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Abstract— Interpreting the semantics and motion of objects
are prerequisites for autonomous robots that enable them
to reason and operate in dynamic real-world environments.
Existing approaches that tackle the problem of semantic motion
segmentation consist of long multistage pipelines and typically
require several seconds to process each frame. In this paper,
we present a novel convolutional neural network architecture
that learns to predict both the object label and motion status of
each pixel in an image. Given a pair of consecutive images, the
network learns to fuse features from self-generated optical flow
maps and semantic segmentation kernels to yield pixel-wise se-
mantic motion labels. We also introduce the Cityscapes-Motion
dataset which contains over 2,900 manually annotated semantic
motion labels, which is the largest dataset of its kind so far. We
demonstrate that our network outperforms existing approaches
achieving state-of-the-art performance on the KITTI dataset,
as well as in the more challenging Cityscapes-Motion dataset
while being substantially faster than existing techniques.

I. INTRODUCTION

The advancement in robotic technology and machine
learning has led to the successful use of robots to accomplish
tasks in various structured and semi-structured environments
such as factory floors, domestic homes and offices. This re-
cent success has now paved the way to tackle more complex
tasks in challenging urban environments that contain many
dynamic objects. Thus scene understanding plays a crucial
role in ensuring the viability and safe operation in such
scenarios. The ability to classify, segment and infer the state
of motion of dynamic objects such as cars and pedestrians,
allows robotic systems to increase their awareness, reason
about behaviours and plan autonomous actions. Previous
work [20], [7] has successfully shown the benefit of solving
the problem of semantic motion segmentation jointly, as
features learned for semantic labelling can help infer motion
labels and vice versa. However, the multistage pipelines
currently in use have long processing times deeming them
impractical for real-world applications.

Deep convolutional neural network (DCNN) based ap-
proaches have significantly improved the state-of-art in both
semantic segmentation [16] and motion estimation [10].
Yet, their applicability to the task of joint semantic motion
segmentation has not been explored. There are several chal-
lenges that make this problem inherently hard including the
ego-motion of the camera, lighting changes between consec-
utive frames, motion blur and varying pixel displacements
due to motion with different velocities. Another major hin-
drance is the lack of a large enough dataset with ground truth
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(a) Input frame 1 (b) Input frame 2

(c) Generated optical flow (d) Ego-motion subtracted flow

(e) Semantic motion segmentation (f) Overlay of static and moving cars

Fig. 1. Illustration of semantic motion segmentation using our proposed
SMSnet on the Cityscapes dataset. (e) shows the output from our network
consisting of semantic and motion labels, while (f) shows the segmented
moving cars in green and static cars in blue for better visualization.

semantic motion annotations that enable training of deep
networks and allow for credible quantitative evaluations.

In this work, we propose a composite deep convolutional
neural network architecture that learns to predict both the
semantic category and motion status of each pixel from a
pair of consecutive monocular images. The composition of
our SMSnet architecture can be deconstructed into three
components: a section that learns motion features from
generated optical flow maps, a parallel section that generates
features for semantic segmentation, and a fusion section that
combines both the motion and semantic features and further
learns deep representations for pixel-wise semantic motion
segmentation. For this work, we consider an urban driving
scenario containing moving cars that appear in different
scales. Therefore we utilize our previously proposed multi-
scale ResNet skip layers [23] in the architecture to incorpo-
rate scale invariance. Training such a network requires sev-
eral thousands of labelled consecutive image pairs. Currently
the only publicly available semantic motion segmentation
dataset contains 200 labelled images from the KITTI [9]
benchmark, which is highly insufficient for training networks
of this scale. To overcome this impediment, we release the
Cityscapes-Motion dataset containing over 2,900 labelled
images and a KITTI-Motion dataset with 255 labelled im-
ages, both with additional preceding frames. Additionally,
we investigate the utility of combining these datasets to



measure the generalization capabilities to scenes of unseen
cities. Utilizing efficient GPU implementations, our approach
is several times faster than existing techniques and achieves
state-of-the-art performance on multiple datasets.

