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Abstract— Robust scene understanding of outdoor environ-
ments using passive optical sensors is a onerous and essential
task for autonomous navigation. The problem is heavily char-
acterized by changing environmental conditions throughout the
day and across seasons. Robots should be equipped with models
that are impervious to these factors in order to be operable and
more importantly to ensure safety in the real-world. In this
paper, we propose a novel semantic segmentation architecture
and the convoluted mixture of deep experts (CMoDE) fusion
technique that enables a multi-stream deep neural network
to learn features from complementary modalities and spectra,
each of which are specialized in a subset of the input space.
Our model adaptively weighs class-specific features of expert
networks based on the scene condition and further learns fused
representations to yield robust segmentation. We present results
from experimentation on three publicly available datasets that
contain diverse conditions including rain, summer, winter, dusk,
fall, night and sunset, and show that our approach exceeds
the state-of-the-art. In addition, we evaluate the performance
of autonomously traversing several kilometres of a forested
environment using only the segmentation for perception.

I. INTRODUCTION

Over the past years, Deep Convolutional Neural Network
(DCNN) approaches have achieved impressive results in var-
ious visual perception problems including object classifica-
tion [8], [21], [22], detection [6], [18] and scene parsing [1],
[15], [17]. DCNNs have also been used for end-to-end
learning of robotic tasks such as detecting robotic grasps [13]
and autonomous driving [2]. However, beyond standard
benchmarks and new end-to-end learning applications, they
have yet to become the go-to-solution for outdoor robotic
perception. This can be attributed to two primary impedi-
ments: perception in outdoor environments is inherently more
challenging due to frequent appearance changes that take
place throughout the day and across seasons, and secondly,
most existing datasets do not encompass these appearance
changes, making techniques that are benchmarked on them
to perform poorly in the real-world.

Robust scene understanding is a prerequisite for au-
tonomous navigation. A robot without a perception system
capable of handling such large visual changes can very
quickly jeopardize its operation and even imperil the people
around. Recent work [16], [24] has shown promising results
in fusing features from complementary modalities and spec-
tra that are resilient to commonly observed perceptual varia-
tions. In this paper, we address the problem of robust seman-
tic segmentation using our proposed AdapNet architecture
which incorporates the Convoluted Mixture of Deep Experts
(CMoDE) model for dynamically fusing multiple spectra and
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Fig. 1. Qualitative comparison of the segmentation results obtained
using AdapNet with LFC [24] and AdapNet with CMoDE on different
datasets that contain adverse conditions: performance in a forest scene in
the presence of glare directly on the optics and snow (first row), street scene
in the presence of motion blur (second row) and with rain (third row).

modalities. Our DCNN consists of three components: experts
that map modalities or spectra to segmentation outputs, the
CMoDE that adaptively weights class-specific features of
expert networks using the learned probability distributions
and the fusion segment that further learns complementary
fused kernels. We evaluate the performance on publicly
available datasets that contain diverse environments such as
highways, cities, towns and forests, and in adverse environ-
mental conditions including rain, snow, glare, low-lighting,
as well as seasonal appearance changes during summer, win-
ter, dusk, fall, night and sunset. We show that our CMoDE
framework outperforms segmentation using current state-of-
the-art fusion techniques in the aforementioned scenarios.

Overall, this paper makes several contributions. First, we
present a new end-to-end semantic segmentation architecture
based on the residual learning framework and dilated con-
volutions. Second, we benchmark the performance of our
expert network in comparison to state of the art end-to-end
approaches. Third, we introduce the Convoluted Mixture of
Deep Experts (CMoDE) fusion scheme for learning robust
kernels from complementary modalities and spectra. Fourth,
we comprehensively evaluate the performance on three dif-
ferent publicly available datasets that contain diverse scenes
in adverse environmental conditions. Finally, we present
results from autonomous navigation experiments in a forested
environment using the resulting segmentation for perception.

