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Abstract—Robust semantic scene understanding of unstruc-
tured environments is critical for robots operating in the real
world. Several inherent natural factors such as shadows, glare
and snow make this problem highly challenging, especially using
RGB images. In this paper, we propose the use of multispectral
and multimodal images to increase robustness of segmentation
in real-world outdoor environments. Deep Convolutional Neural
Network (DCNN) architectures define the state of the art in var-
ious segmentation tasks. However, architectures that incorporate
fusion have not been sufficiently explored. We introduce early
and late fusion architectures for dense pixel-wise segmentation
from RGB, Near-InfraRed (NIR) channels, and depth data. We
identify data augmentation strategies that enable training of very
deep fusion models using small datasets. We qualitatively and
quantitatively evaluate our approach and show it exceeds sev-
eral other state-of-the-art architectures. In addition, we present
experimental results for segmentation under challenging real-
world conditions. The dataset and demos are publicly available
at http://deepscene.cs.uni-freiburg.de.

I. INTRODUCTION

Semantic scene understanding is a cornerstone for au-
tonomous robot navigation in real-world environments. Thus
far, most research on semantic scene understanding has been
focused on structured environments, such as urban road scenes
and indoor environments, where the objects in the scene
are rigid and have distinct geometric properties. During the
DARPA grand challenge, several techniques were developed
for offroad perception using both cameras and lasers [20].
However, for navigation in unstructured outdoor environments
such as forests, robots must make more complex decisions. In
particular, there are obstacles that the robot can drive over,
such as tall grass or bushes, but these must be distinguished
safely from obstacles that the robot must avoid, such as
boulders or tree trunks.

In forested environments, one can exploit the presence of
chlorophyll in certain obstacles as a way to discern which of
them can be driven over [3]. However, the caveat is the reliable
detection of chlorophyll using monocular cameras. This detec-
tion can be enhanced by additionally using the NIR wavelength
(0.7 − 1.1µm), which provides a high fidelity description on
the presence of vegetation. Potentially, NIR images can also
enhance border accuracy and visual quality. We aim to explore
the correlation and de-correlation of visible and NIR images
frequencies to extract more accurate information about the
scene.

Fusion of multiple modalities and spectra has not been
sufficiently explored in the context of semantic segmentation.
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Fig. 1. Examples of segmentation in extreme lightning conditions using our
deep-fused convolution approach. First row shows the segmentation in the
presence of poor illumination and the second row shows a scene in presence
of high saturation. In both cases, our multispectral fusion approach accurately
segments the image.

We can classify fusion strategies into early and late fusion
approaches. Each of these approaches have their own benefits
and drawbacks. Early fusion involves providing the network
with multiple modalities from the beginning or from the
initial layers so that the network learns the combined features
all through. The major benefit of early fusion is minimal
computational burden. Late fusion approaches have multiple
streams of networks, one for each modality, followed by a
series of fusion layers. The individual streams are first trained
separately, followed by the training of the fusion layers to
yield a combined prediction. This approach can potentially
learn better complementary features along with fusion specific
features but the early fusion technique can only learn the
combined features from the beginning.

In this paper, we address the problem of robust segmentation
by leveraging deep up-convolutional neural networks and tech-
niques developed in the field of photogrammetry using multi-
spectral cameras to obtain robust pixel-accurate segmentation
of the scene. We developed an inexpensive system to capture
RGB, NIR, and depth data using two monocular cameras,
and introduce a first-of-a-kind multispectral and multimodal
segmentation dataset. We first evaluate the segmentation using
our UpNet architecture, individually trained on various spectra
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and modalities contained in our dataset. We then identify the
best performing modalities and fuse them using DCNN fusion
architecture configurations. We show that the fused result
outperforms segmentation using only RGB data in extreme
outdoor conditions.

The rest of the paper is organized as follows. We first
review the related work in Section II and describe our network
architectures in Section III. We detail our data collection
methodology in Section IV and the results from our exper-
iments in Section V. Finally, in Section VI we report the
conclusions and discuss future work.