II. RELATED WORK

Semantic segmentation and motion segmentation are two
fundamental problems in scene understanding that both
have substantial amount of literature in their areas. Early
convolutional neural network (CNN) based segmentation
approaches involve small model capacities, multi-scale pyra-
mid processing, saturating tanh non-linearities and post-
processing such as superpixel computation, filtering and
random field regularization. A recent breakthrough that does
not require any pre or post processing was proposed by
Long et al. [16], in which they extend a CNN designed for
classification with learned deconvolution layers that are able
to upsample low-resolution feature maps to higher resolution
segmentation outputs. Since then, several improvements to
this fully convolutional network (FCN) architecture have
been proposed that improve the resolution of segmentation
with additional refinement layers [18], alternative schemes
for non-linear upsampling eliminating the need for learning
to upsample [1], and deeper networks based on the residual
learning framework that incorporates scale invariance [23].

There are numerous approaches that have been proposed
for segmenting moving objects from stationary camera im-
ages [22], [8]. However, they cannot be directly applied
to moving camera images, as the movement causes a dual
motion appearance which consists of the background motion
and the object motion. In general, methods that detect motion
from freely moving cameras partition the image into coherent
regions with homogenous motion. This process splits the
image into background and moving clusters. These methods
can be categorized into optical flow based and tracking based
approaches. Optical flow based techniques [19], [21] check
if the motion speed and direction of a region is consistent
with its radially surrounding pattern. It is then classified as a
moving object if the motion of this region deviates from this
pattern. The disadvantage of these methods is that they are
prone to occlusion, noise in the optical flow map and edge
effects. In recent work [12], the authors derive a geometric
model that relates 2D motion to a 3D motion field relative to
the camera based on estimated depth and motion of vanishing
points in the scene. Spectral clustering is then applied on
the recovered 3D motion field to obtain the moving object
segmentation. Although qualitative evaluations have been
shown on the KITTI benchmark, no quantitative comparison
has been reported. Tracking based techniques [3], [5], [14],
[13] on the other hand, aim to detect and localize target
objects in successive frames. Tracking of objects yields
movement trajectories and by estimating the ego-motion of
the camera, objects can be segmented from the background
motion. These approaches typically have long processing
pipelines resulting in high computation times and coarse
segmentations.

There is only a handful of work that jointly estimates the
semantic motion labels, mostly accounting to the last half

a decade. Chen et al. [2] propose an approach that detects
object-level motion from a moving camera using two consec-
utive image frames and provides 2D bounding boxes as the
output. They design a robust context-aware motion descriptor
that considers moving speed, as well as the direction of
objects and combines them with an object classifier. The
descriptor measures the inconsistency between local optical
flow histograms of objects and their surroundings, giving a
measure of the state of motion.

Dinesh et al. [20] propose an approach that generates
motion likelihoods based on depth and optical flow estima-
tions, while combining them with semantic and geometric
constraints within a dense conditional random field (CRF).
More recently, a multistep framework was proposed in [7],
where first sparse image features in two consecutive stereo
image pairs are extracted and matched. The matched feature
points are then classified using RANSAC into inliers caused
by the camera and outliers caused by moving objects. Fol-
lowing which, the outliers are clustered in a U-disparity map
which provides the motion information of objects. Finally, a
dense CRF is used to merge the motion information with
the semantic segmentation provided by a FCN. A major
disadvantage of these approaches is their long run-times
that range from several seconds to even minutes, making
them unusable for applications that require near real-time
performance such as autonomous driving. In contrast to these
existing multistage techniques, we propose an approach that
is entirely based on convolutional neural networks, com-
posing of a simpler but deeper structure while being more
accurate and several orders faster than existing techniques.