II. RELATED WORK

In recent years, DCNN approaches have achieved un-
precedented performance on various semantic segmentation
benchmarks. This surge in performance is primarily fu-
elled by the introduction of Fully Convolutional Networks



(FCNs) [15]. The general structure of such networks consists
of an encoder or contraction segment and a decoder or
expansion segment. The contraction segment, typically a
classification network with inner-product layers substituted
with convolutions, maps the input to a low resolution rep-
resentation, while the expansion maps the low resolution
feature maps to upsampled segmentation output. Most ap-
proaches [15], [17], [1], [14] utilize the VGG16 [22] for
the contraction segment. Long et al., uses the pooling layers
from the contraction segment to refine the segmentation
in the expansion segment. Oliveira et al. [17] proposed
improvements that reduce the number of parameters and
additional refinement stages that improve the resolution of
segmentation. Unlike FCNs which fuse features from dif-
ferent resolutions, Badrinarayanan et al., [1] proposed an
approach that takes downsampled features from VGG16 and
upsamples them in a decoder segment that uses pooling
indices from the decoder segment. In contrast to these exist-
ing approaches, we present a novel semantic segmentation
architecture that builds upon deep residual networks [8]
and dialted convolutions [25], that enable our model to
learn very deep representations while aggregating multiscale
contextual information. The components of our architecture
are elaborated in Sec. III-A.

As perception using unimodal images is excessively sen-
sitive to appearance variations caused by changing environ-
mental conditions, there has been an advent of using alternate
modalities to refine the output. In addition to providing the
DCNN a richer representation of the scene, using comple-
mentary modalities enables the network to learn features
that are generalizable across varying conditions. In [9], the
authors introduce a multi-spectral dataset containing RGB
and thermal images for detecting pedestrians in non-ideal
conditions. They also introduce multi-spectral aggregated
channel features to handle such data. Eitel et al., [6] use
a two-stream DCNN trained on RGB-D data, for object
recognition. The outputs of the two streams are concatenated
in the end and passed through a softmax layer to yield a
combined prediction. In our previous work [24], we use
a similar approach for segmentation, but in addition to
combining the feature maps from multiple streams, their
model learns fused features using a stack of convolution
and pooling layers. They experiment with multiple spectra
and modalities and show that their Late-fused Convolution
approach achieves state-of-the-art performance.

Another approach to fusing multiple specialized networks
is related to the Mixture of Experts (MoE) model. Hin-
ton et al., [10] presented the classical MoE model with E-
experts and a supporting gating network, where the experts
map the input X to the output y, whereas the gating network
produces a probability distribution over the experts. Hwang
et al. [5], extend the concept of a MoE by employing DCNNs
as experts to classify MNIST and monophone speech data.
Unlike the approach that we introduce in this paper, they
use the same input X for each expert which is also used to
train the gating network. This paper highlights the fact that
using a mixture with deep networks increases the number
of trainable parameters without significantly increasing the

computational burden. Mees et al., [16] employ a mixture
of deep experts to detect people in varying illumination
using RGB and depth experts. They demonstrate how each
expert overcomes the shortcomings of the other, for instance,
the depth network yields more reliable detections in a dark
corridor than the RGB expert. Their gating network uses
inner product layers to produce two scalars, which are then
used to take a weighted average over the outputs.

Both the categories of approaches mentioned above have
their own benefits and drawbacks. The MoE approach gives
a network the ability to adaptively weight experts based
on the input, whereas the late-fusion approach enables the
network to learn complementary fused kernels. In this work,
we propose CMoDE, that exploits the benefits of both
these contrasting techniques. Our proposed fusion scheme
empowers the network with the ability to choose class-
specific features from expert networks based on the current
scene representation, followed by learning deeper represen-
tations from the mixture of kernels from the experts. More
specifically, our model first weighs experts class-wise based
on the learned probability distribution and then learns to
leverage complementary features from experts that are robust
to the observed environmental disturbances. We show that
the CMoDE approach not only exceeds the performance of
existing fusion techniques, but more importantly provides an
accurate representation of scene in adverse conditions.

III. TECHNICAL APPROACH

In this section, we first describe our expert architecture for
segmenting unimodal images. Subsequently, we present our
CMoDE fusion scheme for learning complementary fused
kernels from multiple expert networks. We then detail the
network training procedure that we employ, followed by a
description of datasets on which we benchmark.