II. RELATED WORKS

Recently, deep learning approaches have achieved state of
the art performance in semantic segmentation. Such techniques
perform segmentation on the whole image and are capable
of end-to-end learning [13, 15, 12, 1]. Long et al. [13]
proposed the so-called fully convolutional network (FCN)
which is one of the first attempts that uses earlier layers
in the hierarchy for refining the segmentation. FCNs do not
require any pre or post-processing and allow the network to
refine the coarse segmentation mask to the same resolution
of the input. Oliveira et al. [15] applied a similar approach
to human part segmentation and proposed improvements with
regard to segmentation of occluded parts and over-fitting.
Liu et al. [12] proposed a network called ParseNet which
models global context directly, such approaches have also
demonstrated near state-of-the-art results. Kendall et al. [1]
proposed a variation of the FCN architecture geared towards
increasing the performance. The main contribution resides on
the use of pooling indices computed in the max-pooling step
to perform upsampling. This approach eliminates the need
for learning to upsample and reduces the systems memory
requirement. However, approaches such as UpNet [15] and
ParseNet [12] achieve superior performance.

Although there are numerous traditional learning ap-
proaches relating to recognition from RGB-D data, there are
limited amount of DCNN approaches that have explored the
use of multiple modalities or spectra. Eitel et al. [4] proposed
a late fusion approach that employ two streams of DCNNs
which are first individually trained to classify using a certain
modality, and a stack of inner product layers are used in the
end to fuse features from both networks. They fuse an RGB
image and a colorized depth image for object recognition
applications. In a similar approach [18], the authors use a pre-
trained two stream ImageNet network for object recognition
from RGB-D images. Bo et al. [2] proposed an approach called
hierarchical matching pursuit, which uses hierarchical spare
coding to learn features from multimodal data. In [16], the au-
thors use recurrent neural networks to combine convolutional
filters for object classification from RGB-D data. A popular
HHA encoding scheme was introduced in [7] where a CNN
trained on RGB images is first used to extract features from
depth data and the information is encoded into three channels.
For each pixel they encode the height above the ground, the

horizontal disparity and the pixelwise angle between a surface
normal and the gravity.

In contrast to these multimodal object recognition ap-
proaches, we employ a late-fused convolution technique to
learn highly discriminative features even after the fusion, for
semantic segmentation. To the best of our knowledge this is
the first work to explore both multimodal and multispectral
images for end-to-end semantic segmentation.

III. TECHNICAL APPROACH

In this section, we first describe our base network architec-
ture for segmenting unimodal images and then explore fusion
architectures that learn from multimodal and multispectral
images. We represent the training set as S = {(Xn, Yn), n =
1, . . . , N}, where Xn = {xj , j = 1, . . . , |Xn|} denotes the
raw image, Yn = {yj , j = 1, . . . , |Xn|}, yj ∈ {0, C} denotes
the corresponding groundtruth mask with C classes, θ are
the parameters of the network and f(xj ; θ) is the activation
function. The goal of our network is to learn features by mini-
mizing the cross-entropy (softmax ) loss that can be computed
as L(u, y) = −

∑
k

ykloguk. Using stochastic gradient descent,

we then solve

θ∗ = argmin
θ

N∑
i=1

L((f(xi; θ)), yi). (1)

Our UpNet architecture has a similar form as that of
the recently proposed fully convolutional neural networks
[13, 15]. The architecture follows this general principle of
being composed of two main components, a contraction seg-
ment and an expansion segment. Given an input image, the
contraction segment generates a low resolution segmentation
mask. We use the 13-layer VGG [19] architecture as basis for
this contraction segment and initialize the layer parameters
from the pretrained VGG network. The expansion segment
consists of five upconvolutional refinement layers that refine
the coarse segmentation masks generated by the contraction
segment. Each upconvolutional refinement is composed of
one up-sampling layer followed by a convolution layer. We
add a rectified linear unit (ReLU) after each upconvolutional
refinement. To avoid overfitting, we use dropout after the first
and last refinement layers. The base UpNet architecture is
shown in figure 2.