III. SEMANTIC MOTION SEGMENTATION

In this section, we first formulate the problem state-
ment for semantic motion segmentation. We then describe
our SMSnet architecture in detail and the training pro-
cedure that we employ. We represent the training set
as S = {(Xn−1,Xn,Yn),n = 1, . . . ,N}, where Xn = {x j, j =
1, . . . , |Xn|} denotes the input frame and Xn−1 denotes the
preceding frame. The corresponding ground truth mask can
be denoted as Yn = {y j, j = 1, . . . , |Xn|},y j ∈ {0}∪C ×M ,
where C = {1, ...,C} is the set of C semantic classes and
each class can also take the label of static or moving
M = {m1,m2}. Where, m1 denotes a static pixel and m2
denotes a moving pixel. Let θ be the network parameters
and a = f (x j;θ) be the activation function. The goal of our
network is to learn semantic motion features by minimizing
the cross-entropy (so f tmax) loss that can be computed as
L (k) =− exp(ak)

∑
C
l=1 exp(al)

. Using stochastic gradient descent, we
then solve

θ
∗ = argmin

θ

N×|Xn|

∑
i=1

L ( f (xi;θ),yi) (1)

A. Network Architecture

We propose a novel fully convolutional neural network
architecture that represents the sought f (x j;θ). Figure 2
depicts our SMSnet architecture for semantic motion seg-
mentation. The network consists of three different streams:
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Fig. 2. Depiction of the proposed SMSnet architecture for semantic motion segmentation from two consecutive images as input. The stream shown in green
learns deep motion features and in parallel the stream in gray learns semantic features, which are then both concatenated and further fused representations
are learned in the stream depicted in orange. The legend for the network architecture is shown with a red outline.

Motion Feature Learning, Semantic Feature Learning, and
Semantic Motion Fusion. The following sections describe
each of these streams in detail.

a) Motion Feature Learning: This stream generates
features that represent motion specific information. Succes-
sive frames (x j−1,x j) are first passed through a section of
this stream that generates high quality optical flow maps
X̂ . In this work, we embed the recently proposed deep
convolutional architecture FlowNet2 [10] for this purpose.
However, any network with the ability to generate optical
flow maps can be embedded in place. The flow generation
network yields the optical flow in the x and y direction and
in addition we also compute the magnitude of the flow. This
output tensor is of size 3× 384× 768, which is the same
dimensions as the input RGB images. Figure 1 (c) shows
a generated optical flow image from this section, while the
consecutive input frames are shown in Figure 1 (a) and (b).

Moving objects appear as motion patterns that differ
in scale, geometry and magnitude. In order to enable the
network to reason about object class and its borders, we
further convolve and pool the optical flow features through
multiple network blocks. These additional network blocks
can be represented as a function fo(X̂ ;θo) | θo ⊂ θ of the
optical flow maps yielding a feature map tensor of size
512×24×48.

b) Semantic Feature Learning: The final output of
our network is a combined label that denotes a semantic
class C and the state of motion M . While the stream
described in the previous section yields information about
the motion in the scene, the network still requires semantic
features to learn the combined semantic motion segmen-
tation. The semantic feature learning stream depicted in
gray blocks in Figure 2 takes as input the image x j and
generates semantic features fs(x j;θs) | θs ⊂ θ . The structure
of this stream is similar to our previously proposed unimodal
AdapNet [23] architecture for semantic segmentation. The
architecture follows the design of a contractive segment
that aggregates semantic information while decreasing the
spatial dimensions of the feature maps and an expansive
segment that upsamples the feature maps back to the full
input resolution. The architecture incorporates many recent
improvements including multiscale ResNet blocks that learn
scale invariant deep features, skip connections that enable
training of the deep architecture and dilated convolutions that
enable the integration of information from different spatial
scales. In our proposed SMSnet, the low resolution features
from the last layer of the contractive segment are fused with
the learned motion features in the Semantic Motion Fusion
stream that follows. The expansive segment then in parallel
yields the full semantic labels for the input frame x j.