A. Expert Network
1) AdapNet Architecture: Our architecture follows the

general principle of having a contractive and an expansive
segment, similar to the FCN architectures described in Sec.II.
In contrast to the previous approaches, for the contractive
segment, we adapt the recently proposed ResNet-50 [8],
which has demonstrated impressive results in the ImageNet
classification challenge and has recently been adapted for
disparity estimation [12]. The ResNet architecture includes
batch normalization and layers that can skip convolutions.
This allows the design of much deeper networks without
facing degradation of the gradient and therefore leads to
very large receptive fields with often highly discriminative
features. The output of this contractive segment is 32-times
downsampled with respect to the input. We then upsample
the output of this contractive segment using deconvolutions
and perform refinement similar to [15] by fusing high
resolution feature maps from the contractive segment . We
denote this base architecture as ResNet Upconv in our exper-
iments described in Sec IV-C. The performance of ResNet
Upconv is almost as high as FCNs and in addition of having
significantly lesser parameters and much faster forward-pass
time’s, which are critical characteristics for deploying models
on embedded GPUs used in robotic perception applications.



1
1

1
1

12x
48x96

1
1

1
3

1
1

d1

d2

d1

d2

d1

d2

1
1

1
1

3
1
1

3x384x768
input

output
384x768

s
1

1
3

1
1

s
1

64x
192x384

1
3

2
7

64x
96x192

64

256

64

256

64

256

128

512

128

512
256x

96x192
256x

96x192

512x
48x96

512x
48x96

512x
48x96

256x
96x192

128

512
512x

48x96

128
       1

         64

512

256

1024

1024x24x48

256

1024

256
       1 

           256

1024

256
       1

           256

1024

256
       1

           256

1024

256
       1

           256

1024

512
       2

           512

2048

512
       2

           512

2048

512
       2

           512

2048

2048x24x48

6x
384x768

12x
48x96

1
1

1
1

3

nxn convolution

2x2 max pooling

Batch norm

Up-convolution

ReLU

d1

d2

d3d3d1 d1 d2

d1 d1 d2

d2

d1 d2d3

d3

d1 d2d3

d3

d2

stride s
n
s

nxn convolution
dilation d, stride =1

n
d

d
d

d d

2

2 4 8 16 4 8 16

s

1 2

2

3
p 3

p

pp
2

2

2

2

Fig. 2. Depiction of the proposed AdapNet architecture. We additionally add a convolution at the beginning of the network and change the last convolution
from a stride of two to one. We also change the convolutions that follow to an atrous convolution with r = 2. The lower left two blocks in the legend
(enclosed in red) show the original ResNet blocks, while the lower right two blocks show the corresponding proposed multiscale blocks.

While training, the network converges in about 12 hours on
a NVIDIA TITAN X, in comparison to FCNs which take
about three days.

In order to improve the performance of this base ResNet
Upconv model, we propose the following:

a) Front Convolution (FC): In the ResNet architecture,
the resolution of the feature maps drops down to a fourth of
the input resolution after passing through the first 3 layers.
On one hand, this allows for context aggregation and speed-
up due to smaller feature maps, but on the other hand, this
restricts the learning of high resolution features, which could
potentially be useful in the later stages. In our network, we
introduced an additional convolution with a kernel size of 3×
3 before the first convolution layer in ResNet. This enables
the network to learn more high resolution features without
significantly increasing the inference time.

b) Higher Resolution Outputs (HR): Principally, down-
sampling reduces the resolution of feature maps and therefore
generates coarser segmentations. Although deconvolution
layers can upsample low resolution feature maps, it cannot
recover all the details completely. Moreover, this procedure
is not only computationally expensive but also memory
intensive. To avoid downsampling, atrous, or also known
as dilated-convolution [25], can be used. Atrous convolution
”widens” the kernel and simulates a larger field of perception.
For a 1-D input signal x[i] with a filter w[k] of length K, the
atrous convolution is defined as:

y[i] =
K

∑
k=1

x [i+ r · k] w[k] (1)

The rate r denotes the stride with which the input signal is
sampled. A rate of 2 corresponds to a convolution on a 2×2
pooled feature map. In our proposed architecture, we change
the last convolution with a stride of two to one in ResNet and
every following convolution to an atrous convolution with
r = 2. This way, the smallest resolution is not 32-times but
16-times downsampled and we keep the higher resolution
details while aggregating the same amount of context as

