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Abstract. In this paper, we present an algorithm to identify types of places and
objects from 2D and 3D laser range data obtained in indoor environments. Our
approach is a combination of a collective classification method based on associative
Markov networks together with an instance-based feature extraction using nearest
neighbor. Additionally, we show how to select the best features needed to represent
the objects and places, reducing the time needed for the learning and inference
steps while maintaining high classification rates. Experimental results in real data
demonstrate the effectiveness of our approach in indoor environments.

1 Introduction

One key application in mobile robotics is the creation of geometric maps us-
ing data gathered with range sensors in indoor environments. These maps are
usually used for navigation and represent free and occupied spaces. However,
whenever the robots are designed to interact with humans, it seems necessary
to extend these representations of the environment to improve the human-
robot comunication. In this work, we present an approach to extend indoor
laser-based maps with semantic terms like “corridor”, “room”, “chair”, “ta-
ble”, etc, used to annotated different places and objects in 2D or 3D maps.
We introduce the instance-based associative Markov network (iAMN), which
is an extension of associative Markov networks together with instance-based
nearest neighbor methods. The approach follows the concept of collective clas-
sification in the sense that the labeling of a data point in the space is partly
influenced by the labeling of its neighboring points. iAMNs classify the points
in a map using a set of features representing these points. In this work, we show
how to choose these features in the different cases of 2D and 3D laser scans.
Experimental results obtained in simulation and with real robots demonstrate
the effectiveness of our approach in various indoor environments.
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2 Related Work

Several authors have considered the problem of adding semantic information
to 2D maps. Koenig and Simmons (1998) apply a pre-programmed routine
to detect doorways. Althaus and Christensen (2003) use sonar data to detect
corridors and doorways. Moreover, Friedman et al. (2007) introduce Voronoi
random fields as a technique for mapping the topological structure of indoor
environments. Finally, Martinez Mozos et al. (2005) use AdaBoost to create
a semantic classifier to classify free cells in occupancy maps.

Also the problem of recognizing objects from 3D data has been studied
intensively. Osada et al. (2001) propose a 3D object recognition technique
based on shape distributions. Additionally, Huber et al. (2004) present an
approach for parts-based object recognition. Boykov and Huttenlocher (1999)
propose an object recognition method based on Markov random fields. Fi-
nally, Anguelov et al. (2005) present an associative Markov network approach
to classify 3D range data. This paper is based on our previous work (Triebel
et al. (2007)) which introduces the instance-based associative Markov net-
works.

3 Collective Classification

In most standard spatial classification methods, the label of a data point only
depends on its local features but not on the labeling of nearby data points.
However, in practice one often observes a statistical dependence of the labeling
associated to neighboring data points. Methods that use the information of the
neighborhood are denoted as collective classification techniques. In this work,
we use a collective classifier based on associative Markov networks (AMNs)
(Taskar et al. (2004)), which is improved with an instance-based nearest-
neighbor (NN) approach.

3.1 Associative Markov Networks

An associative Markov network is an undirected graph in which the nodes
are represented by N random variables y1, . . . , yN . In our case, these ran-
dom variables are discrete and correspond to the semantic label of each of
the data points p1, . . . ,pN , each represented by a vector xi ∈ R

L of local fea-
tures. Additionally, edges have associated a vector xij of features representing
the relationship between the corresponding nodes. Each node yi has an as-
sociated non-negative potential ϕ(xi, yi). Similarly, each edge (yi, yj) has a
non-negative potential ψ(xij , yi, yj) assigned to it. The node potentials reflect
the fact that for a given feature vector xi some labels are more likely to be as-
signed to pi than others, whereas the edge potentials encode the interactions
of the labels of neighboring nodes given the edge features xij . Whenever the
potential of a node or edge is high for a given label yi or a label pair (yi, yj),
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the conditional probability of these labels given the features is also high. The
conditional probability that is represented by the network is expressed as:

P (y | x) =
1

Z

N
∏

i=1

ϕ(xi, yi)
∏

(ij)∈E

ψ(xij , yi, yj), (1)

where the partition function Z =
∑

y′

∏N

i=1 ϕ(xi, y
′
i)

∏

(ij)∈E ψ(xij , y
′
i, y

′
j) .