c) Semantic Motion Fusion: The final stream in the
SMSnet architecture depicted using orange blocks in Fig-
ure 2, fuses the complementary motion and semantic features
which are generated in the aforementioned streams of the
network. The feature tensors from fo(X̂ ;θo) and fs(x j;θs)
are concatenated and further deep representations are learned
through a series of additional layers. No further pooling is
performed on these features and therefore a downsampling
factor of 16 is maintained in comparison to the input x j.
Similar to the semantic feature learning stream, multiscale
ResNet blocks from [23] that utilize dilated convolutions for
aggregating information over different field of views are used
in the layers that follow the concatenation segment. Finally,
towards the end of this stream, we use deconvolution, also
known as transposed convolution, for upsampling the low
resolution feature maps from 2048× 24× 48 back to the
input resolution of |C |× |M |×384×768. This upsampled
output has joint labels in C ×M corresponding to a semantic
class and a motion status: static or moving. Thus the final
activation function of the SMSnet is given by:

f (xi;θ) = fm( fo(X̂ ;θo), fs(x j;θs);θ f ) | θo,θs,θ f ⊂ θ (2)

B. Introducing Ego-Flow Suppression

Movement of the camera leads to ego-motion introducing
additional optical flow magnitudes that are not induced by
moving objects. This induced flow can cause ambiguities
since objects can appear with high optical flow magnitudes
although they are not moving. In order to circumvent this
problem, we propose a further variant of the SMSnet that
predicts the optical flow map X̂ ′ which is purely caused
by the ego-motion. We first estimate the backward camera
translation T and the rotation matrix R from the position at
the current frame x j to the previous frame x j−1. Using IMU
and odometry data we can then estimate X̂ ′ as:

X̂ ′ = KRK−1X +K
T
z

(3)

where, K is the intrinsic camera matrix, X = (u,v,1)T is the
homogenous coordinate of the pixel in image coordinates
and z is the depth of the corresponding pixel in meters. Cal-
culating the flow vector for every pixel coordinate yields the
2-dimensional optical flow image which purely represents the
ego-motion. For estimating the depth z, we use the recently
proposed DispNet [17] which is based on DCNNs and has
fast inference times. We then subtract the ego-flow X̂ ′ from
the optical flow calculated by the embedded flow generation
network X̂ within the SMSnet architecture. This subtraction
yields to suppression of the ego-flow while keeping the flow
magnitudes evoked from other moving objects. An example
of the optical flow with ego-flow suppression (EFS) is shown
in Figure 1 (d). We present evaluations on both variants of
our SMSnet, without and with EFS in Section V-A.

C. Training

We train our network on a system with an Intel Xeon E5
with 2.4 GHz and four NVIDIA TITAN X. We first train the
Semantic Feature Learning stream in SMSnet that generates

semantic features for all the C classes. Consecutively, we
train the embedded flow generation network that produces
the optical flow maps which are processed and generated in
the SMSnet architecture. Finally, we train the entire SMSnet
while keeping the weights of the semantic feature learning
stream and the flow generation network fixed. We train the
network with an initial learning rate λ0 = 10−7 and with the
poly learning rate policy as, λN = λ0×

(
1− N

Nmax

)c
, where

λN is the current learning rate, N is the iteration number,
Nmax is the maximum number of iterations and c is the power.
We train using stochastic gradient decent with a momentum
of 0.99 and a mini-batch of 2 for 50,000 iterations which
takes about a day to complete.

IV. DATASET

One of the main requirements to train a neural net-
work is a large dataset with ground truth annotations. Data
augmentation can help expand datasets but for training a
network from scratch and optimizing a network with millions
of parameters, thousands of labelled images are required.
While there are several large datasets for various scene
understanding problems such as classification, segmentation
and detection, for the task of semantic motion segmentation
however, there only exists one public dataset [9] with 200
labelled images which is highly insufficient for training
DCNNs. Obtaining ground truth for pixel-wise motion status
is particularly hard as visible pixel displacement quickly
decreases with increasing distance from the camera. In
addition, any ego-motion can make the labelling an arduous
task. To facilitate training of neural networks for semantic
motion segmentation and to allow for credible quantita-
tive evaluation, we create the following datasets and make
them publicly available at http://deepmotion.cs.
uni-freiburg.de/. Each of these datasets have pixel-
wise semantic labels for 10 object classes and their motion
status (static or moving). Annotations are provided for the
following classes: sky, building, road, sidewalk, cyclist, veg-
etation, pole, car, sign and pedestrian.