before.
c) Multiscale Blocks (MS): Every object in a scene can

potentially differ in size and by distance. Filters learned
by DCNNs are often not well suited for this multiscale
appearance. This has lead to several investigations in the
learning of multiscale features in DCNNs [7], [3]. These
techniques often incorporate multi-resolution input images
which again lead to higher computational cost. We propose
a novel technique to efficiently generate multiscale features
throughout the network without increasing the amount of
parameters. A typical ResNet block consists of a 1× 1
convolution followed by a 3× 3 convolution and a 1× 1
convolution as shown in Fig. 2. Our proposed multiscale
Resnet block has in general a similar structure, but we change
the 3×3 convolution as follows: we split the convolution into
two separate convolutions with half the number of feature
maps each. The first convolution has the same properties
as before, while the second is an atrous convolution with
r > 1. Both convolutions run in parallel and are then merged
by concatenation which results in the same number of
feature maps as without the splitting. This module enables
the network to learn multiscale features in every block.
Additionally, the concatenation preserves all features within
the block so that the network can learn to combine features
that have been generated on different scales. Our proposed
multiscale blocks are shown in the legend in Fig. 2 (Bottom
right two blocks).

We perform an in-depth analysis of the proposed improve-
ments by initially taking the Resnet Upconv and evaluating
the performance by incorporating the aforementioned tech-
niques in every step. The results from this experiment are
discussed in Sec IV-C.

B. Convoluted Mixture of Deep Experts

In order to fuse multiple spectra and modalities using
expert networks, we propose the following framework as
depicted in Fig. 3. Individual expert networks specializing
in a particular subspace, map the representation of the input
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Fig. 3. Convoluted Mixture of Deep Experts framework. Any segmentation
network can be plugged in for each of the experts depicted. We use the
DCNN described in III-A for our experiments.

to a corresponding segmentation mask. The framework is
adaptable to an arbitrary number of experts, for simplicity
we consider two experts in our descriptions. The gating
layer acts like a multiplexer, which maps outputs of N
experts to a probabilistically fused representation. We train
the gating network to learn a convex combination of experts
by back-propagating into the weights, thus making them
learnable parameters, similar to any other synapse weight
or convolutional kernel. Complementary fused kernels are
then further learned on top of this fusion to yield a robust
pixel-wise segmentation output.

We represent the training set of a CMoDE with E ex-
perts and C segmentation classes, as S = {(Xn,yn), n =
1,2, . . . ,N}. Each training example, Xn = {x1,x2, . . . ,xE} is a
vector of raw images from different modalities, where image
xi is shown only to the i-th expert. yn is a W×H segmentation
mask, where, yn(r,c)∈ {0,1, . . . ,C}, for r∈ {1,2, . . . ,W},c∈
{1,2, . . . ,H}, maps the membership of pixel xi(r,c) for each
input representation, in one of the C classes.

Since experts train on images from different modalities
or spectra, each one specializes in a particular sub-space of
Xn. The i-th expert, produces its own segmentation mask, de-
noted by hi(xi). The resultant output is a convex combination
of the outputs of E experts; weighted by g(Xn), which is the
output of the adaptive gating network. Our network further
learns fused kernels over these outputs using a convolution
layer. The final output is a per-pixel segmentation mask ŷn,
corresponding to the input Xn and is written as

ŷn = f (Xn) = softmax

(
W∗

[
E

∑
i=1

gi(Xn ) ·hi(xi)

])
(2)

where, gi (Xn) corresponds to the scalar weight for the i-
th expert, W is a stack of convolution kernels learnt over
the fused representation and ∗ is the convolution operation.
Replacing the input to the gating network, Xn, consisting
of raw pixels with a representation of Xn from within the
expert network defined by ρ(Xn) = (r(x1),r(x2), . . . ,r(xE)),
yields improved results with lesser computation time. r(xi)
is a representation of xi taken from the the i-th expert,
for instance, the output of conv4. Defining ρ(·) to be a
representation from the contracting part of the expert network

and leveraging the fact that H and W decrease, while channel
depth increases towards the end of the contracting part,
forcing the network to increase the ”what” and reduce the
”where” [19]. This ”what” is of primary importance to the
adaptive gating network. For instance, if an RGB image is
washed out due to poor lighting conditions, the network
needs to only know ”what” and not ”where” the image is
washed out; making it rely less on the RGB expert and give
it a lower score, gRGB(Xn ), while relying more on other
experts. Re-writing the Eq. 2 with ρ(·) as

ŷn = f (Xn) = softmax

(
W∗

[
E

∑
i=1

gi(ρ (Xn)) ·hi(xi)

])
(3)

Each expert network is trained separately and uses a
subspace of Xn containing images of a specific spectra or
modality. The adaptive gating network takes ρ(Xn) as input
and produces probability distribution over the experts. The
3D volumes each of size C×W ×H from each expert are
weighted according to gi(ρ(Xn)). Convolutions followed by
a softmax layer convert these to per-pixel class membership
probabilities, allowing us to interpret gi(ρ(Xn)) as the prob-
ability of choosing an expert. More formally

gi(ρ(Xn)) = P(Ei | ρ(Xn)). (4)

It should be noted that while training the adaptive gating net-
work, the weights of the expert networks are kept constant.
During testing the softmax is replaced with an argmax layer.

