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Abstract— Recently, the acquisition of three-dimensional
maps has become more and more popular. This is motivated
by the fact that robots act in the three-dimensional world and
several tasks such as path planning or localizing objects can
be carried out more reliable using three-dimensional repre-
sentations. In this paper we consider the problem of extracting
planes from three-dimensional range data. In contrast to
previous approaches our algorithm uses a hierarchical variant
of the popular Expectation Maximization (EM) algorithm [1]
to simultaneously learn the main directions of the planar
structures. These main directions are then used to correct the
position and orientation of planes. In practical experiments
carried out with real data and in simulations we demonstrate
that our algorithm can accurately extract planes and their
orientation from range data.

I. I

Whereas mobile robots act in the three-dimensional
world, most of the research regarding spatial representa-
tions of the environment of mobile robots has focused on
two-dimensional maps. The restriction to two-dimensional
representations, however, is error-prone and has serious
limitations. For example, the planning of paths can be
incomplete if the three-dimensional world is mapped into
two dimensions or even incorrect if not all obstacles are
contained in the two-dimensional description. Additionally,
two-dimensional representations do not support typical
tasks like searching for objects. For example, without
knowledge about the three-dimensional structure of a shelf,
a robot cannot plan appropriate viewpoints to find an object
in the shelf. Thus, two-dimensional maps are not sufficient
in situations in which robots are deployed in real-world
scenarios. On the other hand, three-dimensional models
of buildings (exterior and interior) and man-made objects
are envisioned to be useful in a wide area of applications,
which goes far beyond robotics, like architecture, emer-
gency planning, visualization etc. In all of these application
domains, there is a need for methods that can automatically
construct three-dimensional models.

The major disadvantage of three-dimensional representa-
tions lies in the amount of computational resources needed
to store and to update them. In this paper we therefore study
the problem of approximating three-dimensional range data
by planes. Especially indoor environments typically contain
many planar structures such as walls, floors, ceilings, tables
etc. Whereas in the past several techniques have been

Fig. 1. Birds-eye view of a data set and its planar approximation obtained
with the standard EM-based clustering approach. The angle between the
normals of the two planes belonging to the parallel walls is 17.2 degrees.

applied to extract planes from range data, these approaches
ignore that many planar structures in man-made environ-
ments are parallel. This can lead to errors in the resulting
models, for example, when walls end in corners or when
objects are placed on tables. As an example, consider the
situation depicted in Figure 1. This figure shows a birds-
eye view on a simulated data set with three orthogonal
walls. It also shows the planes extracted with the standard
approach for clustering linear structures with EM [2]. As
can be seen, the resulting planes for the two parallel walls
are not parallel. In this paper we present an approach
to correct such errors in the approximation by using the
hierarchical EM to simultaneously learn planes and their
main directions from range data. In the maximization
step of this algorithm we simultaneously maximize the
parameters of the planes with respect to the data points
and the main directions. As a result, the finally obtained
planes are more accurate as those obtained with previous
approaches, which do not consider main directions.

The problem of constructing 3d-models of buildings
(exterior and interior) and man-made objects has received
considerable attention over the past few years. For example,
Bajcsy et al. [3], Hakim and Boulanger [4], as well as Rous
and colleagues [5] reconstruct three-dimensional structures
from camera images. Furthermore, Sabe et al. use a variant
of the Hough transform to extract planes from stereo
images. Recently, several authors used 3d range scanners
for the acquisition of volumetric models. For example, Sta-
mos and Leordeanu [6] construct 3d-models by combining
multiple views obtained with a 3d range scanner. Früh and



Zakhor [7] present a technique to learn accurate models
of large-scale outdoor environments by combining laser,
vision, and aerial images. Thrun et al. [8] use two 2d
range scanners. The first is oriented horizontally whereas
the second points toward the ceiling. By registering the
horizontal scans the system generates accurate three-
dimensional models. In a more recent work [9] several
range scanners were used to learn models of underground
mines. Nüchter and colleagues [10] developed a robot that
is able to autonomously explore non-planar environments
and to simultaneously acquire the three-dimensional model.
Also several authors focused on the problem of extracting
planar structures from range scans. For example, Hähnel et
al. [11] use a region growing technique to identify planes.
Recently, Liu et al. [2] as well as Martin and Thrun [12]
applied the EM algorithm to cluster range scans into planes.