KITTI-Motion: The KITTI benchmark itself does not
provide any semantic or moving object annotations. Ex-
isting research on semantic motion segmentation has been
benchmarked using the annotations for 200 images from the
KITTI dataset provided by [9], however, there are no images
with annotations that can be used for training learning based
approaches. In order to train our neural network, we create a
KITTI-Motion dataset consisting of 255 images taken from
the KITTI Raw dataset and which do not intersect with
the test set provided by [9]. The images are of resolution
1280×384 pixels and contain scenes of freeways, residential
areas and inner-cities. We manually annotated the images
with pixel-wise semantic class labels and moving object
annotations for the category of cars. In addition, we combine
two publicly available KITTI semantic segmentation datasets
[6] and [24] for pretraining the semantic stream of our
network, which yields a total of 253 images. These images
also do not overlap with the test set [9] or the KITTI-Motion
dataset that we introduced.



Cityscapes-Motion: The Cityscapes dataset [4] is a more
recent dataset containing 2975 training images and 500
validation images. Semantic annotations are provided for 30
categories and images are of resolution 2048×1024 pixels.
The Cityscapes dataset is highly challenging as it contains
images from over 50 cities and different weather conditions,
varying seasons and many dynamic objects. We manually
annotated all the Cityscapes images with motion labels for
the category of cars. We use this dataset in addition to KITTI-
Motion for benchmarking the performance.

City-KITTI-Motion: As the KITTI-Motion dataset by itself
is not sufficient to train deep networks and to facilitate
comparison with other approaches that are evaluated on
KITTI data, we merge the KITTI-Motion and Cityscapes-
Motion training sets. Additionally, we merge the 200 image
KITTI test set [9] with the 500 validation images from
Cityscapes to compose a corresponding evaluation set. Com-
bining them also helps the network learn more generalized
feature representations. As we use an input resolution of
768×384 for our network, we downsample the Citiscapes-
Motion images to this size. However, as the images in the
KITTI-Motion dataset have wider resolution 1280×384, we
slice each image into three partially overlapping images. In
total the combined dataset yields 3734 training images and
1100 for validation. Furthermore, the dataset also contains
15 preceding frames for every annotated image and is thus
perfectly suited for sequence based approaches.

In order to create additional training data, we randomly
apply the following augmentations on the training images:
rotation, translation, scaling, vignetting, cropping, flipping,
color, brightness and contrast modulation. As the SMSnet
takes two consecutive images as input, we augment the pair
jointly with the same parameters.

V. EXPERIMENTAL RESULTS

For the network implementation, we use the Caffe [11]
deep learning library with cuDNN backend for acceleration.
We quantify the performance using the standard Jaccard In-
dex which is commonly known as average intersection-over-
union (IoU) metric. It can be computed as IoU = T P/(T P+
FP+FN), where T P, FP and FN correspond to true posi-
tives, false positives and false negatives respectively.

A. Baseline Comparison

In order to compare the performance of our network
with state-of-the-art techniques, we train our network on
the combined City-KITTI-Motion dataset and benchmark
its performance on the KITTI set from [9] on which
the other approaches have reported their results. We com-
pare the motion segmentation against three state-of-the-art
techniques including geometric-based motion segmentation
(GEO-M) [13], joint labelling of motion and superpixels
based image segmentation (AHCRF+Motion) [14] and CRF-
based semantic motion segmentation [20]. Table I summa-
rizes the results of this experiment and shows the average IoU
of the moving object, static object and background classes.
Other approaches consider all the elements in the scene that
are movable but not moving such as a stationary car and

TABLE I
COMPARISON OF MOTION SEGMENTATION PERFORMANCE WITH

STATE-OF-THE-ART APPROACHES ON THE KITTI DATASET.