Now, we extend the concept of CMoDE further by recon-
structing the adaptive gating network so that it generates a
vector of weights for each expert, where each element in
the vector corresponds to how much the gating trusts the
class-specific kernels learned by that expert. Specifically, this
vector represents a probability distribution over the C classes
for the i-th expert. We can now represent the class-specific
CMoDE as

ŷn = softmax

(
W∗

[
E

∑
i=1

C

∑
c=1

gi,c(ρ (Xn )) ·hi,c(xi )

])
(5)

Here, instead of choosing a convex combination over the
output of the experts, we choose a convex combination
over the class-specific outputs of the experts. Therefore,
generalizing Eq. 4, we can interpret gi,c as a joint probability,
namely

gi,c(ρ(Xn)) = P(Ei,Kc | ρ(Xn)). (6)

This class-specific probability distribution gives the model
the ability to choose different modalitites or spectra for dif-
ferent classes. However, due to the complexity of the adaptive
gating network which is equipped with more degrees of
freedom, training the network can become cumbersome and
lead to overfitting in the gating network. We add spatial
dropout [23] and rectified linear units (ReLUs) after the
convolution layer in the gating network to avoid overfitting.

C. Network Training
We train the CMoDE network using a multi-stage training

scheme. We first train the expert network to produce the
respective segmentation masks in the datasets, followed by
training the class-specific gating network and the fused



convolutions, by keeping the weights of the expert network
constant. This forces the gating network to use the represen-
tations learned by the experts and leverages complementary
features from the experts. We train the networks with a initial
learning rate λ0 = 10−6 and with the poly learning rate policy
as, λn = λ0×

(
1−N
Nmax

)c
, where λn is the current learning rate,

N is the iteration number, Nmax is the maximum number
of iterations and c is the power. We train using Stochastic
Gradient Decent (SGD) with a momentum of 0.9 and a mini-
batch of 4 for 40,000 iterations. The goal is to learn features
by minimizing the cross-entropy (softmax) loss that can be
computed as L (u,y) =−∑

k
yk loguk.

IV. EXPERIMENTAL RESULTS

We use the Caffe [11] deep learning library with cuDNN
backend for our implementations. The metrics reported
in this paper correspond to Mean Intersection-over-Union
(IoU), Average Precision (AP), False Positive Rate (FPR)
and False Negative Rate (FNR), as used in the PASCAL
VOC challenges.

A. Datasets and Augmentation
We evaluate the AdapNet architecture along with our

CMoDE framework on three publicly available datasets
containing diverse environments ranging from forested
landscapes to urban city streets: namely, Freiburg Multi-
spectral dataset [24], Cityscapes [4] and Synthia [20]. The
datasets were specifically chosen with the criteria that they
should contain commonly observed environmental appear-
ance changes and seasonal variations.

We use the adverse environments set from the Freiburg
Multispectral forest dataset containing 6 classes: Sky, Ob-
stacles, Road, Grass, Vegetation, Background and Void. This
dataset contains multispectral and multimodal images of
forested environments with varying conditions such as low-
lighting, snow, glare and motion blur. We select RGB, depth
and EVI (Enhanced Vegetation Index) as the modalities
to experiment on. We also benchmark on two urban city
datasets, Cityscapes and Synthia. The Cityscapes dataset con-
tains RGB and depth images from over 50 cities with varying
seasons, time of the day and weather conditions. On the other
hand, the Synthia dataset contains photo-realistic images
rendered from a virtual city with different view points,
multiple seasons, weather and lighting conditions including
rain, snow, dusk, sunset and night scenes. This dataset is
extremely challenging due to the presence of several dynamic
objects distant from the camera and objects such as posts,
signs and fences that have a small footprint in the image. The
Synthia dataset contains 13 classes, namely: Sky, Building,
Road, Sidewalk, Fence, Vegetation, Pole, Car/Truck/Bus,
Traffic Sign, Pedestrians, Rider/Bicycle/Motorbike and Back-
ground. Recent work [20] has shown improved performance
in segmenting scenes by training models on the concate-
nation of synthetic and real datasets. In order to evaluate
the adaptability of this transfer learning, we combine classes
in the Cityscapes dataset to yield the same categories as in
the Synthia dataset. In order to facilitate benchmarking, we
provide the file paths for all these mappings of classes, as

TABLE I
PERFORMANCE COMPARISON OF ADAPNET TO BASELINE MODELS.

