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Abstract In order for robots to efficiently navigate in real-world environments, they

need to be able to classify and characterize terrain for safe navigation. The major-

ity of techniques for terrain classification is predominantly based on using visual

features. However, as vision-based approaches are severely affected by appearance

variations and occlusions, relying solely on them incapacitates the ability to func-

tion robustly in all conditions. In this paper, we propose an approach that uses sound

from vehicle-terrain interactions for terrain classification. We present a new convo-

lutional neural network architecture that learns deep features from spectrograms of

extensive audio signals, gathered from interactions with various indoor and out-

door terrains. Using exhaustive experiments, we demonstrate that our network sig-

nificantly outperforms classification approaches using traditional audio features by

achieving state of the art performance. Additional experiments reveal the robustness

of the network in situations corrupted with varying amounts of white Gaussian noise

and that fine-tuning with noise-augmented samples significantly boosts the classifi-

cation rate. Furthermore, we demonstrate that our network performs exceptionally

well even with samples recorded with a low-quality mobile phone microphone that

adds substantial amount of environmental noise.

1 Introduction

Robots are increasingly being used for tasks in unstructured real-world environ-

ments and thus have to be able to deal with a huge variety of different terrains. As

every terrain has a distinct physical property, it necessitates an appropriate navi-

gation strategy to maximize the performance of the robot. Therefore, terrain clas-

sification is paramount to determine the corresponding trafficability. However, it

is a highly challenging task to robustly classify terrain. Especially, the predomi-
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nantly used vision-based approaches suffer from rapid appearance changes due to

various factors including illumination variations, changes in weather, damping due

to rain and camouflaging with leaves. Accordingly, researchers have also explored

the utilization of alternative modalities such as ladars or vibrations measured using

accelerometers. Each of these approaches have their own advantages and disadvan-

tages. For example, optical sensors are quintessential when there is good illumina-

tion and distinct visual features, while accelerometer-based approaches are ideal to

classify terrains with varying degrees of coarseness. However, the use of sound to

classify terrains in the past has not been studied in a comparable depth, even though

sound produced from vehicle-terrain interactions have distinct audio signatures even

utilizable for fine-grained classification. Most importantly, the disturbances that af-

fect other light-based or active sensors do not affect microphones, hence they can

even be used as a complementary modality to increase robustness. We believe that

utilization of a complementary set of sensing modalities is geared towards long-term

autonomy.

In this paper, we present a novel multiclass terrain classification approach that

uses only audio from the vehicle-terrain interaction to robustly classify a wide range

of indoor and outdoor terrains. As in any pattern recognition task, the choice of

features significantly dictates the classification performance. Vehicle-terrain inter-

action sounds are very unstructured in nature as several dynamic factors contribute

to the signal. Instead of using handcrafted domain specific features, our approach

employs a deep convolutional neural network (DCNN) to learn them. DCNNs have

recently been achieving state of the art performance on several pattern recognition

tasks [13, 14, 18]. They learn unsupervised hierarchical feature representations of

their input by exploiting spatial correlations. The additional advantage of this is that

the features learned from this approach generalize effectively as DCNNs are rela-

tively insensitive to certain input variations.

The convolutional neural network architecture we introduce is built upon recent

advances in deep learning. Our network consisting of six convolution layers and six

cascaded cross channel parametric pooling layers is depicted in Fig. 1. In order to

make the learned feature representations invariant to certain signal variations and

also to increase the number of training samples, we performed a number of trans-

formations on the original signal to augment the data. We experimented with several

hyperparameters for our network and show that it significantly outperforms classifi-

cation methods using popular baseline audio features. To the best of our knowledge,

this is the widest range of terrain classes successfully classified using any proprio-

ceptive terrain classification system. Additionally, our method achieves state of the

art performance in classification using a proprioceptive sensor. Audio classification

is susceptible to background noise to a great extent. We stress test our network with

additive white Gaussian noise (WGN) at varying signal to noise ratios (SNR). We

also perform noise aware fine-tuning to increase the robustness and show that our

network performs exceptionally well even on audio data collected by the robot with

a low quality mobile phone microphone which adds significant environmental noise.
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2 Related Work

The use of sound as a modality for classifying vehicle-terrain interactions has very

sparsely been explored. The following are the only related works using acoustics

for terrain classification. Ojeda et al. [17], used a feedforward neural network and

a suite of sensors for terrain classification, including a microphone, gyroscopes, ac-

celerometers, motor current and voltage sensors, infrared, ultrasonics and encoders.

