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Abstract. Semantic scene understanding of unstructured environments
is a highly challenging task for robots operating in the real world. Deep
Convolutional Neural Network architectures define the state of the art
in various segmentation tasks. So far, researchers have focused on seg-
mentation with RGB data. In this paper, we study the use of multi-
spectral and multimodal images for semantic segmentation and develop
fusion architectures that learn from RGB, Near-InfraRed channels, and
depth data. We introduce a first-of-its-kind multispectral segmentation
benchmark that contains 15, 000 images and 366 pixel-wise ground truth
annotations of unstructured forest environments. We identify new data
augmentation strategies that enable training of very deep models using
relatively small datasets. We show that our UpNet architecture exceeds
the state of the art both qualitatively and quantitatively on our bench-
mark. In addition, we present experimental results for segmentation un-
der challenging real-world conditions. Benchmark and demo are publicly
available at http://deepscene.cs.uni-freiburg.de.

Keywords: Semantic Segmentation, Convolutional Neural Networks,
Scene Understanding, Multimodal Perception

1 Introduction

Semantic scene understanding is a cornerstone for autonomous robot naviga-
tion in real-world environments. Thus far, most research on semantic scene un-
derstanding has been focused on structured environments, such as urban road
scenes and indoor environments, where the objects in the scene are rigid and
have distinct geometric properties. During the DARPA grand challenge, sev-
eral techniques were developed for offroad perception using both cameras and
lasers [20]. However, for navigation in forested environments, robots must make
more complex decisions. In particular, there are obstacles that the robot can
drive over, such as tall grass or bushes, but these must be distinguished safely
from obstacles that the robot must avoid, such as boulders or tree trunks.

In forested environments, one can exploit the presence of chlorophyll in cer-
tain obstacles as a way to discern which obstacles can be driven over [2]. However,
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the caveat is the reliable detection of chlorophyll using monocular cameras. This
detection can be enhanced by additionally using the Near-InfraRed (NIR) wave-
length, which provides a high fidelity description on the presence of vegetation.
Potentially, NIR images can also enhance border accuracy and visual quality.
We aim to explore the correlation and de-correlation of visible and NIR images
frequencies to extract more accurate information about the scene.

In this paper, we address the segmentation problem in forested environments
by leveraging deep up-convolutional neural networks and techniques developed
in the field of photogrammetry using multispectral cameras to obtain a robust
pixel-accurate segmentation of the scene. We present an inexpensive system to
capture RGB, NIR, and depth data using two monocular cameras, and introduce
a first-of-a-kind multispectral and multimodal segmentation benchmark. We first
evaluate the segmentation using our UpNet architecture, individually trained
on various spectra and modalities contained in our dataset, then identify the
best performing modalities and fuse them using various Deep Convolutional
Neural Network (DCNN) fusion architecture configurations. We show that the
fusion approach outperforms segmentation using either one of the modalities.
Furthermore, we show that the fusion models trained on an extended version
of our dataset containing extreme outdoor conditions such as snow, low-lighting
and glare, demonstrate higher robustness than their unimodal counterparts.

2 Related Work

In recent years, deep learning approaches have successfully been applied to vari-
ous robotic vision tasks including object recognition [19, 5], detection [17, 15] and
semantic segmentation [14, 10, 11, 1]. For segmentation tasks, Long et al. [11] pro-
posed fully convolutional networks (FCNs) that use pooling layers from a clas-
sification network to refine the segmentation produced by deconvolution layers.
Oliveira et al. [14] proposed an improved architecture that further increases the
efficiency using parameter reduction and additional refinements. Liu et al. [10]
introduced a FCN called ParseNet that models global context directly. Kendall et
al. [1] proposed another extension to FCNs that improves the efficiency by using
pooling indices computed in max-pooling for the upsampling step.