The approach described in this paper extends the EM-
based techniques mentioned above by simultaneously esti-
mating the planes and the clusters of their main direction
and by incorporating the information about the major
directions into the learning process. The approach borrows
some ideas of the work of Coughlan and Yuille [13] as well
as Schindler and Dellaert [14]. Both approaches estimate
vanishing points in images and use this information for
edge clustering. The paper presented here extends these
techniques in two respects. We apply the hierarchical
EM to three-dimensional range data and furthermore our
algorithm is able to automatically estimate the number of
main directions and planes from the data.

II. A L M  P, P,  M

D

Suppose we are given a set of N scan points Z = {zn}
with zn ∈ �3, n = 1, . . . ,N. Furthermore suppose there is
a set Θ of M planes θm,m = 1, . . . , M as well as a set Φ

of K main directions φk, k = 1, . . . ,K of these planes. To
correctly cluster the data points into planes and the planes
into main directions, it is useful to introduce so-called
correspondence variables αnm, which take on a value of 1
if a data point zn belongs to plane m and 0 otherwise, and
similarly variables βmk to indicate that a plane m belongs to
main direction k. We collect these correspondence variables
in the sets A = {αnm} and B = {βnk}. Our goal is to
maximize the joint posterior p(Z,Θ,Φ, A, B). Exploiting
the independence between these variables this term can be
rewritten as (see [15])

p(A, B,Φ,Θ, Z) ∝ p(Z | A,Θ)p(Θ | B,Φ) (1)
∝ p(Z, A | Θ)p(Θ, B | Φ). (2)

It remains to describe how the individual terms
p(Z, A | Θ) and p(Θ, B | Φ) are computed. The first term
specifies the likelihood of the data and the correspondence
variables given the planes. Let us assume a plane is given
as a tuple θm = (nm, dm) where nm is a unit normal vector
and dm is the Euclidean distance of the plane from the
origin. For now, we assume the number M of planes is

given. We define the distance d1(zn, θm) of a scan point zn

from a plane θm as the Euclidean distance:

d1(zn, θm) = zn · nm − dm (3)

If we assume Gaussian noise with variance ρ in the
measurement processes we can write

p(zn | θm) =
1√

2πρ2
exp

{
−1

2

(
d1(zn, θm)

ρ

)2}
. (4)

If we additionally incorporate the correspondence variables
αnm and under the assumption that their distribution is
uniform (for details see [12]) we obtain

p(Z, A | Θ) ∝ exp
{
−1

2

∑

n

∑

m

αnm

(
d1(zn, θm)

ρ

)2}
(5)

The second term on the right side of Equation 1 specifies
the likelihood of the planes and the correspondence vari-
ables given the main directions. To determine this quantity
we proceed in the same way as above. A main direction
for a set of planes is defined as a 3D unit vector. We define
the distance of a plane θm to a main direction ϕk as

d2(θm, ϕk) =

√
1 − (nm · ϕk)2. (6)

This corresponds to the sine of the angle between the
normal vector nn and the main direction ϕk. Again we
assume that the planes belonging to a main direction are
normally distributed with variance σ. Under the assumption
that we know that plane θm belongs to main direction ϕk

we can calculate its likelihood as

p(θm | ϕk) =
1√

2πσ2
exp

{
−1

2

(
d2(θm, ϕk)

σ

)2}
. (7)

In analogy to the derivation above we obtain

p(Θ, B | Φ) ∝ exp
{
−1

2

∑

m

∑

k

βmk

(
d2(θm, ϕk, )

σ

)2}
. (8)

This leads to this expression for the joint posterior:

p(A, B,Φ,Θ, Z) ∝ exp
{
−1

2

∑

nm

αnm

(
d1(zn, θm)

ρ

)2

−1
2

∑

mk

βmk

(
d2(θm, ϕk)

σ

)2}
(9)

Our goal is to determine the model (Θ∗,Φ∗) that maximizes
the likelihood of the data Z. Since, however, the values of
the correspondence variables are unknown, we apply the
EM algorithm which iteratively maximizes the expected
log likelihood of the data and the model:

(Θ[i+1],Φ[i+1]) =

argmax
(Θ,Φ)

EAB

[
log p(A, B,Φ,Θ, Z) | Θ[i],Φ[i]

]
(10)



Inserting the expression for the posterior into this equation
and exploiting linearity of the expectation we obtain