Approach IoU
Moving Static Background

GEO-M [13] 46.50 N/A 49.80
AHCRF+Motion [14] 60.20 N/A 75.80
CRF-M [20] 73.50 N/A 82.40

SMSnet 10-class 73.98 80.28 97.65
SMSnet 10-class with EFS 80.87 83.77 97.84
SMSnet 2-class 74.03 80.78 97.59
SMSnet 2-class with EFS 84.69 84.50 98.01

permanently static elements such as buildings to be under
the same static class, which we denote as background in our
evaluations. However, as it is more informative in the context
of robotics to split these two cases into different categories,
we consider the static class to only contain objects that are
movable but are stationary at that time.

It can be seen that the method that jointly predicts the se-
mantic class and motion (CRF-M) substantially outperforms
approaches that perform only motion segmentation (GEO-
M and AHCRF+Motion). This can be attributed to the fact
that these approaches learn to correlate motion features with
the learned semantic features which improves the overall
motion segmentation accuracy. Intuitively, the approaches
learn that there is a higher probability of a car moving than
a building or a pole. Although Fan et al. [7] also propose
an approach for semantic motion segmentation, the KITTI
scene flow dataset that they evaluate on have inconsistent
class labels which does not allow for meaningful comparison.
Finally, we show the performance using variants of our
proposed SMSnet architecture, specifically, with and without
the subtraction of the optical flow induced by the ego-motion
(ego-flow), as well as considering all the semantic classes
in KITTI and considering only the semantic classes that
are potentially moveable. All the SMSnet variants shown in
Table I outperform the existing approaches, while our best
performing models achieve the state-of-the-art performance
of 84.69% for the moving classes, 84.50% for the static
classes and 98.01% for the background class. It can be
observed the subtraction of the ego-flow helps in improving
the moving object segmentation.

Since we are interested in predicting both the motion status
and the semantic label, we show the performance of semantic
segmentation in comparison to recent neural network based
approaches in Table II. As described in Section IV, the
KITTI benchmark does not provide any official ground truth
for semantic segmentation, therefore to train the semantic
stream of our network, we combine the Cityscapes dataset
with the KITTI semantic ground truth from [6] and [24] to
obtain the most generalized training set. We then test the
performance individually on the Cityscapes test set, as well
as on the KITTI semantic motion test set that was also used
in the motion segmentation comparison. For the experiments
on the KITTI semantic motion test set, we observe that
our SMSnet outperforms the other approaches for most of
the semantic classes. Secondly, the KITTI semantic motion



TABLE II
COMPARISON OF SEMANTIC SEGMENTATION PERFORMANCE WITH STATE-OF-THE-ART APPROACHES ON THE KITTI AND CITYSCAPES DATASETS.

Test Approach Sky Building Road Sidewalk Cyclist Vegetation Pole Car Sign Pedestrian
Set

K
IT

T
I FCN-8s [16] 77.35 74.24 74.41 51.41 35.79 78.80 15.99 76.20 35.97 40.87

SegNet [1] 77.27 60.34 75.03 43.62 19.76 76.58 24.34 63.88 17.01 21.96
ParseNet [15] 81.26 70.42 73.85 42.12 41.04 71.48 32.02 77.20 31.60 47.49

SMSnet (ours) 78.39 74.27 78.10 46.11 26.85 79.88 34.84 83.63 37.70 42.88

C
ity

sc
ap

es FCN-8s [16] 76.05 75.94 92.73 59.68 46.50 78.78 15.27 76.54 37.96 41.57
SegNet [1] 69.93 59.87 83.25 43.35 27.25 68.83 19.23 60.80 23.81 23.14
ParseNet [15] 77.58 76.23 92.76 60.04 47.96 79.68 22.66 76.85 40.99 44.54

SMSnet (ours) 85.43 81.08 94.50 66.89 49.26 84.85 37.92 82.40 47.48 46.47

test set consists of images containing sidewalks with out-
grown grass labelled as sidewalk as opposed to vegetation.
Such examples are consistently labelled as vegetation in the
Cityscapes dataset, consequently causing misclassification.
Whereas, while testing on the Cityscapes test set, our pro-
posed SMSnet substantially outperforms other networks in
all the classes.