Although, DCNNs have achieved state-of-the-art performance in various per-
ception tasks, so far they have only been applied to and demonstrated on stan-
dard datasets that primarily contain RGB or at most depth images, collected in
ideal conditions without aggressive changes in weather and illumination. There
are limited number of DCNN architectures that explore the fusion of multiple
modalities or spectra [3, 16, 18]. Eitel et al. [3] proposed a late-fusion approach
for object detection using RGB-D data. Their approach utilizes a two-stream
convolutional neural network (RGB and colorized depth image), first trained
individually on each modality, followed by the fusion of their predictions using a
set of inner-product layers. Schwarz et al. [16] proposes a similar approach that
uses a two-stream network for RGB-D fusion, where the DCNN is only used for
feature extraction followed by an SVM to determine the category, instance, and
pose. Socher et al. [18] proposes technique that uses RGB and depth features
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Fig. 1. Robot platform used for experimentation and sample images from our bench-
mark showing various spectra and modalities contained in our benchmark.

extracted from a single layer CNN and feeds both representations to a set of re-
current neural networks (RNNs). The concatenation of all the vectors from the
RNNs forms the final representation which is then given to a softmax classifier.

In contrast to these approaches, our techniques learn highly discriminative
features for semantic segmentation. We perform comprehensive evaluations on
these two fusion approaches using combinations of multiple modalities and spec-
tra contained in our benchmark. To the best of our knowledge, this is the first
work to explore the use of multimodal and multispectral data for end-to-end
semantic segmentation.

3 Multispectral Segmentation Benchmark

We collected the dataset using our Viona autonomous mobile robot platform
equipped with a Bumblebee2 stereo vision camera and a modified dashcam with
the NIR-cut filter removed for acquiring RGB and NIR data respectively. We use
a Wratten 25A filter in the dashcam to capture the NIR wavelength in the blue
and green channels. Both cameras are time synchronized and frames were cap-
tured at 20Hz. In order to match the images captured by both cameras, we first
compute SIFT [12] correspondences between the images using the Difference-of-
Gaussian detector to provide similarity-invariance. We then filter the detected
keypoints with the nearest neighbours test, followed by requiring consistency
between the matches with respect to an affine transformation. The matches are
further filtered using Random Sample Consensus (RANSAC) [4] and the trans-
formation is estimated using the Moving Least Squares method by rendering
through a mesh of triangles. We then transform the RGB image with respect
to the NIR image and crop to the intersecting regions of interest. Although
our implementation uses two cameras, it is the most cost-effective solution com-
pared to commercial single multispectral cameras. Fig. 1 shows our autonomous
robot platform that we used and some examples from our benchmark from each
spectrum and modality.

We collected data on three different days to have enough variability in lighting
conditions as shadows and sun angles play a crucial role in the quality of acquired
images. Our raw dataset contains over 15, 000 images sub-sampled at 1Hz, which
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corresponds to traversing about 4.7km each day. Our benchmark contains 366
images with pixel level groundtruth annotations which were manually annotated.
As there is an abundant presence of vegetation in our environment, we compute
global-based vegetation indices such as Normalized Difference Vegetation Index
(NDVI) and Enhanced Vegetation Index (EVI) to extract consistent spatial and
global information. NDVI is resistant to noise caused due to changing sun angles,
topography and shadows but is susceptible to error due to variable atmospheric
and canopy background conditions [7]. EVI was proposed to compensate for these
defects with improved sensitivity to high biomass regions and improved detection
though decoupling of canopy background signal and reduction in atmospheric
influences. For all the images in our dataset, we calculate NDVI and EVI as
shown by Huete et al. [7].

Although our dataset contains images from the Bumblebee stereo pair, the
processed disparity images were substantially noisy due to several factors such as
rectification artifacts, motion blur, etc. We compared the results from semi-global
matching [6] to a DCNN approach that predicts depth from single images and
found that for an unstructured environment such as ours, the DCNN approach
gave better results. In our work, we use the approach from Liu et. al, [9] that
employs a deep convolutional neural field model for depth estimation by con-
structing unary and pairwise potentials of conditional random fields. Our dataset
is publicly available at http://deepscene.cs.uni-freiburg.de/\#datasets.

