1

φi(xi)
n

∏

j=i+1

φi,j(xi, xj). (1)

Here φi(xi) represents the prior belief about the variable xi

and φi,j(xi, xj) represents the stochastic constraint between

the variables xi and xj .

An alternative formulation of the SLAM problem is to

use a delayed-state representation rather than a feature based

one [2]. Delayed-state representations do not explicitly model

features in the environment. Instead, the state vector is

composed only by a sequence of poses. In this representation,

raw data are registered to provide virtual observations of pose

displacement. These virtual observations arise, for instance,

by matching pairwise laser range data or camera images.

When using this representation, the information matrix of

the corresponding multivariate Gaussian is exactly sparse,

as it has been pointed out by Eustice et al. [2]. Providing

a topological order over the poses (i < j), each pose

displacement can be expressed by the following non linear

stochastic function

xj = xi ⊕ δij + ω. (2)

Here δij is the virtual observation made from the pose i

about the pose j, ⊕ is the standard motion composition oper-

ator and ω is a zero-mean Gaussian variable with covariance

matrix R, representing the uncertainty of the measurement.

In the following, we consider the linearized version, being

Fij the Jacobian of the ⊕ function and x̃ij = xi ⊕ δij − xj

the error.

Translating a SLAM problem formulated according to the

delayed-state framework into a GMRF is quite straightfor-

ward. Since the structure of the graph between the two

models is preserved, all we need is to define the nature of the

potential functions, such that the resulting joint probability

distribution is unchanged.

If we consider the canonical parameterization of the Gaus-

sian, we can express each pairwise potential as

φi,j(xi,xj) = exp

{

c + ηT
ijxij −

1

2
x

T
ijΩijxij

}

, (3)

where

xij ,

[

xi

xj

]

(4)

ηij ,

[

ηi
ij

η
j
ij

]

=

[

F
T
ij

−I

]

R
−1

x̃ij (5)

Ωij ,
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Ω
[ii]
ij Ω

[ij]
ij

Ω
[ji]
ij Ω

[jj]
ij

]

=

[

F
T
ij

−I

]

R
−1

[

F
T
ij

−I

]T

.(6)

Here, Ω and η are respectively the information matrix and

the information vector of a measurement between two nodes.

The singleton potentials are generally set to the unity except

for the first pose, which is fixed at the origin. In this work we

are only interested in the covariance computation. Therefore,

we will simplify the model by considering its “translated”

version: a zero mean Gaussian with the same covariance

matrix.

IV. BELIEF PROPAGATION ON LOOPY GRAPHS

The goal of belief propagation is to compute the marginal

distribution over a graphical model by means of local

message passing. This algorithm has been introduced by

Pearl [11] for inference on Bayesian Network. If the graphi-

cal model does not contain loops, this local passing scheme

is guaranteed to give the exact solution for the marginals.

Loopy belief propagation is an approximated algorithm,

which uses the same equation of belief Propagation, but in a

graph with cycles. As discussed by Weiss and Freeman [13]

and Malioutov et al. [9], loopy belief propagation on gen-

eral graphs computes correct marginal means and generally

incorrect covariances.

Belief propagation works by iteratively computing local

messages and beliefs for every node in the graph, starting

with constant messages. The propagation of the messages is

repeated until a fixed point is reached. It can be shown that

in the context of trees only two iterations are needed: from

leafs to root and vice versa. Using the superscript (t) for

denoting the current iteration, the belief parameters (denoted
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Fig. 2. Message flow of BP on a simple graph at time t for node 1. In
the left image node 1 computes its marginal from the messages sent by its
neighbors. In the right image, node 1 calculates the new messages and send
them . The messages are computed according to (9) and (10).

by m
(t) and M

(t)) are given by

m
(t)
i = ηi +

∑

j∈Ni

m
(t−1)
ji (7)

M
(t)
i = Ωi +

∑

j∈Ni

M
(t−1)
ji , (8)

where ηi and Ωi are the parameters of the prior belief (the

singleton potential functions), Ni is the neighboring set of

node i, and the messages from node i to node j are defined

as

m
(t)
ij = η

j
ij − Ω

[ji]
ij

(

Ω
[ii]
ij + M

(t)
i − M

(t−1)
ji

)−1

·
(

ηi
ij + m

(t)
i − m

(t−1)
ji

)

(9)

M
(t)
ij = Ω

[jj]
ij − Ω

[ji]
ij ·

(

Ω
[ii]
ij + M

(t)
i − M

(t−1)
ji

)−1

Ω
[ij]
ij (10)

using the definition in (5) and (6). See Figure 2 for an

example of message flow.