(Θ[i+1],Φ[i+1]) = argmax
(Θ,Φ)

− 1
ρ2

N∑

n=1

M∑

m=1

E[αnm | Θ[i]](zn · nm − dm)2

− 1
σ2

M∑

m=1

K∑

k=1

E[βmk | Φ[i]](1 − (nm · ϕk)2) (11)

The expectations E[αnm | Θ] are computed as follows:

E[αnm | Θ] = p(αnm | zn,Θ) (12)

=
p(zn | αnm,Θ)p(αnm | Θ)

p(zn | Θ)
(13)

=

exp
{
− 1

2

(
d1(zn,θm)

ρ

)2
}

∑
j exp

{
− 1

2

( d1(zn,θ j)
ρ

)2} (14)

Similarly, the E[βmk | Φ] are obtained as

E[βmk | Φ] =

exp
{
− 1

2

(
d2(θm,ϕk)

σ

)2
}

∑
j exp

{
− 1

2

( d2(θ j,ϕk)
σ

)2} (15)

In the M-step, we want to find new model parameters Θ

and Φ so that the log likelihood function in Equation (11)
is maximized. In our current implementation we apply the
Fletcher-Reeves conjugate gradient algorithm to find a local
maximum of the log likelihood function.

III. E  M C

So far, we assumed that the number of planes M and
the number of main directions K were given in advance.
In practice, however, this is generally not the case. Instead,
we need to estimate M and K – we will call this the model
complexity – during the estimation process. In our imple-
mentation we apply the Bayesian Information Criterion
[16], which is calculated as follows:

BIC = −2L + (3M + 2K) ln(N) (16)

In this equation, L is the log likelihood of the data given
the current model where the factor −2 stems from the BIC
formula. The term 3M + 2K corresponds to the number
of free parameters (3 for each plane and 2 for each main
direction). The goal is to find a model which has a minimal
BIC value. As can be seen from Equation (16), a high
model complexity results in a large BIC value and hence
less complex models are preferred.

To minimize the BIC we constantly monitor its value.
High BIC-values, for example, result from redundancy in
the model. For example, it is possible that after convergence
of the EM-algorithm two planes are equal. This can happen
if the two planes are initialized too close to each other or
if the data only supports a smaller number of planes. Such
a case of redundancy can be detected applying the leave-
one-out rule: after convergence of the EM we calculate
the BIC for all possible models, in which one plane is

Fig. 2. Planes obtained by the initialization process for the data set
shown in Figure 1. In this case our algorithm was initialized with five
planes and five main-directions from which several were co-planar.

left out. If there is a model that has a smaller BIC than
the current one, then the plane, which has been left out
to obtain this particular model, must be redundant and can
safely be removed. The same strategy is applied to the main
directions.

IV. I D

A. Initialization

Since the EM-algorithm can get stuck in local optima
of the log-likelihood function, it needs to be initialized
appropriately to converge to the global optimum, just like
other optimization techniques, e.g., gradient-descent. In our
case, the initialization is performed by sampling randomly
from all scan points. During this sampling process each
point is drawn with a probability proportional to the
minimum distance to any of the already existing planes.
Thus, when no planes are given each point is equally likely
to be drawn. However in later initialization steps, the points
that are badly explained by the current model, are more
likely to be drawn. To initialize a plane for a point drawn
we fit a plane to the points in its local neighborhood. A
typical result of the plane initialization for the data depicted
in Figure 1 is shown in Figure 2. Here, the algorithm was
initialized with five planes and five main directions. Since
the planes four and five and the main-directions three to
five are co-planar to existing planes and main-directions,
only three planes and two main-directions are visible.

B. Weighting Factors for Planes

When clustering the planes into main directions, each
plane has a contribution to the resulting main direction
according to its normal vector. This contribution is inde-
pendent on the number of points that were used to calculate
the plane in the plane clustering process. The problem that
arises here, is that planes which are obtained from less data
points (or with lower support) have the same influence as
planes with a high support. This may result in wrong main
directions if, for example, a plane resulting from spurious
measurements, is clustered together with a wall.