4 Technical Approach

In this section, we first describe our base network architecture for segmenting uni-
modal images and then elaborate our approaches for learning from multimodal
and multispectral images. We represent the training set as S = {(Xn, Yn), n =
1, . . . , N}, where Xn = {xj , j = 1, . . . , |Xn|} denotes the raw image, Yn =
{yi, j = 1, . . . , |Xn|}, yj ∈ {0, C} denotes the corresponding ground truth mask
with C classes, θ are the parameters of the network and f(xj ; θ) is the activation
function. The goal of our network is to learn features by minimizing the cross-
entropy (softmax ) loss that can be computed as L(u, y) = −

∑
k

ykloguk. Using

stochastic gradient decent, we then solve

θ∗ = argmin
θ

N∑
i=1

L
((
f(xi; θ)

)
, yi
)
. (1)

Recently, approaches that employ DCNNs for semantic segmentation have
achieved state-of-the-art performance on segmentation benchmarks including
PASCAL VOC, PASCAL Parts, PASCAL-Context, Sift-Flow and KITTI [11,
14]. These networks are trained end-to-end and do not require multi-stage tech-
niques. Due to their unique architecture they take the full context of the image
into account while providing pixel-accurate segmentations. We build upon our
UpNet architecture, following this general principle with two main components:
contraction and expansion. Given an input image, the contraction is responsible
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Fig. 2. Our UpNet architecture with up-convolutional layers of size C×Ncl, where Ncl

is the number of classes and C is a scalar factor of filter augmentations. The contractive
segment of the network contains convolution and pooling layers, while the expansive
segment of the network contains upsampling and convolution layers.

for generating a low resolution segmentation mask. We use the 13-layer VGG [19]
architecture as basis on the contraction side. The expansion side consists of five
up-convolutional refinement segments that refine the coarse segmentation masks
generated by the contraction segment. Each up-convolutional refinement is com-
posed of one up-sampling layer followed by a convolution layer. We add a rec-
tified linear unit (ReLU) after each refinement and to avoid overfitting and we
use spatial dropout after the first and last refinement layers.

The inner-product layers of the VGG-16 architecture has 4096 filters of 7×7
size, which is primarily responsible for relatively slow classification times. We
reduce the number of filters to 1024 and the filter size to 3× 3 to accelerate the
network. There was no noticeable performance drop due to this change. Recent
work have demonstrated improved performance by having variable number of
filters as in the contraction segment [13, 14]. We experimented with this rela-
tionship and now use a C ×Ncl mapping scheme, where C is a scalar constant
and Ncl is the number of classes in the dataset. This makes the network learn
more feature maps per class and hence increases the efficiency in the expansion
segment. In the last layer we use the number of filters as Ncl in order to calculate
the loss only over the useful classes. The structure of our base UpNet architec-
ture is shown in Fig. 2. We train our segmentation network individually on RGB,
NIR and depth data, as well as on various combinations of these spectra and
modalities, as shown in section 5. To provide a more informative and sharper
segmentation, we introduce two approaches;

– Channel Stacking : The most intuitive paradigm of fusing data using DCNNs
is by stacking them into multiple channels and learning combined features
end-to-end. However, previous efforts have been unsuccessful due to the dif-
ficulty in propagating gradients through the entire length of the model [11].

– Late-Fused-Convolution: In the late-fused-convolution approach, each model
is first learned to segment using a specific spectrum/modality. Afterwards,
the feature maps are summed up element-wise before a series of convolu-
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Fig. 3. Deep fusion architecture configurations proposed. Channel Stacking involves
concatenating multiple modalities into channels and learning combined features from
the beginning, while Late-fused Convolution involves individually learning to segment
using separate streams, followed by further learning fused representations.

tion, pooling and up-convolution layers. This approach has the advantage
as features in each model may be good at classifying a specific class and
combining them may yield a better throughput, even though it necessitates
heavy parameter tuning.

Fig. 3 shows a depiction of both these approaches. Our experiments provide an
in-depth analysis of the advantages and disadvantages of each of these approaches
in the context of semantic segmentation.