The inner-product layers of the VGG-16 architecture has
4096 filters of 7 × 7 size, which is primarily responsible for
relatively slow classification times. We reduce the number
of filters to 1024 and the filter size to 3 × 3 to acceler-
ate the network. There was no noticeable performance drop
due to this change. The architecture in [15] has a one-to-
one mapping between the number of filters and classes in
expansion segment. However, the recently proposed U-nets
[17] architecture has demonstrated improved performance by
having variable number of filters as in the contraction segment.
We experimented with this relationship and now use a C×Ncl
mapping scheme, where C is a scalar constant and Ncl is the
number of classes in the dataset. This makes the network learn



more feature maps per class and hence increases the efficiency
in the expansion segment. In the last layer we use the number
of filters as Ncl in order to calculate the loss only over the
useful classes.

We use a multi-stage training techinique to train our model.
We use the Xavier [6] weight initialization for the convolution
layers and a bilinear weight initialization for the upconvolution
layers. We train our network with a initial learning rate λ0 =
10−9 and with the poly learning rate policy as

λn = λ0 ×
(
1−N
Nmax

)c
, (2)

where λn is the current learning rate, N is the iteration
number, Nmax is the maximum number of iterations and c
is the power. We train the network using stochastic gradient
descent (SGD) with a momentum of 0.9 for 300, 000 iterations
for each refinement stage. We train our segmentation network
individually on RGB, NIR and depth data, as well as on
various combinations of these spectra and modalities, as shown
in section V. To provide a more informative and sharper
segmentation, we introduce two strategies to make the network
learn the integration of multiple spectra and modalities:
• Channel Stacking: The most intuitive paradigm of fusing

data using DCNNs is by stacking them into multiple
channels and learning combined features end-to-end.
However, previous efforts have been unsuccessful due to
the difficulty in propagating gradients through the entire
length of the model [13].

• Late-Fused-Convolution: In the late-fused-convolution
approach, each model is first learned to segment using a
specific spectrum/modality. Afterwards, the feature maps
are summed up element-wise before a series of convolu-
tion, pooling and up-convolution layers. This approach
has the advantage as features in each model may be
good at classifying a specific class and combining them
may yield a better throughput, even though it necessitates
heavy parameter tuning.

Our experiments provide an in-depth analysis of the advan-
tages and disadvantages of each of these approaches in the
context of semantic segmentation.

IV. DATA COLLECTION

Since existing datasets with RGB, NIR and depth data are
not available, we extensively gathered data using our Viona
autonomous mobile robot platform. The platform shown in
figure 3 is equipped with a Bumblebee2 stereo vision camera
and a modified dashcam with the NIR-cut filter removed
for acquiring RGB and NIR images respectively. We use
a Wratten 25A filter in the dashcam to capture the NIR
wavelength in the blue and green channels. Both cameras
are software time synchronized and frames were captured at
20Hz. In order to match the images captured by both cameras,
we first compute SIFT [14] correspondences between the
images using the Difference-of-Gaussian detector to provide
similarity-invariance and then filter the detected keypoints with

the nearest neighbours test, followed by requiring consistency
between the matches with respect to an affine transforma-
tion. The matches are further filtered using Random Sample
Consensus (RANSAC) [5] and the transformation is estimated
using the Moving Least Squares method by rendering through
a mesh of triangles. We then transform the RGB image with
respect to the NIR image and crop to the intersecting regions
of interest. Although our implementation uses two cameras,
it is the most cost-effective solution compared to commercial
single multispectral cameras.