Additionally, the number of planes typically is very small
compared to the number of data points. Thus, the influence
of the main directions decreases the more data points are
given. In practical experiments it turned out to be very



useful to introduce weighting factors wm for the planes
which are dependent on the support of a given plane θm.

wm =

N∑

n=1

E[αnm | Θ] (17)

In the EM we then use a modified distance function

d′2(θm, ϕk) =
√

wmd2(θm, ϕk) (18)

C. Sketch of the Algorithm

Our algorithm proceeds as follows:
1) Start with a fixed number of M0 planes.
2) Initialize a main direction for each plane by taking

the normal vector of that plane. This means the initial
number of main directions K0 equals M0.

3) Apply EM until convergence
4) Drop one main direction as long as the BIC of

the reduced model increases. This results in a new
number of main directions Ki+1 ≤ Ki

5) Drop one plane as long as the BIC of the reduced
model increases. This results in a new number of
planes Mi+1 ≤ Mi

6) Select a new plane from the initialization queue
and take its normal vector as a new main direction.
Adding these to the model increases the complexity:

Ki+1 := Ki+1 + 1 and Mi+1 := Mi+1 + 1

7) If no such plane can be found, stop. Otherwise go
back to 3).

Note that it is not possible that Ki exceeds Mi in any
time step i.

D. Post-Processing

So far, the goal of our algorithm was to find planes
and main directions. In practice, however, we want to
represent the environment as a set of polygons, because
they indicate the faces of the objects in the environment.
In general, a plane that is found in the data set contains
more than one polygon. A typical situation is a wall that
is “interrupted” by a doorway. In our implementation, we
choose the following approach to extract polygons from
planes:
• Determine all scan points that are close to the given

plane (in our case: less than 0.1m).
• Project all these points onto the plane.
• Perform a region growing on the points, where for

each point all neighbors in a certain distance ε are
added to the region. This is done efficiently using a
2D kd-tree (that is, a 2d-tree).

• Create an α-shape [17] from each region, where α = ε.

V. E R

The approach described above has been implemented
and evaluated on real and simulated 3D data. Figure 3
contains the resulting planes obtained for the data set
shown in Figure 1. The hierarchical EM is able to exploit
the constraints introduced by the main directions of the

Fig. 3. Model obtained by our hierarchical EM. Compared to the model
shown in Figure 1 the angle between the normals corresponding to the
two parallel walls is 1.9 degrees.

TABLE I
A            

  x, y  z .

Plane plain EM hierarchical EM
x y z x y z

1 92.05 138.33 48.40 91.91 146.02 56.09
2 92.95 146.09 56.26 92.65 146.39 56.52
3 92.27 140.71 50.80 92.01 146.06 56.13
4 90.88 146.56 56.58 91.18 147.32 57.35

planes and corrects the planes for the two parallel walls.
In this example the angular error between the plane normals
decreases from 17.2 degrees to 1.9 degrees.

A. Experimental Evaluation on Real Data

The real data experiment was carried out with our
mobile robot Zora shown in the left image of Figure 4.
Zora is a B21R platform equipped with a 4DOF AMTEC
manipulator which carries a SICK PLS range scanner. This
setup allows our robot to flexibly scan complex scenes.
The second image of Figure 4 shows a picture of a scene
scanned with our robot. The third image of this picture
depicts a typical data set obtained for this scene. The scan
shown there consists of 21.479 points. To enhance visibility
the data was smoothed and neighboring scan points were
connected by triangles. The rightmost image of Figure 4
shows the result obtained with our hierarchical EM. The
colors/grey-levels of the individual planes correspond to
that of their main directions, which are also displayed. The
final model consists of 7 planes and 3 main directions.
The planes for the floor and the ceiling are only slightly
corrected by the hierarchical EM. Whereas the plain EM
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Fig. 5. Evolution of the log-likelihood during the estimation process.



Fig. 4. Mobile robot Zora (left image), scene scanned by the robot (second image), resulting data (third image), and final model (right image).
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Fig. 6. Simulated 3d scene used to evaluate the quality of the resulting
maps. On top of the horizontal plane is a small cube that introduces errors
in the plane extraction.

TABLE II
R     . T    

     .