Network Dataset IoU AP FPR FNR

FCN8 [15] Freiburg Forest 77.46 87.38 10.32 12.12
SegNet [1] Freiburg Forest 74.81 84.63 13.53 11.65
ParseNet [14] Freiburg Forest 83.65 90.07 8.94 7.41
UpNet [17] Freiburg Forest 84.90 91.16 7.80 7.40
AdapNet (ours) Freiburg Forest 88.25 93.38 6.08 5.67

FCN8 [15] Cityscapes 64.57 77.62 15.62 19.80
SegNet [1] Cityscapes 47.78 61.21 31.25 20.97
ParseNet [14] Cityscapes 65.61 78.52 15.57 18.82
UpNet [17] Cityscapes 62.62 75.53 16.50 20.87
AdapNet (ours) Cityscapes 69.39 81.72 13.57 17.04

FCN8 [15] Synthia-Cityscapes 65.24 78.48 13.73 21.03
SegNet [1] Synthia-Cityscapes 27.10 42.26 46.96 25.94
ParseNet [14] Synthia-Cityscapes 68.87 81.09 12.63 18.50
UpNet [17] Synthia-Cityscapes 65.78 75.94 17.91 16.30
AdapNet (ours) Synthia-Cityscapes 72.91 84.31 10.85 16.23

well as the train and validation splits on the project page:
http://deepscene.cs.uni-freiburg.de/.

We perform a series of augmentations on the training
images to provide the network with more training data and
additional prior knowledge about variations in the scene.
We randomly apply the following augmentations: rotation,
translation, skewing, scaling, vignetting, cropping, flipping,
color, brightness and contrast modulation.

B. Baseline Comparison
In this section, we present comprehensive evaluations of

our AdapNet architecture in comparison to state-of-the-art
models on three standard benchmark datasets as described in
Sec. IV-A. Our focus is on comparison with end-to-end archi-
tectures without additional post-processing and that have fast
run-times. Tab. I shows the results from these experiments
performed using the RGB images from the benchmarks.
Our AdapNet architecture with about 91 layers manages to
overcome the vanishing gradient and optimization problems,
while achieving state-of-the-art performance on all the three
challenging benchmarks. The AdapNet model achieves an
IoU of 88.25% on the Freiburg Multispectral Forest dataset,
which constitutes to an improvement of 3.35% over UpNet
(also known as FastNet), which was the previous state-of-
the-art. On Cityscapes and Synthia benchmarks, our model
achieves an improvement of 3.78% and 4.04% respectively,
in comparison to the best performing baselines. This im-
provement can be attributed to the highly representational
multiscale features learned by our model which enable the
segmentation of very distant objects present in Synthia and
Cityscapes. Moreover this also facilitates the reduction of
false positives substantially as shown in Tab. I.

For robotic perception, it is critical that the network
performs inference in near real-time to enable quick decision
making. Although our model is deeper than the current state-
of-the-art, the fewer parameters enables the architecture to
perform inference in near real-time. Fig. 4 shows compar-
isons of forward-pass time’s on the NVIDIA TITAN X.

C. Analysis of the AdapNet Architecture
We evaluated each configuration of our proposed AdapNet

architecture on the Cityscapes dataset, as detailed in Sec. III-



Fig. 4. Comparison of forward-pass timing for an input image of size
768×384. The baselines ParseNet and FCN8s take more than 100ms, which
makes it difficult to use for robotic perception. In contrast, AdapNet takes
about 59ms, while achieving state-of-the-art performance.

TABLE II
ANALYSIS OF ADAPNET ON THE CITYSCAPES DATASET.