We collected data on three different days to have enough
variability in lighting conditions as shadows and sun angles
play a crucial role in the quality of acquired images. Our
raw dataset contains over 15, 000 images sub-sampled at 1Hz,
which corresponds to traversing about 4.7km each day. Our
dataset contains 325 images with pixel level groundtruth masks
which were manually annotated. As there is an abundant
presence of vegetation in our environment, we can compute
global-based vegetation indices such as Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI) to extract consistent spatial and global information.
NDVI is resistant to noise caused due to changing sun angles,
topography and shadows but is susceptible to error due to
variable atmospheric and canopy background conditions [9].
EVI was proposed to compensate for these defects with
improved sensitivity to high biomass regions and improved
detection though decoupling of canopy background signal and
reduction in atmospheric influences. For all the images in our
dataset, we calculate NDVI as

NDV I =
ρnir − ρred
ρnir + ρred

, (3)

where ρnir is the reflectance at the NIR wavelength
(0.7− 1.1µm) and ρred is the reflectance at the red wave-
length (0.6− 0.7µm). EVI can be computed as

EV I = G× ρnir − ρred
ρnir + (C1 × ρred − C2 × ρblue) + L

, (4)

where ρblue is the reflectance at the blue wavelength
(0.45− 0.52µm), G is the gain factor, L is a soil adjustment
factor, C1 and C2 are coefficients used to correct for aerosol
scattering in the red band by the use of the blue band.

Although our dataset contains images from the Bumblebee
stereo pair, the processed disparity images were substantially
noisy due to several factors such as rectification artifacts,
motion blur, etc. We compared the results from semi-global
matching [8] to a DCNN approach that predicts depth from
single images and found that for an unstructured environment
such as ours, the DCNN approach gave better results. In our
work, we use the approach from Liu et. al, [11] that employs
a deep convolutional neural field model for depth estimation
by constructing unary and pairwise potentials of conditional
random fields. Let an image x model the conditional proba-
bility of n superpixels of depth y = [y1, . . . , yn] ∈ Rn by the
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Fig. 2. Depiction of our UpNet architecture. Up-convolutional layers have size C × Ncl, where Ncl is the number of classes and C is a scalar factor of
filter augmentations. The contractive segment of the network contain convolution and pooling layers, while the expansive segment of the network contain
upsampling and convolution layers.

Fig. 3. The Viona autonomous mobile robot platform equipped with
bumblebee stereo cameras and a modified dashcam with the NIR-cut filter
removed for capturing RGB and NIR images respectively.

density function

Pr(y|x) = 1

Z(x)
exp(−E(y, x)), (5)

where E is the energy function and Z is the partition function.
The energy function is given as a combination of unary
potentials V over the superpixels in N and edges S in x,
i.e.,

E(x, y) =
∑
p∈N

U(yp, x) +
∑

(p,q)∈S

V (yp, yq, x) (6)

Z(s) =

∫
y

exp(−E(y, x))dy (7)

A unified DCNN framework learns the value of U and V .
The network is composed of a unary component, a pairwise
component and CRF loss layer. The unary component is
consists of a CNN that regresses depth values of superpixels,

while the pairwise component outputs a vector containing the
similarities for each of the neighbouring superpixels. The CRF
loss layer minimizes the negative log-likelihood by taking the
outputs of the unary and pairwise components. The depth
of the new image is predicted by solving the maximum-a-
posteriori inference problem, i.e.,

y∗ = argmax
y

Pr(y|x) (8)

For our prediction we use the network pretrained on the
Make3D dataset. Figure 4 shows some examples from our
dataset from each spectrum and modality.

V. EXPERIMENTAL RESULTS

We use the Caffe [10] deep learning framework for the
DCNN implementation and ROS for capturing and synchro-
nizing the images. Training our network on a NVIDIA Titan X
GPU took about 7 days.

A. Baseline Comparison

To compare with the state-of-the-art, we train models using
the RGB RSC set from our dataset which contains 60, 900
RGB images with Rotation, Scale and Color augmentations
applied. We selected the baseline networks by choosing the top
three end-to-end deep learning approaches from the PASCAL
VOC 2012 leaderboard. We explored the parameter space to
achieve the best baseline performance. We found the poly
learning rate policy to converge much faster than fixed or step
policy and yield a slight improvement in performance. The
metrics shown in Table I correspond to Mean Intersection over
Union (IoU), Mean Pixel Accuracy (PA), Precision (PRE),
Recall (REC), False Positive Rate (FPR), False Negative Rate
(FNR).