5 Experimental Results

In this section, we report results using the various spectra and modalities con-
tained in our benchmark. We use the Caffe [8] deep learning framework for the
implementation. Training on an NVIDIA Titan X GPU took about 4 days with
cuDNN acceleration.

5.1 Comparison to the state of the art

To compare with the state-of-the-art, we train models using the RGB RSC (Ro-
tation, Scale, Color) set from our benchmark which contains 60,900 RGB images
with rotation, scale and color augmentations applied. We selected the baseline
networks by choosing the top three end-to-end deep learning approaches from the
PASCAL VOC 2012 leaderboard. We explored the parameter space to achieve
the best baseline performance. We trained our network with both fixed and poly
learning rate policies with a initial learning rate λ0 = 10−9, which can be given

as λn = λ0 ×
(

1−N
Nmax

)c
, where λn is the current learning rate, N is the iteration

number, Nmax is the maximum number of iterations and c is the power. We
train the network using stochastic gradient descent with a momentum of 0.9 for
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Table 1. Performance of our proposed model in comparison to the state-of-the-art

Baseline IoU PA PRE REC FPR FNR Time

FCN-8 [11] 77.46 90.95 87.38 85.97 10.32 12.12 ∼ 255ms
SegNet [1] 74.81 88.47 84.63 86.39 13.53 11.65 ∼ 156ms
ParseNet [10] 83.65 93.43 90.07 91.57 8.94 7.41 ∼ 90ms

Ours Fixed lr 84.90 94.47 91.16 91.86 7.80 7.40 ∼ 52ms
Ours Poly lr 85.31 94.47 91.54 91.91 7.40 7.30 ∼ 52ms
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Fig. 4. Comparison of forward pass time
with baseline networks.
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Fig. 5. Comparison of per-class IoU of
best baseline (Parsenet) with ours.

300, 000 iterations for each refinement stage. We found the poly learning rate
policy to converge faster and yield a slight improvement in performance.

The metrics shown in Tab. 1 correspond to Mean Intersection over Union
(IoU), Mean Pixel Accuracy (PA), Precision (PRE), Recall (REC), False Positive
Rate (FPR), False Negative Rate (FNR). The time reported is for a forward pass
through the network. The results demonstrate that our network outperforms all
the state-of-the-art approaches and with a runtime of almost twice as fast as the
second best technique.

5.2 Parameter Estimation and Augmentation

To increase the effective number of training samples, we employ data augmenta-
tions including scaling, rotation, color, mirroring, cropping, vignetting, skewing,
and horizontal flipping. We evaluated the effect of augmentation using three
different subsets in our benchmark: RSC (Rotation, Scale, Color), Geometric
augmentation (Rotation, Scale, Mirroring, Cropping, Skewing, Flipping) and all
aforementioned augmentations together. Tab. 2 shows the results from these ex-
periments. Data augmentation helps train very large networks on small datasets.
In our network, we replace the dropout in the VGG architecture with spatial
dropout which gives us an improvement of 5.7%. Furthermore, we initialize the
convolution layers in the expansion part of the network with Xavier initializa-
tion, which makes the convergence faster and also enables us to use a higher
learning rate. This yields a 1% improvement.
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Table 2. Comparison on the effects of augmentation on our benchmark.

Sky Trail Grass Veg Obst IoU PA

Ours Aug.RSC 90.46 84.51 86.72 90.66 44.39 84.90 94.47
Ours Aug.Geo 89.60 84.47 86.03 90.40 42.23 84.39 94.15
Ours Aug.All 90.39 85.03 86.78 90.90 45.31 85.30 94.51

Table 3. Comparison of deep fusion approaches. D, N, E refer to depth, NIR and EVI
respectively. CF and LFC refer channel fusion and late-fused-convolution.