The potentials can be defined using the log-linear model proposed by
Taskar et al. (2004). However, we use a modification of this model in which
a weight vector wk ∈ R

dn is introduced for each class label k = 1, . . . ,K.
Additionally, a different weight vector wk,l

e , with k = yi and l = yj is assigned
to each edge. The potentials are then defined as:

logϕ(xi, yi) =

K
∑

k=1

(wk
n · xi)y

k
i (2)

logψ(xij , yi, yj) =
K

∑

k=1

K
∑

l=1

(wk,l
e · xij)y

k
i y

l
j , (3)

where yk
i is an indicator variable which is 1 if point pi has label k and 0, oth-

erwise. In a further refinement step in our model, we introduce the constraints
wk,l

e = 0 for k 6= l and wk,k
e ≥ 0. This results in ψ(xij , k, l) = 1 for k 6= l and

ψ(xij , k, k) = λk
ij , where λk

ij ≥ 1. The idea here is that edges between nodes
with different labels are penalized over edges between equally labeled nodes.

If we reformulate Equation 1 as the conditional probability Pw(y | x),
where the parameters ω are expressed by the weight vectors w = (wn,we),
and plugging in Equations (2) and (3), we then obtain that logPw(y | x)
equals

N
∑

i=1

K
∑

k=1

(wk
n · xi)y

k
i +

∑

(ij)∈E

K
∑

k=1

(wk,k
e · xij)y

k
i y

k
j − logZw(x). (4)

In the learning step we try to maximize Pw(y | x) by maximizing the
margin between the optimal labeling ŷ and any other labeling y (Taskar
et at. (2004)). This margin is defined by:

logPω(ŷ | x) − logPω(y | x). (5)

The inference in the unlabeled data points is done by finding the labels y

that maximize logPw(y | x). We refer to Triebel et al. (2007) for more details.

3.2 Instance-Based AMNs

The main drawback of the AMN classifier explained previously, which is based
on the log-linear model, is that it separates the classes linearly. This assumes
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that the features are separable by hyper-planes, which is not justified in all ap-
plications. This does not hold for instance-based classifiers such as the nearest-
neighbor (NN), in which a query data point p̃ is assigned to the label that
corresponds to the training data point p whose features x are closest to the
features x̃ of p̃. In the learning step, the NN classifier simply stores the entire
training data set and does not compute a reduced set of training parameters.

To combine the advantage of instance-based NN classification with the
AMN approach, we convert the feature vector x̃ of the query point p̃ using
the transform τ : R

L → R
K : τ(x̃) = (d(x̃, x̂1), . . . , d(x̃, x̂K)), where K is the

number of classes and x̂k denotes the training example with label k closest
to x̃. The transformed features are more easily separable by hyperplanes.
Additionally, the N nearest neighbors can be used in the transform function.

4 Feature Extraction in 2D maps

In this paper, indoor environments are represented by two dimensional oc-
cupancy grid maps (Moravec (1988)). The unoccupied cells of a grid map
form an 8-connected graph which is used as the input to the iAMN. Each
cell is represented by a set of single-valued geometrical features calculated
from the 360o laser scan in that particular cell as shown by Mart́ınez Mozos
et al. (2005).

Three dimensional scenes are presented by point clouds which are ex-
tracted with a laser scan. For each 3D point we computed spin images (John-
son (1997)) with a size of 5 × 10 bins. The spherical neighborhood for com-
puting the spin images had a radius between 10 and 15cm, depending on the
resolution of the input data.

5 Feature Selection

One of the problems when classifying points represented by range data con-
sists in selecting the size L of the features vectors x. The number of possible
features that can be used to represent each data point is usually very large
and can easily be in the order or hundreds. This problem is known as curse of

dimensionality. There are at least two reasons to try to reduce the size of the
feature vector. The most obvious one is the computational complexity, which
in our case, is also the more critical. We have to learn an inference in networks
with thousands of nodes. Another reason is that although some features may
carry a good classification when treated separately, maybe there is a little
gain if they are combined together if they have a high mutual correlation
(Theodoridis and Koutroumbas (2006)).

