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Abstract— Robust scene understanding of outdoor environ-
ments using passive optical sensors is a critical problem charac-
terized by changing conditions throughout the day and across
seasons. The perception models on a robot should be able learn
features impervious to these factors in order to be operable
in the real-world. In this paper, we propose a convoluted
mixture of deep experts (CMoDE) model that enables a multi-
stream deep neural network architecture to learn features from
complementary modalities and spectra that are resilient to
commonly observed environmental disturbances. Our model
first adaptively weighs features from each of the individual
experts and then further learns fused representations that are
robust to these disturbances namely shadows, snow, rain, glare
and motion blur. We comprehensively evaluate the CMoDE
model against several other existing fusion approaches and show
that our proposed model exceeds the state-of-the-art.

I. INTRODUCTION

As robots are progressively being deployed for real-world
outdoor tasks, scene understanding plays a pivotal role for
successful operation. Perception in outdoor environments is
inherently more challenging than indoors, considering the
frequent appearance changes that take place due to the vary-
ing environmental conditions. Some of these disturbances
such as shadows cause a minor change in appearance that
can be filtered or transformed to an invariant color space [4],
whereas others such as snow, rain, low-lighting and motion
blur have adverse effects that are hard to negate. Features
from complementary modalities and spectra that are not
influenced by these disturbances can be intelligently fused
to obtain a robust feature set.

Recent advances in Deep Convolutional Neural Networks
(DCNNs) and new multimodal datasets have significantly
improved the state of the art of various robotic perception
problems. Eitel et al. [1] use a late-fusion approach for
object detection, where two individual networks are first
trained with RGB and depth data respectively and their
features are concatenated to yield a combined prediction.
Valada et al., [7] use a similar approach for semantic segmen-
tation, but in addition of combining features from multiple
networks, their model further learns fused filters using a
stack of convolution and pooling layers. Hinton et al., [2]
introduced the classical Mixture of Experts (MoE) model,
where experts map the input to a set of outputs and a gating
network produces a probability distribution over the experts.
Whereas, Mees et al., [5] extended the MoE to detect people
in varying illumination. Their gating network uses inner-
product layers to yield two scalars, that are then weighted
over each expert to obtain a combined prediction.
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Fig. 1. Qualitative comparison of the segmentations obtained using the
LFC [6] and the CMoDE approach. The first row shows the segmentation
in highly shadowed areas with glare (grgb(X1) = 0.49, gevi(X1) = 0.51),
while the second row shows the performance in the presence of snow
(grgb(X2) = 0.47, gdepth(X2) = 0.53).

In contrast to these approaches, we propose a Convo-
luted Mixture of Deep Experts (CMoDE) model that builds
upon [5], to fuse multiple modalities or spectra for seman-
tic segmentation. The model has two components: experts
that map particular modalities to the segmentation output
and the adaptive gating network that learns “how much”
and “when” to rely on each expert. We train the network
to learn the convex-combination of the experts by back-
propagating into the weights, similar to any other synapse
weight or convolutional kernel. We show that our approach
exceeds the state-of-the-art fusion techniques, in addition to
demonstrating robust segmentation in adverse environments.

II. CONVOLUTED MIXTURE OF DEEP EXPERTS
We represent the training set of a CMoDE, with E experts

and C segmentation classes, as S= {(Xn,yn), n= 1,2, . . . ,N}.
Each training example, Xn =(x1,x2, . . . ,xE) is a vector of raw
images from different modalities or spectra, where image xi
is shown only to the i-th expert. yn is a W ×H segmentation
mask, where, yn(r,c)∈ {0,1, . . . ,C}, for r,c∈ {1,2, . . . ,W}×
{1,2, . . . ,H}, maps the membership of pixel Xi(r,c)∈ Xn for
each modality, in one of the C classes. Since experts trains
on images from different modalities or spectra, each one
specializes in a particular sub-space of Xn. The i-th expert,
produces it’s own segmentation mask, denoted by hi(xi).
The final segmentation mask is a convex combination of the
outputs of E experts; weighted by g(Xn), which is the output
of the adaptive gating network. Our network further learns
fused representations over these outputs using a convolution
layer. The final output is a per-pixel segmentation mask ŷn,
corresponding to the input Xn and is written as,

ŷn = f (Xn) = softmax

(
W∗

[
E

∑
i=1

gi(Xn ) hi(xi)