Approach IoU FPR FNR

ResNet Upconv 63.56 15.53 20.60
ResNet Upconv + FC 64.02 15.44 20.54
ResNet Upconv + FC + HR 65.15 14.83 20.11
ResNet Upconv + FC + HR + MS 69.39 13.57 17.04

A.1. We chose the Cityscapes dataset, due to the balanced
and relevance of classes. Furthermore, the dataset includes
varying conditions and thin structures such as poles and
fences that appear in far and near distances with respect to
the viewing perspective, thereby making it highly challenging
and suitable for testing multiscale perception. Results from
this experiment are shown in Tab. II. Our baseline config-
uration denoted as ResNet Upconv which constitutes the
ResNet-50 architecture with deconvolutions, yields a mean
IoU of 63.56. However, this performance is lower than than
the best performing Parsenet baseline architecture. By adding
the additional convolution (FC) in the beginning of the
network, yields an improved IoU of 64.02. This demonstrates
that performing more convolutions on the higher resolution
feature maps, improves the over all segmentation accuracy.
We further improve this model by removing the last pooling
layer and replacing the convolution layers that follow with
atrous convolutions. This model achieves a mean IoU of
65.15. We then add multiscale blocks (MS) as described in
Sec. III-A.1 which remarkably boosts the mean IoU to 69.39.
This model exceeds the performance of the state-of-the-art
models that we evaluated by a substantial margin.

D. Fusion Experiments
In this section, we present a thorough comparison of our

CMoDE fusion framework using the spectra and modali-
ties contained in the three challenging benchmarks. For a
baseline, we show the performance obtained by averaging
both expert networks trained on a specific modality. We
compare the performance of CMoDE with two other deep
fusion techniques: late-fusion and LFC [24]. In the late-
fusion approach we add a 1×1 convolution layer after last
layer of the expert network and then sum the feature maps
element-wise, followed by a softmax classifier. However, the
late-fusion approach does not perform better than averaging
the predictions as seen in Tab. III, IV and V. This is primarily
due to the inability to learn kernels on top of the fusion,

TABLE III
COMPARISON OF FUSION ON THE FREIBURG FOREST DATASET.

Input Approach IoU AP FPR FNR

RGB Unimodal 88.25 93.38 6.08 5.67
DEPTH Unimodal 79.96 88.37 10.05 9.99
EVI Unimodal 85.51 92.25 6.93 7.54

RGB-D

Average 86.41 92.48 6.88 6.71
Late fusion 86.59 92.28 7.13 6.28
LFC [24] 89.31 94.08 5.24 5.44
CMoDE 90.12 94.45 5.12 5.39

RGB-E

Average 88.23 93.61 5.88 5.89
Late fusion 88.13 93.58 5.92 5.94
LFC [24] 88.97 93.85 5.64 5.98
CMoDE 91.06 95.98 5.02 5.24

TABLE IV
COMPARISON OF FUSION ON THE CITYSCAPES DATASET.

Input Approach IoU AP FPR FNR

RGB Unimodal 69.39 81.72 13.57 17.04
DEPTH Unimodal 59.25 74.74 17.28 23.47

RGB-D

Average 68.86 84.20 11.48 19.66
Late fusion 67.98 79.71 15.51 16.51
LFC [24] 69.25 85.28 10.03 18.72
CMoDE 71.72 89.98 9.66 14.62

thereby the models do not perform better than the individual
experts themselves. The LFC on the other hand performs
better than the averaging approach and unimodal segmen-
tation due to its ability to learn complementary features
over the fusion. However, our proposed CMoDE fusion
scheme outperforms LFC in all the three benchmarks and
combinations of modalities. This can be attributed to its
ability to choose the relevant class-specific kernels before
the fusion, which is unrealizable in the LFC scheme.

In order to further evaluate the performance, we show
qualitative comparisons in segmentation using unimodal
RGB and the CMoDE fusion scheme in Fig. 5. In the
scenes from the Synthia datasets shown in Fig. 5(a) and
5(b), the improved performance of AdapNet with CMoDE
can be especially seen in segmenting thin structures such
as poles, fences, traffic lights and pedestrians. While in the
scenes from Cityscapes (Fig. 5(c) and 5(d)), the accuracy
in segmentation can be seen in classes such as roads made
of cobblestones, pavements and pedestrians. Furthermore,
in contrast to the unimodal model, the CMoDE reliably
detects the edges of the sidewalks and vegetation. Finally,
Fig. 5(e) and 5(f) show some examples from the Freiburg
Multispectral Forest benchmark. It can be seen that the
fused features from CMoDE helps segment the trail more
accurately even in the presence of disturbances such as
glare on the optics and snow. The model also consistently
avoids outliers like misclassified vegetation. In Fig. 1, we
further show qualitative comparison of segmentation from
AdapNet with LFC and AdapNet with CMoDE. These results
underline the robustness and the adaptivity of our proposed
network and fusion scheme.