Plane
plain EM hierarchical EM

1 2 3 1 2 3

θ1 0.220 0.234 0.227 0.155 0.208 0.224

θ2 0.382 0.415 0.408 0.381 0.415 0.423

θ3 0.479 0.512 0.492 0.289 0.067 0.190

θ4 5.879 4.297 2.128 3.023 2.033 1.101

θ5 0.105 0.070 0.083 1.524 0.318 0.121

θ6 2.070 0.453 0.321 1.720 0.365 0.181

θ7 0.672 0.940 0.889 0.244 0.608 0.624

θ8 1.606 1.915 1.780 0.650 0.883 0.895

approach yields a deviation of 2 degrees for the ceiling and
the floor, our algorithm generated planes with an angular
distance of 1.7 degrees between the two planes. The most
interesting part are the green/light grey planes for the
newspaper rack. Note that their main direction is neither
orthogonal to the main direction for the ceiling and the
floor nor to that of the wall. Table I lists the individual
angles of the normals for the four planes found for the
rack in x, y, and z direction obtained with the plain EM
approach and with our hierarchical EM. As can be seen
from the numbers, our approach reduces the maximum
deviation between the individual angles of the planes from
8 degrees to 2 degrees. Figure 5 plots the evolution of
the log-likelihood during the hierarchical EM. Note that
the log-likelihood does not always increase because of the
introduction and removal of model components.

Fig. 7. Typical result obtained for the situation, in which the box was
placed at the right rear corner of the small horizontal plane (see Figure 6).

B. Quantitative Evaluation

Additionally, we performed several simulation exper-
iments to evaluate the quality of the resulting models
compared to the ground truth. Figure 6 shows a simulated
scene used for these experiments. This scene represents
a room with five corner walls, the floor, and the ceiling.
Additionally, it contains a horizontal plane with a box on
top. The walls are parallel to the coordinate axes, so that
their normal vectors are the standard basis vectors (1, 0, 0)T ,
(0, 1, 0)T , and (0, 0, 1)T . In total, there were eight visible
planes. These planes are enumerated from θ1 to θ8. To
evaluate the capabilities of our algorithm we performed
three different experiments in which we varied the position
of the small box on the small horizontal plane. In the first
case the box was placed in the right rear corner of the
horizontal plane. In the second experiment the box was
placed halfway between the center of the horizontal plane
and its right rear corner. In the third situation the box was
located in the center of the horizontal plane. A typical
model obtained with our hierarchical EM applied to the
third situation is depicted in Figure 7.

The performance of the plain EM algorithm and our
algorithm on these simulated data is given in Table II. Each
column contains for all three experiments the deviation
in degrees for each of the eight normal vectors from its
respective ground truth. Especially the table plane θ4 is
corrected by the hierarchical EM. However, other planes
like θ8 are corrected using the knowledge of the main
directions. Note that the error in some planes, e.g., the walls
θ1 and θ2 increases slightly. This is because the plane θ8,
which has the same main direction, has a higher deviation
and therefore slightly increases the error of the planes with



Fig. 8. Simulated scene with more than 3 main directions (left), simulated 3D-scan (center), and resulting planes and main directions (right)

the same main direction. In the final model obtained with
our algorithm all three planes are almost parallel which
indicates that the error is introduced by the constraints
imposed by the corresponding main direction. The same
holds for the planes θ5 and θ6.

C. Models with More Than Three Main Directions

In indoor scenes with mostly orthogonal or perpendicular
planar structures such as offices, we only encounter three
main directions. To illustrate that our algorithm can deal
with more than just three main directions we performed
an experiment with the simulated box world shown in the
left image of Figure 8. The 3d data used as input to our
algorithm is depicted in the middle image of Figure 8.
Applied to this data set our algorithm found six planes and
five main directions (see rightmost image of Figure 8). In
this particular example, the hierarchical EM only slightly
corrects the two top planes of the two boxes. All other
planes were identical to the planes obtained by the non-
hierarchical EM, since there was exactly one plane for each
main direction.

VI. C

In this paper we presented a hierarchical approach to
cluster 3d data points acquired with laser range scanners
into planes. In contrast to previous approaches our al-
gorithm uses a hierarchical model in which planes are
also clustered into main directions. To find the model
that maximizes the likelihood of the data we apply the
EM algorithm. During the clustering process our approach
simultaneously estimates the number of planes and the
number of main directions.

The approach has been implemented and validated on
real data and in simulation runs. The results demonstrate
that the additional constraints imposed by the main direc-
tions in the hierarchical model allow to more reliably de-
termine the planar approximations. The advantages of this
are two-fold. First, the orientations of the planes are more
accurate and second, we expect that points corresponding
to objects close to planar structures can more reliable be
separated in later segmentation steps.
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