])
(1)

where, gi (Xn) corresponds to the scalar weight for the i-th
expert and W is a stack of convolution kernels learned on
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Fig. 2. Convoluted Mixture of Deep Experts architecture configuration.
Any DCNN based segmentation network can be plugged in for each of the
experts depicted. We use the DCNN described in [7] for our experiments.

the fused representation and ∗ is the convolution operation.
Replacing the input to the gating network, consisting of raw
pixels; with a representation of Xn from within the expert
network defined by ρ(Xn) = (r(x1),r(x2), . . . ,r(xE)), yields
improved results with lesser computation time. r(xi) is a
representation of xi taken from the i-th expert, for instance,
the output of conv4. Defining r from the contracting part
of the expert network leverages the fact that W and H
decrease, while channel depth increases towards the end
of the contracting part, forcing the network to increase the
”what” and reduce the ”where” [6]. This ”what” is of primary
importance to the adaptive gating network. For instance, if
an RGB image is washed out due to poor lighting conditions,
the network needs to only know ”what” and not ”where” the
image is washed out; making it rely less on the RGB expert
and give it a lower score, gRGB(Xn ), while relying more on
other experts. Re-writing the equation with ρ(·),

ŷn = f (Xn) = softmax

(
W∗

[
E

∑
i=1

gi(ρ (Xn)) ·hi(xi)

])
(2)

Figure 2 depicts the generic architecture of our network:
the DCNN experts and the adaptive gating network. We use
two experts for simplicity, but the architecture is generaliz-
able for arbitrary number of experts. Each expert network
is trained separately and uses a subspace of Xn to train. For
this work, we use the base architecture described by Valada
et al. [7] for each expert. The adaptive gating network takes
ρ(Xn) as input and produces probability values to weight
each expert. The 3D volumes each of size C×W ×H from
each expert are weighted according to g(ρ(Xn)). Convolu-
tions followed by a softmax layer converts these to per-
pixel class membership probability. It should be noted that
while training the adaptive gating network the weights of the
experts are kept constant.

III. EXPERIMENTAL RESULTS

We use the publicly available Freiburg Multispectral Forest
dataset [7] for our experiments and the Caffe [3] deep learn-
ing framework for the implementations. We consider three
different modalities and spectra, namely, RGB, depth and
Enhanced Vegetation Index (EVI). EVI, which is computed

TABLE I
COMPARISON OF DEEP FUSION APPROACHES.

Input Approach IoU PA FPR FNR

RGB Unimodal 84.90 94.47 7.80 7.40
DEPTH Unimodal 76.10 88.93 12.76 11.14
EVI Unimodal 83.25 93.28 8.70 8.10

RGB-D

Average 80.75 91.45 10.83 8.42
Late-fused Conv [7] 84.04 93.19 9.40 6.55
CMoDE 86.79 93.92 7.17 6.04

RGB-E

Average 84.88 93.75 8.29 6.83
Late-fused Conv [7] 86.90 94.44 7.00 5.76
CMoDE 86.97 94.49 7.12 5.91

using RGB and Near-infrared data, is useful for highlighting
high biomass regions and vegetation monitoring. Recent
work has demonstrated the utility in using EVI with RGB
for segmentation in forested areas [7].

Tab. I shows the performance comparison of our CMoDE
model with different fusion approaches. The metrics shown
(in %) correspond to Mean Intersection over Union (IoU),
Mean Pixel Accuracy (PA), False Positive Rate (FPR), False
Negative Rate (FNR). For a baseline, we also show the
performance obtained while averaging predictions from each
network trained on a specific modality. It can be seen
that averaging demonstrates a poor performance compared
to other techniques. Our CMoDE model trained on RGB
and depth images, yields a 6.04% improvement over the
averaging approach and 2.74% improvement over the Late-
fused Convolution (LFC) approach. While using RGB and
EVI as input, the CMoDE model yields a comparatively
better performance and demonstrates better qualitative results
as shown in Fig. 1. The first row shows the segmentation in
low-lighting and glare, while the second row shows results
in the presence of snow. It can be seen that the CMoDE
model accurately segments the scene in the presence of these
disturbances. In addition, a live demo can be accessed at
http://deepscene.cs.uni-freiburg.de/.

IV. CONCLUSION
We introduced a new deep adaptive fusion architecture

for end-to-end segmentation of multimodal and multispectral
images. Our CMoDE model achieves state-of-the-art perfor-
mance compared to unimodal segmentation and existing fu-
sion approaches. More importantly, the model demonstrates
considerable robustness to commonly observed environmen-
tal disturbances, critical for real-world robotic perception.
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