TABLE V
COMPARISON OF FUSION ON THE SYNTHIA-CITYSCAPES DATASET.

Input Approach IoU AP FPR FNR

RGB Unimodal 72.91 84.31 10.85 16.23
DEPTH Unimodal 70.74 83.82 10.61 18.64

RGB-D

Average 74.11 87.97 8.16 17.22
Late fusion 68.73 88.37 6.27 24.99
LFC [24] 75.12 89.95 7.95 13.94
CMoDE 77.11 90.28 7.02 12.87

Modality 1 Modality 2 Unimodal RGB CMoDE

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. Comparison between segmentation using only RGB versus CMoDE
fusion on the datasets: Synthia, Cityscapes and Freiburg Forest. a) and b)
show street scenes from the synthia dataset. Note that the CMoDE fusion
performs better for fine structures like fences and poles. c) and d) show
street scenes from the cityscapes dataset. CMoDE detects streets out of
cobblestone and sidewalks more accurate. e) and f) show segmented images
from the freiburg forest dataset. One can note that the multimodal fusion
leads to better segmentation of the path and avoids misclassification of
vegetation.

E. Robustness Evaluation
In order to further analyse the performance in specific

adverse conditions we use the Synthia-Sequences dataset that
contains several sequences in varying seasons, environmental
conditions and scenarios. Specifically, we train on RGB and
depth images using our AdapNet model on the combination
of sequences 5, 6 and 7, which correspond to a city-like
environment, highway and a European town. We present
both qualitative and quantitative results of testing this model
on Synthia-Sequences 1,2, and 4, in conditions such as fall,
winter, summer, dawn, night, rain and sunset. Fig. 6 shows
the results from this comparison and the qualitative results
are shown in Fig. 7. In addition, we also show segmentation
in the presence of snow and shadows from the Freiburg
Forest dataset and on images from Cityscapes which involve
motion blur.

In addition, we performed real-world experiments of au-
tonomously traversing 4.52km in a challenging forested
environment using our VIONA robot as shown in Fig. 8.
We implemented our segmentation pipeline using ROS and
the Caffe library on the NVIDIA TX1 embedded GPU which
has 256 CUDA cores. We first capture the scene using the
Bumblebee2 stereo cameras on the robot and segment the
images with our AdapNet model trained on the Multispectral

Fig. 6. Performance of the CMoDE fusion scheme on the Synthia
Sequences dataset in various seasons and conditions.

Freiburg dataset. We then compute waypoints for the robot
to follow from the segmentation masks in the camera frame
and subsequently forward them to the planner, which then
executes the trajectory. The robot navigated with an average
speed of 0.9ms−1, while a forward pass on the NVIDIA
TX1 embedded GPU took about 623ms. During the entire
experiment the robot did not have any prior map of the area
and just used the segmentation on the fly to traverse the
trail. The robot encountered several challenging situations
during the experiment including low-lighting due to forest
canopy, occasional glare from the sun, shadows from trees
and motion blur. The perception system consisting of the
AdapNet model was robust to all these disturbances and
performed inference online that enabled the successful au-
tonomous run. Videos from this experiment and a live demo
of various models presented in this paper can be accessed at
http://deepscene.cs.uni-freiburg.de/.

V. CONCLUSION

In this paper, we introduced a novel end-to-end semantic
segmentation architecture complemented with an adaptive fu-
sion strategy for robust semantic segmentation. Our proposed
fusion scheme is independent of the base expert architecture
and can applied to arbitrary number of experts that specialize
on a subset of the input space. Our AdapNet architecture out-
performs other end-to-end semantic segmentation networks
and our class-specific fusion scheme achieves state-of-the-
art performance compared to unimodal segmentation and
existing fusion techniques. We demonstrated the robustness
of our approach on three different publicly available datasets
in diverse environments and conditions. Additionally, we pre-
sented experimental results from autonomously navigating
4.52km in a forested environment using only the segmenta-
tion for perception.
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