Figure 5 shows the forward pass time comparisons of
our network to other state-of-the-art models. Our network



(a) RGB (b) NIR

(c) NRG (d) NDVI

(e) EVI (f) DEPTH
Fig. 4. Sample images from our dataset showing various spectra and
modalities. NIR refers to near-infrared, NDVI refers to normalized difference
vegetation index, EVI refers to enhanced vegetation index, and NRG refers
to a combination of near-infrared, red and green channels

TABLE I
PERFORMANCE OF OUR PROPOSED UNIMODAL MODEL IN COMPARISON TO

THE STATE-OF-THE-ART

Baseline IoU PA PRE REC FPR FNR

FCN-8 [13] 77.46 90.95 87.38 85.97 10.32 12.12
SegNet [1] 74.81 88.47 84.63 86.39 13.53 11.65
ParseNet [12] 83.65 93.43 90.07 91.57 8.94 7.41

Ours Fixed lr 84.90 94.47 91.16 91.86 7.80 7.40
Ours Poly lr 85.31 94.47 91.54 91.91 7.40 7.30

has a run-time of almost twice as fast as the second best
approach. Fast run-times are critical for outdoor navigation in
unstructured environments as a slow perception system slows
down the entire autonomy.

B. Parameter Estimation

To increase the effective number of training samples, we
employ data augmentations including scaling, rotation, color,
mirroring, cropping, vignetting, skewing, and horizontal flip-
ping. We evaluated the effect of augmentation using three
different subsets in our benchmark: RSC (Rotation, Scale,
Color), Geometric augmentation (Rotation, Scale, Mirroring,
Cropping, Skewing, Flipping) and all aforementioned augmen-
tations together. Table II shows the results from these experi-
ments. Data augmentation helps train very large networks on
small datasets. However, on the present dataset it has a smaller
impact on performance than on PASCAL VOC or human body
part segmentation [15]. In our network, we replace the dropout
in the VGG architecture with spatial dropout [21] which gives
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Fig. 5. Comparison of forward pass times with various state-of-the-art
networks. Our network is significantly faster than other approaches.

us an improvement of 5.7%. Furthermore, we initialize the
convolution layers in the expansion part of the network with
Xavier initialization, which makes the convergence faster and
also enables us to use a higher learning rate. This yields a 1%
improvement.

TABLE II
COMPARISON ON THE EFFECTS OF AUGMENTATION ON OUR DATASET.

Sky Trail Grass Veg Obst IoU PA

ParseNet 87.78 81.82 85.20 88.70 46.51 83.65 93.43
Ours Aug.RSC 90.46 84.51 86.72 90.66 44.39 84.90 94.47
Ours Aug.Geo 89.60 84.47 86.03 90.40 42.23 84.39 94.15
Ours Aug.All 90.39 85.03 86.78 90.90 45.31 85.30 94.51
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Fig. 6. Comparison of per-class intersection over union with the second
best approach. Our network outperforms all the classes with the exception of
Obstacle.

Scaling scales the image by a factor between 0.7 and 1.4.
Rotation is applied with a up to 30 degrees range clockwise



TABLE III
COMPARISON OF DEEP MULTISPECTRUM AND MULTIMODAL FUSION APPROACHES. D, N, E REFER TO DEPTH, NIR AND EVI RESPECTIVELY. CS AND

LFC REFER CHANNEL STACKING AND LATE-FUSED-CONVOLUTION.

Sky Trail Grass Veg Obst IoU FPR FNR

RGB 90.46 84.51 86.72 90.66 44.39 84.90 7.80 7.40
NIR 86.08 75.57 81.44 87.05 42.61 80.22 10.22 9.60
DEPTH 88.24 66.47 73.35 83.13 46.13 76.10 12.76 11.14