When considering the simplified version (zero-mean), all

the messages and the beliefs for computing the marginal

mean are also zero. This allows us to focus our attention only

on the covariance messages. In the remainder of this section,

we analyze two different approaches introduced in the SLAM

context by Ranganathan et al. [12]. The first approach is

loopy belief propagation over the full graph, while the second

is standard belief propagation over its minimum spanning

tree.

A. Loopy Belief Propagation

When loopy belief propagation is applied, the marginal

covariances can be either overconfident or conservative.

However, Weiss and Freeman [13] showed that they are al-

ways overconfident for GMRFs with pairwise cliques, which

is the case of SLAM. These estimates often result in a poor

approximation of the true marginals, which cannot be used

for data association, since this results in valid associations

being rejected.

A more information theoretic analysis can be derived

by considering how the marginal beliefs of every node

are computed. With respect to (8), the marginal belief are

computed by summing up all the incoming messages from

the neighboring nodes. However, this integration is correct

only if the two observations are independent, which is not

the case of graphs with loops.

Fig. 4. The shape of the CI update. The thick outer ellipses represent the
covariances of A and B. The dashed ellipses represent resulting covariances
of C by using different values of ω.

B. Belief Propagation over a Spanning Tree

A different approach is to approximate the full graph

model by its spanning tree. Since the tree is obtained

by eliminating edges (and therefore constraints) from the

GMRF and inference on the tree is exact, it is possible to

obtain conservative estimate of the true marginal covariances.

However, the result of this approximation strongly depends

on the property of the tree used. The best results are obtained

when using a minimal spanning tree. Moreover, inference on

the spanning tree do not consider the loopy structure at all,

resulting in too conservative estimates.

Figure 1 show the results obtained by applying the afore-

mentioned algorithms to a simple graph. The graph simulates

a robot performing two loops in a indoor environment. As

can be seen, LBP produces overconfident estimates while the

covariances obtained by using BP on a minimum spanning

tree are overly conservative. This is evident in the upper left

part of the graph.

V. LOOPY INTERSECTION PROPAGATION

In this section, we introduce our approach for computing

the marginal covariances on a loopy graph. Before describing

our algorithm, we introduce an information fusion framework

for dealing with unknown correlations between different

estimates. This framework has been introduced by Uhlman

and Julier under the name of Covariance Intersection [7].

Covariance Intersection is a fusion rule for combining

two different estimates when the correlations between them

are unknown. Suppose we have two consistent estimates

〈µ1,Σ1〉 and 〈µ2,Σ2〉 for the same Gaussian random vari-

able, expressed in terms of mean and covariance matrix.

Furthermore suppose the cross correlation between the two

covariance matrices Σ1 and Σ1 to be unknown.

Covariance Intersection combines the two estimates, in

order to obtain a new one
〈

µ̂, Σ̂
〉

, according to the following

equations

Σ̂ = (ωΣ
−1
1 + (1 − ω)Σ−1

2 )−1 (11)

µ̂ = Σ̂(ωΣ
−1
1 µ1 + (1 − ω)Σ−1

2 µ2). (12)

If ω ∈ [0, 1], the resulting estimate has been proved to be

consistent. Moreover, it can be shown that the approach

is optimal in the case in which the cross correlations are

unknown [7]. Let us consider the plot in Figure 4. This

figure shows the covariance ellipses for the two estimates
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Fig. 3. Comparison of the marginal covariances on the ACES dataset. The exact covariances, computed by inverting the full matrix, are depicted in
blue/dark gray, the approximated ones are in green/light gray. The results were obtained using a) Loopy Belief Propagation, b) Belief Propagation on a
Minimum Spanning Tree, and c)Loopy Intersection Propagation. Whereas LBP is overconfident and BP on a spanning tree is overly conservative, our
approach (LIP) provides an results which are in general closer to the exact estimate.

Fig. 5. An example loopy graph (left) and its spanning tree (right). The
off-tree edges are the dashed edges in the graph.

(thick outer ellipses) and the resulting update with different

values for ω (dashed inner ellipses). The optimal estimate,

lies within the intersection region of the estimate ellipses.

The CI ellipses always circumscribe this region, resulting in

a covariance bigger (in a matrix sense) than the exact one.