They had five terrain classes and their classifier achieved an average classification

accuracy of 60.3% using the microphone. They found that using the entire spec-

trum gave them the same performance as using only 0 to 50 Hz components of the

discrete fourier transform. The authors concluded that overall the performance was

poor using the microphone, other than for classifying grass.

More recently, Libby and Stentz [15] trained a multiclass sound-based terrain

classifier that uses Support Vector Machines (SVMs). They evaluated the perfor-

mance of various features using extraction techniques derived from the literature

survey as input to the SVM. Their multidimensional feature vectors consists of

spectral coefficients, moments and various other temporal as well as spectral char-

acteristics. Their classifier achieves an average accuracy of 78% over three terrain

classes and three hazardous vehicle-terrain interaction classes. They further increase

the accuracy to 92% by smoothing over a window of 2 seconds.

A patent by Hardsell et al. [8] describes an approach to terrain classification

where a classifier is trained on fused audio and video data. They extract scale invari-

ant transformation features from the video data and use Gaussian mixture models

with a time-delay neural network to represent the audio data. The classifier is then

built using expectation-maximization.

The use of contact microphones for terrain classification has also been explored.

Unlike air microphones that we use in our work, contact microphones pick up

only structure-borne sound. Brooks and Iagnemma [2] use a contact microphone

mounted on their analog rover’s wheel frame to classify terrain. They extract the

log-scaled Power Spectral Density (PSD) of the recorded vibrations and used them

to train a pairwise classifier. Their classifier with three classes, achieves an average

accuracy of 74% on a wheel-terrain testbed and 85.3% on the test bed rover. They

also present a self-supervised classifier that was first trained on vibration data, which

then provided the labels for training a visual classifier [3].

A number of methods have been developed for using accelerometer data to clas-

sify terrain [17, 19, 21]. Weiss et al. [21] use vibrations induced in the vehicles body

during traversal to classify the terrain. They train a seven class SVM with features

extracted from log-scaled PSD, discrete fourier transform and other statistical mea-

sures. Their classifier produced an average accuracy of 91.8% over all the classes.

However, such approaches report a significant number of false positives for finer ter-

rains such as asphalt and carpet. For another similar application, Eriksson et al. [5]

employ a mobile sensor network system that uses hand selected features from ac-

celerometer data to identify potholes and other road anomalies. Their system detects

the anomalies over 90% of the time in real-world experiments.
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There is a considerable amount of specialized audio features developed for

speech recognition and music classification, but it remains unclear which of these

features performs well for our application. We evaluated several traditional audio

features from our literature survey and compared them as baseline approaches.

Libby and Stentz [15] show that a combination of Ginna and Shape features per-

form the best for classification of vehicle-terrain interactions. Gina features, based

on the work by Giannakopoulos et al. [6] is a 6D feature vector consisting of zero

crossing rate (ZCR), short time energy (STE), spectral centroid, spectral rolloff and

spectral flux. Shape features, based on the work by Wellman et al. [22], characterize

the distribution of moments of the spectrum. It is a 4D feature vector consisting of

spectral centroid, standard deviation, skewness and kurtosis.

Ellis [4] use a combination of mel-frequency cepstral coefficients (MFCCs) and

chroma features. MFCCs are the most widely used features for audio classification

and Chroma features are strongly related to the harmonic progression of audio sig-

nals. We use a combination of twelve bin MFCC’s and twelve bin Chroma features

for comparison. Trimbral features have been a popular set of features for various

audio classification applications. Tzanetakis and Cook [20] use a 19D feature repre-

sentation consisting of means and variances of spectral centroid, rolloff, flux, ZCR,

low energy and means and variances of the first 5 MFCCs. For our final feature set

comparison, we use a combination of 13 bin MFCC’s, line spectral pair (LSP) and

linear prediction cepstral coefficients (LPCCs) [1]. We call this Cepstral feature set

in the later discussions.