NRG 89.88 85.08 86.27 90.55 47.56 85.23 7.70 7.10
EVI 88.00 83.40 84.59 87.68 44.9 83.25 8.70 8.10
NDVI 87.79 83.86 83.57 87.45 48.19 83.39 8.62 8.00
3CS RGB-N-D 89.23 85.86 86.08 90.32 61.68 86.35 7.50 6.20
4CS RGB-N 89.64 83.37 85.83 90.67 59.85 85.79 7.00 7.20
5CS RGB-N-D 89.40 84.30 85.84 89.40 60.62 86.00 7.20 6.80

LFC RGB-N 90.67 83.31 86.19 90.30 58.82 85.94 7.50 6.56
LFC RGB-D 90.21 79.14 83.46 88.67 57.73 84.04 9.40 6.55
LFC RGB-E 90.92 85.75 87.03 90.50 59.44 86.90 7.00 5.76
LFC NRG-D 90.34 80.64 84.81 89.08 56.60 84.77 7.58 7.65

and anti-clockwise. Color augmentation is performed adding
a value between −0.1 and 0.1 to the hue value channel
of the HSV representation. Cropping provides C different
crops, C/2 crops at the original image and C/2 crops with
images horizontally flipped. The Skewing augmentation is
calculated with a value ranging from 0 to 0.1. The final
augmentation performs vignetting with a scale ranging from
0.1 and 0.6. Figure 6 shows the comparison of per-class
intersection over union between ParseNet and our network.
Our network outperforms ParseNet in all the classes other than
the obstacle class.

C. Comparison of Fusion Approaches

In this section, we report results on segmentation using in-
dividual spectra and modalities, namely RGB, NIR, depth, and
fusion with its combinations. Segmentation using RGB yields
best results among all the individual spectra and modalities
that we experimented with. The low representational power of
depth images causes poor performance in the grass, vegetation
and trail classes, bringing down the mean IoU. The results
in Table III demonstrate the need for fusion. Multispectrum
channel stacked fusion such as NRG (Near-Infrared, Red,
Green) shows greater performance when compared to their
individual counterparts and better recognition of obstacles. The
best channel stacked fusion we obtained was using a three
channel input, composed of grayscaled RGB, NIR and depth
data. It achieved an IoU of 86.35% and most importantly a
considerable gain (over 13%) on the obstacle class, which is
the hardest to segment in our benchmark.

Figure 7 shows the channel stacked input composed of
grayscaled RGB, NIR and depth data and their corresponding
activation maps. The maps represent the specific activations of
the network for each class in the dataset. High activations are
shown in red and the low activations are shown in blue. It can
be seen that each of the maps have high activations for the
specific class, also depicting the certainty in prediction. The
channel stacked fusion architecture consumes 15ms more per
forward pass when compared to their unimodal counterparts.

(a) RGB-NIR-D (b) Grass (c) Road

(d) Vegetation (e) Sky (f) Obstacle
Fig. 7. Activation maps for various classes from the last layer of our channel
stacked fusion network. Figure (a) shows our channel stacked input consisting
of grayscaled RGB, NIR and DEPTH data. Figures (b), (c), (d), (e) and
(f) show the activation maps for each of the classes in our dataset. High
activations are shown in red and low activations as shown in blue.

The overall best performance was obtained with the late-fused-
convolution of RGB and EVI, achieving a mean IoU of 86.9%
and comparably high results in individual class IoUs as well.
This approach also had the lowest false positive and false
negative rates.

D. Qualitative Evaluation

We performed a series of stress testing experiments in a
variety of weather conditions to evaluate the robustness of
our approach in real-world environments. Specifically, we
collected an additional dataset in a previously unseen place
in low lighting, glare, shadows and snow. Figure 8 shows
the segmented output from our network for various unimodal
inputs. It can be seen that each of the spectra perform well in
different conditions. Segmentation using RGB images shows
remarkable detail, although being easily susceptible to lighting
changes. NIR images on the other hand show robustness
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Fig. 8. Segmented examples from our dataset. Each spectrum provides
valuable information. The first three rows shows the segmentation in highly
shadowed areas and the last three rows show the performance in the presence
of glare and snow. EVI refers to enhanced vegetation index and NIR refers
to near-infrared.

to lighting changes but often show false positives between
the sky and trail classes. EVI images are good at detecting
vegetation but show a large amount of false positives for the
sky, especially when there are abundant clouds. This further
demonstrates the need for fusion to increase the robustness in
these extreme conditions.