B. Influence of Range on Motion Segmentation Accuracy

In this section, we investigate the performance of motion
segmentation using SMSnet to various ranges within which
the moving objects might lie. One of the primary challenges
is learning motion features of moving objects that are at
far away distances from the camera, as the appearance of
the object and the pixel displacement are both very small.
To quantify this influence, we train models on examples
that have moving objects within certain maximum distance
from the camera and objects that lie beyond this distance are
ignored for training. We then evaluate each of these models
on test sets containing moving objects at varying distances.
On the one hand, including training examples that are far
away might enable learning of more multiscale features that
can cover a wide variety of motion appearances, but on
the other hand these highly difficult training examples can
also confuse the training if the network is unable to learn
features that can distinguish the state of distant objects. For
this experiment, we train models on the City-KITTI-Motion
dataset and also evaluate on the corresponding test set as we
want the evaluation to generalize over both the Cityscapes
and KITTI datatsets. The results of this experiment are shown
in Figure 3. As hypothesized, the best accuracy is obtained
for a maximum distance of 20 m and the accuracy gradually
decreases with increasing maximum distance. The best trade-
off is obtained for a maximum distance of 40 m. It can also
be seen that the model trained with the maximum distance
at infinity performs impressively well even for challenging
moving object examples that are at far away distances.

C. Generality of the Network to Different Datasets

A large amount of good quality training data that encom-
passes the possible scenarios is essential for successful train-
ing of neural networks. Ideally, the training dataset should
generalize to previously unseen scenes. In this section, we
investigate the performance of models trained on various
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Fig. 3. Moving object segmentation performance of our proposed SMSnet
while considering objects within different maximum ranges.

public datasets, including our newly proposed City-KITTI-
Motion dataset and evaluate its efficacy on test sets from
complementary datasets. Specifically, we train our network
individually on KITTI, Cityscapes and the combined City-
KITTI-Motion dataset and evaluate each of them on all their
individual test sets. For this experiment, we use the 2-class
model with EFS trained and evaluated with a maximum
range of 40 m. In Table III we summarize the results from
this experiment and show the mean IoU for the static
and moving classes. It can be seen in Table III that the
model trained on the combined City-KITTI dataset performs
well on both the Cityscapes and KITTI test sets than the
models trained on their individual counterparts. The models
trained only the KITTI dataset or only on the Cityscapes
dataset have a substantially lower performance when they
are tested on the Cityscapes or KITTI test set respectively
than the model trained on the City-KITTI-Motion dataset.
This shows the utility of combining these datasets and the
good generalization that it provides.

TABLE III
COMPARISON OF MODELS TRAINED - TESTED ON DIFFERENT DATASETS.

Trained On Static Moving
KITTI Cityscapes KITTI Cityscapes

KITTI 78.51 52.05 70.32 34.84
Cityscapes 61.29 84.27 51.65 75.31
City-KITTI 86.10 84.03 87.02 72.78
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Fig. 4. Qualitative semantic motion segmentation results on the KITTI dataset. In each column top to bottom: input frame 2, corresponding ego-motion
subtracted flow, semantic motion segmentation output and segmented static and moving cars overlay. The network accurately segments and classifies moving
objects of different scales and at varying velocities, in addition to pixel-wise classification of the entire scene.

D. Prediction Time Comparison
Fast prediction time is one of the most critical require-

ments for perception algorithms used in real-world robotics.
Therefore, we designed SMSnet while keeping this critical
factor in mind. To the best of our knowledge, there exists
two alternate approaches that perform semantic motion seg-
mentation to which we compare our inference time with in
Table IV. Our proposed SMSnet takes 153 ms to predict a
single frame which is significantly faster that the other two
existing approaches. The SMSnet with ego-flow subtraction
takes 313 ms which includes the disparity prediction and
solving Equation 3. In contrast to existing approaches both
variants of our proposed SMSnet enable interactive speeds
which is a prerequisite for robotic applications.

TABLE IV
COMPARISON OF PREDICTION TIME WITH STATE-OF-THE-ART.