3 Deep Convolutional Neural Network For Acoustic Based

Terrain Classification

One of the main objectives of our work is to develop a new deep convolutional neural

network architecture tailored to classifying unstructured vehicle-terrain interaction

sounds. In this section, we detail the various stages of our classification pipeline

shown in Fig. 1. Our approach can be split into two main stages. The first stage

involves processing the raw audio samples into short windowed clips, augmenting

the samples and spectrogram transformation. The second involves training our deep

convolutional neural network with this data.

3.1 Preprocessing and Spectrogram Extraction

We first split the audio signals from each class into small “clips” of tw seconds.

We experimentally determine the shortest clip length that gives the best classifica-

tion performance. Feature responses from each of these clips are then extracted and

added as a new sample for classification.
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Fig. 1 Overview of our terrain classification pipeline. Raw audio signal of the terrain interaction

is first transformed into its spectrogam representation and then piped into a DCNN for feature

learning and classification. MP refers to max pooling.

Features derived from spectrogram representations of audio signals have been

shown to outperform other standard features for environmental sound classification

applications [12]. Therefore in our approach, we extract the Short Time Fourier

Transform (STFT) based spectrogram of each clip in our dataset. We first block each

audio clip into M samples with 75% overlap between each frame. Let x[n] be the

recorded raw audio signal with duration of N f samples, fs the sampling frequency,

S(i, j) be the spectrogram representation of the 1-D audio signal and f (k) = k fs/N f .

By applying STFT on length M windowed frame of signal, we get

X(i, j) =

N f −1

∑
p=0

x[n] w[n− j]exp

(

−p
2πk

N f

n

)

, p = 0, . . . ,N f −1 (1)

A Hamming window function w[n] is used to compensate for Gibbs effect while

computing STFT by smoothing the discontinuities at the beginning and end of the

audio signal.

w[n] = 0.54−0.46cos

(

2π
n

M−1

)

, n = 0, . . . ,M−1 (2)

We then compute the log of the power spectrum as

Slog(i, j) = 20log10(|X(i, j)|) (3)
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We chose N f as 2,048 samples, therefore the spectrogram contains 1,024 Fourier

coefficients. By analyzing the spectrum, we found that most of the spectral energy

is concentrated below 512 coefficients, hence we only use the lower 512 coefficients

to reduce the computational complexity. The noise and intensity levels vary a fair

amount in the entire dataset as we collected data in different environments. There-

fore, we normalized the spectrograms by dividing by the maximum amplitude. We

compute the normalized spectrogram as S(i, j) = Slog(i, j)/maxi, jSlog(i, j). We then

compute the mean spectrum over the entire dataset and subtract it from the normal-

ized spectrogram to remove any temporal artifacts.

We created additional training samples by applying a set of augmentation strate-

gies At on the audio signal in the frequency domain. Offsets in time and frequency

was used to perform shifting to transform the spectrogram. The transformations

were applied using 2D affine transform and warping, keeping the shape constant.

Furthermore we created more samples using time stretching, modulating the tempo,

using random equalization augmentation and by increasing as well as decreasing the

volume gain. We also experimented with frequency and time normalization with a

sliding window and local contrast normalization.

3.2 Network Architecture and Training

The extracted spectrograms in our training set are of the form S = {s1, . . . ,sM} with

si ∈ R
N . Each of them are of size v×w and number of channels d (d = 1 in our

case). We assume M to be the number of samples and yi as the class label in one-hot

encoding, yi ∈ R
C, where C is the number of classes. We then train the DCNN by

minimizing the negative log likelihood of the training data. Our network shown in

Fig. 1 has six Convolution layers, six Cascaded Cross Channel Parametric Pooling

(CCCP) layers, two Fully-Connected (FC) layers and a Softmax layer. All the con-

volution layers are one dimensional with a kernel size of three and convolve along

the time dimension. We use a fixed convolutional stride of one. CCCP layers follow

the first, second and third convolution layers. CCCP layers was proposed by Lin

et al. [16] to enhance discriminability for local patches within the receptive fields.

CCCP layers are effectively employ 1×1 convolutions over the feature maps and

the filters learnt are a better non-linear function approximator. A max-pooling layer

with a kernel of 2, then follows the second and fourth CCCP layers. Max-pooling

adds some invariance by only taking the high activations from adjacent hidden units

that share the same weight, thereby providing invariance to small phase shifts in the

signal.