A. Fusing Loops with Spanning Trees

A natural solution to this problem is to combine the

conservativeness of inference on a spanning tree with the in-

formation coming from the off-tree edges. In this section, we

will describe how this can be achieved using the Covariance

Intersection framework. Figure 5 shows an example graph.

A spanning tree of this graph is depicted on the right part

of the image. The off-tree edges (the ones which are not

present in the spanning tree) are depicted as dashed edges

in the graph.

Our goal is to obtain a tree approximation from the

original graph. Let Ω be this joint Information Matrix and

Ω̂ its tree approximation. For any tree-structured Information

Matrix there exist a symmetric matrix K such that

Ω̂ = Ω − K. (13)

The matrix K acts to remove edges from the graph, therefore

it is referred to as cutting matrix. We will focus our attention

on a restricted class of cutting matrices, called regular cutting

matrices1.

In order to derive a tree approximation of the GMRF, we

have to analyze the structure of the corresponding cutting

matrix. For the sake of simplicity, we will restrict the analysis

1For a regular cutting matrix K corresponding to an embedded tree, all
off-diagonal entries not corresponding to cut edges must be zero. The block
diagonal entries for nodes from which no edge is cut must be zero. The
off-diagonal entries corresponding to cut edges must be equal to the original
matrix ones.

on cutting a single edge, being the extension to multiple

edges straightforward.

When using the naive spanning tree approximation, we

can express the matrix cutting an edge between the node i

and the node j as

Kij =















0 0 0 0 0

0 Ω
[ii]
ij 0 Ω

[ij]
ij 0

0 0 0 0 0

0 Ω
[ji]
ij 0 Ω

[jj]
ij 0

0 0 0 0 0















. (14)

Cutting this edge results in subtracting the information of an

edge from the overall information matrix of the system.

To consider the off-tree information while keeping the

regularity condition of the cutting matrix, we are forced to

modify its block diagonal entries. Let P
[i]
ij and P

[j]
ij be the

information about node i and j arising from the off-tree edge.

The modified cutting matrix will be of the following form

Kij =















0 0 0 0 0

0 Ω
[ii]
ij − P

[i]
ij 0 Ω

[ij]
ij 0

0 0 0 0 0

0 Ω
[ji]
ij 0 Ω

[jj]
ij − P

[j]
ij 0

0 0 0 0 0















. (15)

Note that subtracting information from the cutting matrix

results in adding this information to the tree approximation

Ω̂ according to Eq. (13).

In the a graphical model perspective, those two pieces of

information, P
[i]
ij and P

[j]
ij , can be seen as a prior knowledge

about the nodes, acting as singleton potential functions. In

other words, we approximate the GMRF with its spanning

tree by considering the off-edge information as prior knowl-

edge in this approximation.

B. Algorithm

Our approach transforms the graph into a tree augmented

with prior information. First it computes a spanning tree on

the GMRF. Second, it performs BP on the computed tree,

to obtain open loop estimates for the information matrices

{Mi} of all nodes. Third, for each edge 〈i, j〉 in the graph

which does not appear in the tree it computes the priors

P
[i]
ij and P

[j]
ij for the nodes i and j. These priors aim to

recover part of the information which has been lost when



removing the edge. P
[i]
ij and P

[j]
ij are computed considering

the mutual information introduced by the cut edge based on

the estimates Mi and Mj computed by the first application

of BP. Let E
[i]
ij and E

[j]
ij be these estimates. They can be

computed as follows.

E
[i]
ij = Ω

[ii]
ij − Ω

[ij]
ij (Mj + Ω

[jj]
ij )−1

Ω
[ji]
ij

E
[j]
ij = Ω

[jj]
ij − Ω

[ji]
ij (Mi + Ω

[ii]
ij )−1

Ω
[ij]
ij . (16)

Intuitively, E
[i]
ij is obtained by propagating the edge informa-

tion from the BP estimate Mj of the node j along the cut

edge. E
[j]
ij is computed in a symmetric way.

For each node in a cut edge, we have therefore two esti-

mates: (E
[i]
ij ,Mi) and (E

[j]
ij ,Mj). We can compute improved

estimates by applying covariance intersection, for each off-

tree edge, as:

M̂i = ωiMi + (1 − ωi)E
[i]
ij

M̂j = ωjMj + (1 − ωj)E
[j]
ij . (17)

In our implementation, we choose ωi and ωj so that the

determinants of M̂i and M̂j are minimal. In other words,

we select the smaller covariance which can be obtained by

CI.