Sky Trail Grass Veg Obst IoU FPR FNR

RGB 90.46 84.51 86.72 90.66 44.39 84.90 7.80 7.40
NIR 86.08 75.57 81.44 87.05 42.61 80.22 10.22 9.60
DEPTH 88.24 66.47 73.35 83.13 46.13 76.10 12.76 11.14

NRG 89.88 85.08 86.27 90.55 47.56 85.23 7.70 7.10
EVI 88.00 83.40 84.59 87.68 44.9 83.25 8.70 8.10
NDVI 87.79 83.86 83.57 87.45 48.19 83.39 8.62 8.00
3CF RGB-N-D 89.23 85.86 86.08 90.32 61.68 86.35 7.50 6.20
4CF RGB-N 89.64 83.37 85.83 90.67 59.85 85.79 7.00 7.20
5CF RGB-N-D 89.40 84.30 85.84 89.40 60.62 86.00 7.20 6.80

LFC RGB-D 90.21 79.14 83.46 88.67 57.73 84.04 9.40 6.55
LFC RGB-N 90.67 83.31 86.19 90.30 58.82 85.94 7.50 6.56
LFC RGB-E 90.92 85.75 87.03 90.50 59.44 86.90 7.00 5.76
LFC NRG-D 90.34 80.64 84.81 89.08 56.60 84.77 7.58 7.65

5.3 Evaluations on Multi-Spectra/Modality Benchmark

Segmentation using RGB yields best results among all the individual spectra
and modalities that we experimented with. The low representational power of
depth images causes poor performance in the grass, vegetation and trail classes,
bringing down the mean IoU. The results of the unimodal images shown in Tab. 3
demonstrate the need for fusion. Multispectrum channel fusion such as NRG
(Near-Infrared, Red, Green) shows greater performance when compared to their
individual counterparts and better recognition of obstacles. The best channel
fusion we obtained was using a three channel input, composed of grayscaled
RGB, NIR and depth data. It achieved an IoU of 86.35% and most importantly
a considerable gain (over 13%) on the obstacle class, which is the hardest to
segment in our benchmark. The overall best performance was from the late-fused-
convolution of RGB and EVI, achieving a mean IoU of 86.9% and comparably
top results in individual class IoUs as well. This approach also had the lowest
false positive and false negative rates.

5.4 Robustness Evaluation

We performed extensive evaluations on an extended version of our dataset con-
taining adverse conditions including snow, glare, motion blur and low lighting.
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Fig. 6. Segmented examples from our benchmark. Each spectrum provides valuable
information. First row shows the image and the corresponding segmentation in highly
shadowed areas. Second row shows the performance in the presence of glare and snow.

Fig. 6 shows some qualitative results from this subset. It can be seen that each
of the spectra performs well in different conditions. Segmentation using RGB
images shows remarkable detail, although being easily susceptible to lighting
changes. NIR images on the other hand show robustness to lighting changes but
often show false positives between the sky and trail classes. EVI images are good
at detecting vegetation but show a large amount of false positives for the sky.
We retrained the models presented in Tab. 3 on our adverse conditions dataset.
All the models demonstrate improved performance as they learn probable dis-
tributions of corruption patterns that occur due to a change in conditions that
take place throughout the day and across seasons.

Fig.7 shows the improvement in the mean IoU for both the fusion approaches
after the addition of the adverse conditions subset. For unimodal data, segmenta-
tion with NIR images have the largest improvement of 3.91% mean IoU, followed
by a 2.49% improvement for segmentation using RGB images. The model trained
using the NIR images also showed a 5.27% decrease in the false-positive rate.
For the Channel-stacking approach, segmentation using NRG images yielded the
highest mean IoU of 87.27%, which is an improvement of 2.04% compared to
the model trained on the dataset without the adverse conditions. Finally, for
our Late-fused convolution approach, similar to the results reported in Tab. 3,
segmentation using RGB and EVI yields the overall best results, achieving a
mean IoU of 88.16%.