Approach Time

CRF-M [20] 240,000 ms
U-Disp-CRF-FCN [7] 1,060 ms

SMSnet (ours) 153 ms
SMSnet with EFS (ours) 313 ms

E. Qualitative Evaluation
In this section, we show qualitative results on various

datasets with our SMSnet trained on City-KITTI-Motion and
critique its performance in diverse scenes. Figure 4 shows
results on images from the KITTI test set. The segmented
images are color coded according to the labels shown in
Table II. Dark blue pixels indicate static cars and light green
pixels indicate moving cars. Figure 4 (a) and (b) are scenes
from residential areas which have cars moving with low
velocities and Figure 4 (c) shows a scene on a highway which
has cars moving at much higher velocities. These scenes
also have objects of different scales and lighting conditions.
We can see that the network accurately segments the scene

(a) (b)

Fig. 5. Qualitative semantic motion segmentation results on the Cityscapes
dataset. The network demonstrates robustness to complex scenes with many
different dynamic objects, some that are even partially occluded.

and distinguishes between the static and moving cars even
in these diverse situations. Figure 5 presents results on the
Cityscapes test set which contains more complex scenes than
the KITTI dataset. Figure 5 (a) shows a moving car over
80 m away and SMSnet succeeds in capturing this motion
while precisely segmenting the object. Figure 5 (b) shows
a scene with a moving car that is partially occluded by a
tree, yet the entire car is captured in the segmentation. This
demonstrates the ability of the SMSnet to handle diverse
real-world scenarios.

F. Evaluation of Transferability and Platform Independence

In this section, we demonstrate the platform independence
of our SMSnet model trained on the City-KITTI-Motion
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Fig. 6. Qualitative comparison of semantic motion segmentation models trained on various datasets and evaluated on real-world data from Freiburg.
Note that the model trained on the City-KITTI-Motion dataset generalizes better to the previously unseen city than others. Our network robustly handles
challenging conditions such as glare (a) and low lighting (b).

dataset by presenting qualitative evaluations on images cap-
tured using a different camera setup than those used in KITTI
and Cityscapes datasets. We mounted a ZED stereo camera
on the hood of a car and collected over 61,000 images of
driving scenes in Freiburg, Germany. The recorded images
comprise of adverse conditions such as low lighting, glare
and motion blur, which pose a great challenge for semantic
motion segmentation. Figure 6 shows a comparison of results
using the SMSnet trained on KITTI-Motion, Cityscapes-
Motion and the combined City-KITTI-Motion datasets. In
Figure 6 (a), we see that the Cityscapes-Motion model
misclassifies the car as static while it is moving and it has
false positives on the sides of the image due to motion blur.
The KITTI-Motion model on the other hand, segments the
car as moving but fails to segment it as a whole, in addition
to having numerous false positives. Figure 6 (b) shows a
residential scene in low lighting. We see that the KITTI-
Motion model misclassifies the moving car in the left as static
and the Cityscapes-Motion model misclassies the static car as
moving. Both these models also have a difficulty segmenting
the sidewalk entirely. Overall, one can note that the model
trained on City-Kitti-Motion performs substantially better in
segmenting the static and moving classes as well as having
negligible false positives, demonstrating the good generality
of the learned kernels.

VI. CONCLUSION

In this paper, we presented a convolutional neural network
that takes as input two input images and learns to predict both
the semantic class label and motion status of each pixel in an
image. We introduced two large first-of-a-kind datasets with
ground-truth annotations that enable training of deep neural
networks for semantic motion segmentation. We presented
comprehensive quantitative evaluations and demonstrated
that the performance of our network exceeds the state of
the art, both in terms of accuracy and prediction time. We
investigated the performance of motion segmentation to vary-
ing object distances and showed that our network performs
well even for distant moving objects. We also presented
extensive qualitative results that show the applicability to
autonomous driving scenarios. Furthermore, we presented
qualitative evaluations of various SMSnet models on real-
world driving data from Freiburg that contain challenging
perceptual conditions and showed that the model trained

on our City-KITTI-Motion dataset generalized effectively to
previously unseen conditions.
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