DCNNs that are used for feature learning with images are designed to preserve

the spatial information of objects in context, however for our application we are not

interested to localize features in the frame, rather we are only interested to identify

the presence or absence of features in the entire frame. Therefore, we added three

different global pooling layers after CCCP-9 to compute the statistics across time.

This global pooling approach is similar to that used for content based music recom-
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mendation by Oord et al. [18]. For global pooling layers, we use max pooling, L2

norm pooling and average pooling. We experimented with just one global pooling

layer and combinations of two global pooling layers and the accuracy dropped over

3% while compared to using all three global pooling layers. We also investigated the

effect of global stochastic pooling with the other three pooling combinations, but the

network did not show any significant improvement. Finally, a fully connected layer

is then used to combine outputs of all the global pooling layers.

Rectified linear units (ReLUs) have significantly helped in overcoming the van-

ishing gradient problem. They have been shown to considerably accelerate the train-

ing compared to tanh units. We use ReLUs f (x) = max(0,x), after the convolution

layers and dropout regularization [10] on fully connected layers except the softmax

layer. We used a dropout probability of 0.5. We also experimented with Parameter-

ized Rectified Linear Units (PReLU) [9], which has shown to improve model fitting

but it drastically affected our performance compared to ReLUs.

We used Xavier weight initialization [7] for the Convolution, CCCP and FC lay-

ers. The Xavier weight filler initializes weights by drawing from a zero mean uni-

form distribution from [−a,a] and a variance as a function of the number of input

neurons, where a =
√

3/nin and nin is the number of input neurons. Using this

strategy enables us to move away from the traditional layer by layer generative pre-

training. Let f j(s
i;θ) be the activation value for spectrogram si and class j, θ be the

parameters of the network (weights W and biases b). The softmax function and the

loss is computed as

P(y = j | si;θ) = softmax( f (si;θ)) =
exp( f j(s

i;θ))
K

∑
k=1

exp( fk(si;θ))

(4)

where P(y = j | si;θ) is the probability of the jth class and the loss can be computed

as L(u,y) =−∑
k

ykloguk. Using stochastic gradient decent (SGD), we then solve

min
θ

N

∑
i=1

L(softmax( f (si;θ)),yi) (5)

We use minibatch SGD with a momentum of 0.9 and a batch size of 128. Minibatch

SGD refers to a more efficient way of computing the derivatives before updating the

weights in proportion to the gradient, especially in large datasets such as ours. We

improve the efficiency by computing the derivative on a random small minibatch of

training samples, rather than the entire training set which would be computationally

exhaustive. Furthermore, we optimize SGD by smoothing the gradient computation

for minibatch t using a momentum coefficient α as 0 < α < 1. The update rule can

then be written as

∆wi j(t) = α∆wi j(t −1)− ǫ
∂E

∂wi j(t)
(6)
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We employ a weight decay of λ = 5 ·10−4 to regularize the network. We begin the

training with an initial learning rate of λ0 and reduced it every iteration by an inverse

learning rate policy as λn = λ0 ∗ (1+ γ ∗N)−c. Where λ0 is the base learning rate,

N is the number of iterations and c is the power. We use c = 0.75 and γ = 0.1. We

determine the hyperparameter λ0 by experimenting with different rates in an initial

trial. The best performing rate of 10−2 was then ascertained. The entire training of

350K iterations (∼ 135 epochs) took about 4 days on a single GPU.

3.3 Noise Aware Fine-Tuning

Classification performance is often strongly affected by noise from the environment.

Since the microphone is mounted on the robot and used in real-world environments,

it is inevitable that the recorded signals include the robot’s motor noise in addi-

tion to environmental noise. Fortunately deep networks have good generalization to

real-world scenarios if they are trained with noisy samples. In order to quantify the

performance in the presence of noise, we added WGN to training samples at various

SNR’s and measured the classification accuracy. WGN adds a very similar effect as

various physical and environmental disturbances including wind and water sources.

From experiments detailed in Sect. 5.4, it can be seen that the classification per-

formance of our network quickly drops below SNRs of 40 dB. As a solution to this

problem, we augmented raw audio signals with additive WGN at SNRs ranging

from 50 dB to −10 dB, in steps of 10 dB. We then performed noise adaptive fine-

tuning of all the layers in our network with the training set containing both noised

and original samples. The weights and biases are initialized by coping from our

original model trained as described in Sect. 3.2. The new model is then trained by

minimizing the negative log likelihood as shown in Eq. (5). We again use minibatch

SGD with a learning rate 1/10th of the initial rate use for training the network, 10−3.