Fig. 8 shows qualitative comparisons between the segmentation obtained us-
ing the RGB model and the two deep fusion approaches that have demonstrated
the best results in the quantitative experiments (Channel-stacking: NRG, Late-
fused convolution: RGB and EVI). Fig. 8 (a) shows results in low lighting con-
ditions and in the presence of shadows. In this scenario, models trained on RGB
data or using Channel-stacking often have difficulty in identifying the pixels
that belong to the trail class. This is especially evident in the images that have
very narrow trail paths (Fig. 8 (a), (c) and (d)). It can also be seen that the
results using the RGB model and the Late-fused Convolution have the highest
segmentation granularity, which is noticeable in the segmentation of trees.

Fig. 8 (b) exemplifies segmentation with high saturation. RGB and Late-fused
Convolution models demonstrate close similarity. Although it can be observed
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to depth, NIR and EVI respectively and the digits indicate the number of channels.

that only the Late-Fused Convolution model is able to accurately segment the
entire obstacle (building in the right background). It can often be seen that
when an obstacle is in the far background (Fig. 8 (b), (e) and (f), the RGB
model is only able to segment a small part of the obstacle and the Channel-
stacking model completely fails to detect it. Fig. 8 (c) is an example of where
both RGB and Channel-stacking models fail to segment a challenging transition
from grass to vegetation. In this example, the RGB model also shows difficulty
in accurately segmenting the trail class, especially in the areas that have tall
grass. The Channel-stacking model is able to detect the entire trail, however
it is unable to accurately detect the grass-vegetation transition and it shows
false positives in the obstacle class. The Late-fused Convolution model is able
to accurately detect such challenging transitions with a low false positive rate.

The examples shown in Figs. 8 (d), (e) and (f) illustrate adverse conditions
such as glare, motion blur and snow. Fig. 8 (d) and (e) show an example of
a scene with glare directly on the optics, which is common scenario for robots
operating in real-world outdoor environments. Both the RGB and the Channel-
stacking models are unable to accurately segment the classes in the presence of
these disturbances. Fig. 8 (e) shows a similar scenario with motion blur and in
the obstacles. Fig. 8 (f) is characterized by the presence of snow on the ground.
RGB and Channel-stacking models misclassify snow as a part of the trail class
and fail to detect the obstacles. The Late-fused Convolution model on the other
hand, demonstrates invariance to glare and snow. This highlights the advantage
of this approach, as it fuses feature maps further down the network, it is likely
to make less mistakes and learn complementary features. In Channel-stacking,
if there is a discrepancy in the features learned it cannot be corrected as the
multimodal and multispectral features are learned together from the beginning.

In addition to these experiments, a live demo can be accessed at http://

deepscene.cs.uni-freiburg.de/#demo, where a user can upload any image
of an unstructured forest environment for segmentation or choose a random
example from the benchmark.
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Fig. 8. Qualitative comparison of segmentation from the unimodal RGB model and our
two fusion strategies. Our late-fused convolution model consistently yields unparalleled
performance even in conditions such as snow, low-lighting, glare and motion blur.

6 Conclusions

In this paper, we presented a DCNN architecture for semantic segmentation of
outdoor environments. Our network outperforms several state-of-the-art archi-
tectures with near real-time performance which is critical for robotic applica-
tions. We extensively evaluated the benefits and drawbacks of deep early and
late-fusion architectures for dense pixel-wise segmentation using multiple modal-
ities and spectra. Our late-fused convolution technique exceeds channel stacking
by achieving the lowest false detection rate. We additionally trained models on an



12 Deep Multispectral Semantic Scene Understanding of Forested Environments

extended version of our dataset containing images captured in adverse weather
conditions such as snow, low-lighting, glare and motion blur. We showed that our
networks learn to leverage features from complementary modalities and spectra
to yield robust segmentation in the presence of these disturbances. Furthermore,
we qualitatively demonstrated the benefits of multispectral fusion in several ad-
verse conditions. The results demonstrate that fusing the NIR wavelength with
RGB to obtain yields a more robust segmentation in unstructured outdoor en-
vironments. We publicly released a first-of-a-kind multispectral and multimodal
semantic segmentation benchmark to accelerate further research on deep fusion.
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