We compute the priors P
[k]
ij as the difference between the

improved estimate and the BP one as

P
[k]
ij = M̂k − Mk. (18)

Here the P
[k]
ij represent the desired priors coming from the

suppressed edge 〈i, j〉.
The final step consists in performing a final inference

using BP on the spanning tree in which we injected these

terms. It is worth noticing, that our algorithm has the best

performance on the incremental spanning tree defined by

Grisetti et al. [5] because the off-edge information is used

immediately. Moreover, this tree is as easily maintained as

any minimum one.

Note that the prior for a node i is computed by con-

sidering the contribution of all the cutted edges connected

to node i. Whereas suppressing a single edge leads to a

conservative estimate, suppressing multiple edges may lead

to overconfident estimates. As shown in Section VI-B, the

level of overconfidence increases with the connectivity of the

network.

VI. EXPERIMENTS

In this section we evaluate the performance of our algo-

rithm with respect to standard belief propagation and loopy

belief propagation. All algorithms have a complexity linear

in the number of edges of the graph. Therefore, we are only

interested in measuring the quality of the approximation.

Given a node, we want to compare the approximate covari-

ance estimate Σ̂ with the exact one Σ. This can be done by

considering the norm of the matrix difference

‖Σ̂ − Σ‖F , (19)

where ‖ · ‖F is the Frobenius norm.
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Fig. 7. Analysis of the approximation on the Intel dataset. The upper plot
shows the approximation error and the lower one shows the conservativeness
analysis of the different nodes. Note that LBP is overconfident, BP on a
spanning tree is overly conservative, and our approach (LIP) provides an
intermediate result, being in general closer to the exact estimate.

Furthermore, given a conservative and an overconfident

estimate, we prefer the conservative one, since it allows to

better deal with data association. An estimate is conservative

if it is bigger than the exact one, thus being Σ̂ − Σ ≥ 0.

Measuring the conservativeness means to measure how far

the matrix Σ̂ − Σ is to be positive definite. This can be

done by considering the value of the smallest eigenvalue: it

is negative in the case of overconfidence and positive in the

case of conservativeness.

We performed experiments on real world datasets and

on simulated ones. Furthermore, using simulated data we

compared the performances of our algorithm with respect

to LPB and BP on a spanning tree on randomly generated

networks of different sizes, to collect statistics.

A. Real World Data

We analyzed the behavior of our algorithm on graphs

extracted from two standard datasets: the Intel Lab of Seattle

(Figure 6), and the ACES building of the University of

Austin, Texas (Figure 3). For each node of the network

we measured the distance between the estimate and the

exact value of the covariance, according to (19). In all the

cases our approach provided a better estimate than belief

propagation on the spanning tree. Furthermore it provided

more conservative estimates than loopy belief propagation.

Quantitative results on the Intel dataset are depicted in

Figure 7.

B. Statistical Experiments

We performed statistical experiments on simulated net-

works of different sizes. The networks were randomly gen-

erated by simulating a random walk in the SO(3) space.

Loops were simulated by considering the Euclidean distance

between nodes. We then compared our approach with LBP

and BP on a spanning tree. We used networks with 500,

1, 000, 3, 000, and 5, 000 nodes. The plots in Figure 8 and 9

show the average values and the 95% confidence intervals.
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Fig. 6. Marginal covariances comparison on the Intel Lab dataset: the exact covariances, computed by inverting the full matrix, are depicted in red (solid
line), the approximated ones are in green (dashed line). Results obtained by a) Loopy Belief Propagation. b) Belief Propagation on a Minimum Spanning
Tree. c)Loopy Intersection Propagation.
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Figure 8 shows the approximation error of the three

approaches, computed according to (19). As can be seen,

our approach scales better than LBP and BP. This is due to

the increasing number of loops occurring in the network as

its size grows: Whereas BP does not use loop information,

our approach does consider it in a better way than LBP.

As for the overconfidence, Figure 9 shows the evolution

of the minimum eigenvalue of the error matrix. BP always

produces conservative estimates, while LBP produces overly

overconfident ones. Our approach lies in the middle with a

small level of overconfidence.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel algorithm for marginal

covariance computation in Graph-SLAM. Our approach has

been validated by an extensive set of experiments. In general,

the estimated covariances are conservative and when they are

overconfident, their overconfidence level is close to 0. Fur-

thermore, our approach provides estimates closer to the exact

ones with respect to other techniques of the same family like

loopy belief propagation or belief propagation on a spanning

tree. In the future, we aim to develop an incremental version

and to integrate a data association algorithm for a dynamic

construction of the graph.
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