The learning rate was further reduced by a factor of 10, every 20,000 iterations.

4 Data Collection and Labeling

As we are particularly interested in analyzing the sounds produced from the vehicle-

terrain interaction on both indoor and outdoor terrains, we use the Pioneer P3-DX

platform which has a small footprint and feeble motor noise. Interference from

nearby sound sources in the environment can drastically influence the classification.

It can even augment the vehicle-terrain interaction data by adding its own attributes

from each environment. In order to prevent such biases in the data being collected,

we use a shotgun microphone that has a supercardioid polar pattern which helps in

rejecting off-axis ambient sounds. We chose the Rode VideoMic Pro and mounted

it near the right wheel of the robot as shown in Fig. 3. The integrated shock mount

in the microphone prevents any unwanted vibrations from being picked up.
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(a) Asphalt
(b) Mowed

Grass

(c) Grass

Med-High
(d) Paving (e) Cobblestone

(f) Offroad (g) Wood (h) Linoleum (i) Carpet

Fig. 2 Terrain classes and an example spectrogram of a 2,000 ms clip (colorized spectrograms are

only shown for better visualization, spectrograms used for training are in gray scale).

We collected over 15 hours of audio data from a total of 9 different indoor and

outdoor terrains. We particularly choose our terrain classes such that some of them

have similar visual features (Fig. 2(a), 2(h), 2(i)) and hence pose a challenge to vi-

sion based approaches. The data was collected at several different locations to have

enough generalizability, therefore even signals in each class have varying temporal

and spectral characteristics. The robots speed was varied from 0.1 ms−1 to 1.0 ms−1

during the data collection runs. The data was recorded in the lossless 16-bit WAV

format at 44.1 kHz to avoid any recording artifacts. Experiments were conducted

by recording at various preamp levels and microphone mounting locations. There

was no software level boost added during the final recordings as they also tended

to amplify the ambient noise significantly, instead the microphones 20 dB hardware

level boost was turned on.

All the data was manually labeled by looking at live tags with timestamps that

were made during the recordings. A waveform analyzer tool was used to crop out

any significant disturbances. The data from each class was then split into overlap-

ping time windows, where each window is then used separately as a new data sam-

ple for feature extraction. As Libby et al. mention in [15], choosing an appropriate

length for the time window is critical, as too short of a window might cut off a po-

tential feature and by having too large of a window we will loose the classification
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Fig. 3 The Pioneer P3-DX platform showing the shotgun microphone with the shock mount,

mounted close to the wheel.

resolution. We also analyzed the effect of different window sizes in our experiments.

In order to train the classifier to be generalizable to different locations with the same

terrain, a ten-fold cross validation approach was adopted. Furthermore, we ensured

that all the sets and classes have approximately the same number of samples to pre-

vent any bias towards a specific class.

5 Experimental Results

We performed the implementation and evaluations using the publicly available,

Caffe [11] deep learning toolbox and ran all our experiments on a system with an

Intel i7-4790K processor and a NVIDIA GTX 980M GPU. We used the cuDNN

library for GPU acceleration. For all the baseline comparisons and noise robust-

ness tests, we chose a clip window length of 300 ms and performed ten-fold cross-

validation. The results from our experiments are described in the following sections.

5.1 Baseline Comparison

We chose two benchmark classifiers, k-Nearest Neighbors (kNNs) and SVMs.

SVMs perform well in high dimensional spaces and kNNs perform well when there

are very irregular decision boundaries. As a preprocessing step we first normal-

ize the data to have zero mean. We use the one-vs-rest voting scheme with SVM

to handle multiple classes and experimented with Linear and Radial Basis Func-

tion (RBF) kernels as decision functions. We used inverse distance weighting for

kNNs and optimized the hyperparameters for both the classifiers by a grid-search

using cross-validation. We empirically evaluated six popular feature combinations

described in Sect. 2, with SVM and kNN. We used scikit-learn and LibSVM for the

implementation. It was ensured that the training and validation sets do not contain

the same audio split or the augmented clip. The results from this comparison are

shown in Table 1.
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Table 1 Classification accuracy of several baseline feature extraction approaches on our dataset