Figure 9 shows some qualitative comparison between uni-
modal segmentation and the two deep fusion approaches. The
figure also shows the channel stacked input of grayscaled
RGB, NIR and depth which is fed into the channel stacked
fusion network. For the late fused convolution results shown,
we use RGB and EVI, which has yielded the best results
in the quantitative evaluation experiments. It can be seen
that the channel stacked input image already has a clear
distinction among sky, trail and vegetation classes. However
the segmentation from this network often has false positives
between the vegetation and grass classes. It also has difficulty

in recognizing the trail class when the path is too narrow.
Figures 9 (a), (b) and (c) show this effect. On the other
hand, our late fused convolution approach demonstrates the
best results for all classes in this dataset as well. The channel
stacked fusion shows less amount of detail in the vegetation
class while compared to the segmentation from the unimodal
RGB network and the late-fused convolution network. This
clearly highlights the advantage of the late-fused convolution,
as it fuses the feature maps further down the network, it is
likely to make less mistakes. But in channel stacked fusion,
if there is a discrepancy in the feature learned it cannot
be corrected as the features are learned together from the
beginning.

The unimodal RGB network shows a difficulty in estimating
the boundaries of the vegetation and grass classes accurately.
This can be seen in all the images shown in figure 9. The
late-fused convolution has the most accurate estimation of the
boundary for the trail class. Figure 9 (e) shows an example
where the grass is covered with snow. It can be seen that the
channel-stacked fusion still accurately segments grass even if
it is covered with snow. The segmentation from the unimodal
RGB network shows a very high amount of false positives
in this case. The channel-stacked fusion on the other hand
has difficulty in identifying grass when it is covered with
snow. This demonstrates the advantage of fusing EVI with
RGB as EVI is very accurate for segmenting vegetation and
grass, while RGB yields the highest amount of detail in the
ideal case. Figure 9 (f) shows another extreme case where
the image is affected by glare from the sun. This is a very
common scenario for robots operating in real-world outdoor
environments. The results show that the channel-stacked fusion
has no difficulty in segmentation in the presence of glare and
saturation as EVI which is one of the modalities used for
fusion is unaffected by these factors.

In addition, a live demo can be accessed at http://deepscene.
cs.uni-freiburg.de, where a user can upload any image of an
unstructured outdoor environment for segmentation or choose
a random example.

VI. CONCLUSIONS

We presented a deep end-to-end architecture for semantic
segmentation of outdoor environments. Our network outper-
forms several state-of-the-art architectures with near real-
time performance. We extensively evaluated the benefits and
drawbacks of early and late-fusion architectures for dense
pixel-wise segmentation using multiple modalities and spectra.
Our late-fused convolution technique exceeds channel stacking
by achieving the lowest false detection rate. Furthermore,
we qualitatively evaluated the benefits of multispectral fusion
in extreme outdoor conditions. The results demonstrate our
hypothesis of fusing the NIR wavelength with RGB to obtain
robust segmentation in unstructured outdoor environments.

Future work will include extending our late-fused convolu-
tion network. Currently the network only has one convolution
layer after the fusion, adding a pooling and upconvolution
layer would introduce more invariance and discriminability

http://deepscene.cs.uni-freiburg.de
http://deepscene.cs.uni-freiburg.de
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Fig. 9. Qualitative comparison of segmentation results between our unimodal deep network and our two fusion strategies. The late-fused convolution model
surpasses the performance of others in almost all the cases. The last two rows show the results in extreme conditions of snow and glare. Our multispectral
fusion model is still able to successfully segment under these conditions.

to the filters learned after the fusion. Recently adaptive fu-
sion strategies demonstrated improved performance for fusing
multiple modalities for detection tasks, however they have
not been explored in the context of semantic segmentation.
It would be of interest to evaluate such architectures in
comparison to channel stacking and late-fused convolution.
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