In our approach, the size of the feature vector for 2D data points is of
the order of hundreds. The idea is to reduce the size of the feature vectors
when used with the iAMN and at the same time try to maintain their class
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discriminatory information. To do this we apply a scalar feature selection
procedure which uses a class separability criteria and incorporates correlation
information. As separability criteria C, we use the Fisher’s discrimination
ratio (FDR) extended to the multiclass case (Theodoridis and Koutroum-
bas (2006)). For a scalar feature f and K classes {w1, . . . , wK}, C(f) can be
defined as:

C(f) = FDRf =

K
∑

i

K
∑

j 6=i

(µi − µj)
2

σi + σj

, (6)

where the subscripts i, j refer to the mean and variance of the classes wi and
wj respectively. Additionally, the cross-correlation coefficient between any two
features f and g given T training examples is defined as:

ρfg =

∑T

t=1 xtfxtg
√

∑T

t=1 x
2
tf

∑T

t=1 x
2
tg

, (7)

where xtf denotes the value of the feature f in the training example t. Finally,
the selection of the best L features involves the following steps:

• Select the first feature f1 as f1 = argmaxf C(f).
• Select the second feature f2 as:

f2 = argmax
f 6=f1

{α1C(f) − α2|ρf1f |} ,

where α1 and α2 are weighting factors.
• Select fl, l = 1, . . . , L, such that:

fl = argmax
f 6=fr

{

α1C(f) −
α2

l− 1

l
∑

r=1

|ρfrf |

}

, r = 1, 2, . . . , l − 1

6 Experiments

The approach described above has been implemented and tested in several 2D
maps and 3D scenes. The goal of the experiment is to show the effectiveness
of the iAMN in different indoor range data.

6.1 Classification of Places in 2D Maps

This experiment was carried out using the occupancy grid map of the build-
ing 79 at the University of Freiburg. For efficiency reasons we used a grid
resolution of 20cm, which lead us to a graph of 8088 nodes. The map was
divided into two parts, the left one used for learning, and the right one used
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for classification purposes (Figure 1). For each cell we calculate 203 geometri-
cal features. This number was reduced to 30 applying the feature selection of
Section 5. The right image of Figure 1 shows the resulting classification with
a success rate of 97.6%.

6.2 Classification of Object in 3D Scenes

In this experiment we classify 3D scans of objects that appear in a laboratory
of the building 79 of the University of Freiburg. The laboratory contain tables,
chairs, monitors and ventilators. For each object class, an iAMN is trained
with 3D range scans each containing just one object of this class (apart from
tables, which may have screens standing on top of them). Figure 2 shows
three example training objects. A complete laboratory in the building 79 of
the University of Freiburg was later scanned with a 3D laser. In this 3D scene
all the objects appear together and the scene is used as a test set. The resulting
classification is shown in Figure 3. In this experiment 76.0% of the 3D points
where classified correctly.

6.3 Comparison with Previous Approaches

In this section we compare our results with the ones obtained using other
approaches for place and object classification. First, we compare the classi-
fication of the 2D map when using a classifier based on AdaBoost as shown
by Martinez Mozos et al. (2005). In this case we obtained a classification rate
of 92.1%, in contrast with the 97.6% obtained using iAMNs. We believe that
the reason for this improvement is the neighboring relation between classes,
which is ignored when using the AdaBoost approach. In a second experi-
ment, we compare the resulting classification of the 3D scene with the one
obtained when using AMN and NN. As we can see in Table 1, iAMNs per-
form better than the other approaches. A posterior statistical analysis using
the t-student test indicates that the improvement is significant at the 0.05
level. We additionally realized different experiments in which we used the 3D
scans of isolated objects for training and test purposes. The results are shown
in Table 1 and they confirm that iAMN outperform the other methods.

Table 1. Classification results in 3D data

Data set NN AMN iAMN

Complete scene 63% 62% 76%
Isolated objects 81% 72% 89%
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Fig. 1. The left image depicts the training map of building 79 at the University of
Freiburg. The right image shows the resulting classified map using an iAMN with
30 selected features.

Fig. 2. 3D scans of isolated objects used for training: a ventilator, a chair and a
table with a monitor on top.

Fig. 3. Classification of a complete 3D range scan obtained in a laboratory at the
University of Freiburg.

7 Conclusions

In this paper we propose a semantic classification algorithm that combines
associative Markov networks with an instance-based approach based on near-
est neighbor. Furthermore, we show how this method can be used to classify
points described by features extracted from 2D and 3D laser scans. Addi-
tionally, we present an approach to reduce the number of features needed to
represent each data point, while maintaining their class discriminatory infor-
mation. Experiments carried out in maps 2D and 3D maps demonstrated the
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effectiveness of our approach for semantic classification of places and objects
in indoor environments.
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