Features SVM Linear SVM RBF k-NN

Ginna 44.87 ± 0.70 37.51 ± 0.74 57.26 ± 0.60

Spectral 84.48 ± 0.36 78.65 ± 0.45 76.02 ± 0.43

Ginna & Shape 85.50 ± 0.34 80.37 ± 0.55 78.17 ± 0.37

MFCC & Chroma 88.95 ± 0.21 88.55 ±±± 0.20 88.43 ± 0.15

Trimbral 89.07 ± 0.12 86.74 ± 0.25 84.82 ± 0.54

Cepstral 89.93 ±±± 0.21 78.93 ± 0.62 88.63 ±±± 0.06

DCNN (ours) 97.36 ±±± 0.12

The best performing baseline feature-classifier combination was Cepstral fea-

tures using a linear SVM kernel, although the performance using Trimbral features

are closely comparable. This feature set outperformed Ginna and Shape features by

over 9%. Ginna and Shape features using an SVM RBF kernel was the best perform-

ing combination in the work by Libby and Stentz [15]. The worst performance was

from Ginna features using an SVM RBF kernel. It can also be seen that the feature

sets containing MFCCs show comparatively better results than the others.

Our DCNN yields an overall accuracy of 97.36 ± 0.12%, which is a substantial

improvement over the hand-crafted feature sets. We get an improvement of 7% over

the best performing Cepstral features and 12% over Ginna and Shape features using

the same clip length of 300 ms. Furthermore, using a clip window size of 500 ms,

our network achieves an accuracy of 99.41%, a 9% improvement over the best per-

forming baseline approach. This strongly demonstrates the potential for using sound

to classify vehicle-terrain interactions in a variety of environments.

5.2 Overall DCNN Performance

To further investigate classification performance of our network we computed the

confusion matrix, which helps us understand the misclassifications between the

classes. Fig. 4 shows the confusion matrix for ten-fold cross validation.

The best performing classes were carpet and asphalt, while the most misclassified

was offroad and paving, which were sometimes confused with each other. Both

these classes have similar spectral responses when the clip window gets smaller

than 500 ms. Our system still outperforms all baseline approaches by wide margin.

We also compared the per-class recall as it gives an insight on the ratio of correctly

classified instances. Fig. 5 shows the per-class recall using ten-fold cross validation.

The network achieves an overall recall of 97.61%.
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5.3 Varying Clip Length

We compared the average cross-validated accuracy of our network using varying

audio clip lengths and execution times. Each clip is essentially a new sample for

classification, therefore the shorter the clip, the higher is the rate at which we can

infer the terrain. In addition, the shorter the clip, the faster is the execution time.

For an application such as ours, fast classification and execution rates are essential

for making quick trafficability decisions. Table 2 shows the overall classification

accuracy using the DCNN approach with various window sizes.

Table 2 Classification accuracy of our system at varying audio clip lengths and the corresponding

time taken to process though the pipeline.

Clip Length (ms) 2000 1500 1000 500 300

Accuracy (%) 99.86 99.82 99.76 99.41 97.36

Time (ms) 45.40 34.10 21.40 13.30 9.15

From the above table it can be seen that the deep network approach significantly

outperforms classification using hand-crafted feature sets. We get an improvement

of 7% over the best performing Cepstral features and 12% over Ginna and Shape

features using the same clip length of 300 ms. Furthermore, using a window size of

500 ms, our network achieves an accuracy of 99.41%, a 9% improvement over the

best performing baseline approach.
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5.4 Robustness to Noise

For real-world applications such as ours, robustness to noise is a critical property.

However models can only be insensitive to noise up to a certain level. We analyzed

the effect of Gaussian white noise on the classification performance at several SNRs

as shown in Fig. 6. It can be seen that for some classes such as carpet, grass and cob-

ble, the performance decreases exponentially at different intensities, while for oth-

ers such as linoleum and asphalt, the performance seems to be affected marginally

compared to others. On the other extreme, wood and paving show remarkable ro-

bustness for SNRs upto 20 dB, thereafter the performance drops to zero. This can

be attributed to the fact that spectral components are much wider for the classes that

show more robustness and for the −10 dB SNR, only the classes that have certain

pulses still over the noise signal are recognizable.
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Fig. 6 Per-class precision of our network when subject to different levels of white Gaussian noise.

The levels mentioned in the legend are SNRs.

As a solution to this problem, we fine-tuned our trained model on samples with

additive Gaussian white noise as described in Sect. 3.2. Table 3 shows the average

cross-validated recognition accuracy of our network at different SNR, before and

after fine-tuning. Our fine-tuned model significantly outperforms our base model on

a wide range of SNRs. The best performing classes were mowed grass, linoleum,

asphalt, wood and carpet, with over 99% accuracy in all the SNRs shown in Table 3.

Paving, cobble and offroad classes yielded a recognition accuracy of about 95%,

averaged over all the SNRs. The only class that was slightly negatively affected

by the fine-tuning was wood at SNR of 20 dB, where there was a 0.2% loss in

recognition performance.

We also tested our fine-tuned model on the test set with no noise samples and the

average accuracy over all the classes was 99.57%, which is a 2.21% improvement

over our base models performance, clearly showing that noise adaptive fine-tuning is
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Table 3 Influence of white Gaussian noise onto the classification rate. SNR is in dB and accuracy

is in percent. The standard deviations were less than 1%.

SNR 40 30 20 10 0 -10

Before FT 91.42 76.45 70.66 45.06 41.91 32.01

After FT 99.49 99.12 98.56 97.97 97.09 95.90

FT = Fine-tuning

a necessary step. This improvement can be attributed to the fact that by augmenting

the signals with noise samples, we provide the network some prior knowledge about

the distribution of the signals which boosts the recognition performance. The only

significant misclassification was in the offroad class, which was 1% of the times

misclassified as paving. The other classes had almost negligible misclassifications.
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Fig. 7 The map on the left shows the trajectory taken by the robot during a classification test run

using a mobile phone microphone. The variation in speed along the path is indicated in red and

wider red points denote slower speed. The graph on the right shows the classification result, along

with the corresponding probabilities for the path shown in the map. True positives are shown as

green markers and false positives are shown are red markers.

To further stress test our network, we collected noisy samples in a new envi-

ronment using a mobile phone that also tagged each sample with a GPS location.

The mobile phone has a condenser microphone, which unlike the shotgun micro-

phone that we used before, collects sounds from every direction, thereby adding

considerable amount of background noise. One of the test paths that the robot tra-

versed is shown in the map in Fig. 7. The figure also shows then variation in speed

(0−2ms−1) along the path. Thicker red lines in the map, indicate slower speed. Our

network achieved an accuracy of 98.54% on the mobile phone dataset. This shows

the recognition robustness, not only to real-world environments but also invariant to

the type of microphone. In addition, the graph in Fig. 7 shows the false positives and

true positives along the traversed path. It can be seen that most of the false positives

are in the paving class and this primarily occurs when the speed is above 1 ms−1

and the height of the paving is highly irregular, thereby misclassifying as offroad.

Interestingly, there is also significant fluctuations in the class probabilities of the

false positives along the paving path when the speed is below 1 ms−1.
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Fig. 8 Confusion matrix for classification runs using data from a mobile phone microphone.

Paving and Cobble show decreased performance due to false positives with Offroad and Grass.

Fig. 8 shows the confusion matrix for the entire mobile phone microphone dataset

which contains about 2.15 hours of audio data. The classes that show a dip in

performance are paving, cobblestones and offroad. The paving class shows a non-

negligible false positive rate as it is often misclassified as offroad. Part of this mis-

classification is due variation in speed and the false positives in the terrain transition

boundaries.

6 Conclusion

In this paper, we introduced a novel approach that uses only sound from vehicle-

terrain interactions to robustly classify a wide range of indoor and outdoor ter-

rains. We evaluated several baseline audio features and presented a new deep con-

volutional neural network architecture that achieves state-of-the-art performance in

proprioceptive terrain classification. Our GPU-based implementation operates on

300 ms windows and is 1,800 times faster than real-time, i.e., our system can clas-

sify a years worth of audio data in roughly 4.8 hours. Additionally, our experiments

in classifying audio signal corrupted with white Gaussian noise demonstrate our

networks robustness to a great extent. We additionally show that our network fine-

tuned with noisy samples performs exceptionally well even at very low signal-to-

noise ratios. Furthermore, our empirical evaluations with an inexpensive low-quality

microphone shows that our approach is invariant to the type of microphone and can

handle significant amount of real-world noise.
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