Vision-based Autonomous Landing in Catastrophe-Struck Environments

Mayank Mittal*

Abstract— Unmanned Aerial Vehicles (UAVs) equipped with
bioradars are a life-saving technology that can enable identifi-
cation of survivors under collapsed buildings in the aftermath
of natural disasters such as earthquakes or gas explosions.
However, these UAVs have to be able to autonomously land
on debris piles in order to accurately locate the survivors.
This problem is extremely challenging as the structure of these
debris piles is often unknown and no prior knowledge can be
leveraged. In this work, we propose a computationally efficient
system that is able to reliably identify safe landing sites and
autonomously perform the landing maneuver. Specifically, our
algorithm computes costmaps based on several hazard factors
including terrain flatness, steepness, depth accuracy and energy
consumption information. We first estimate dense candidate
landing sites from the resulting costmap and then employ
clustering to group neighboring sites into a safe landing region.
Finally, a minimum-jerk trajectory is computed for landing
considering the surrounding obstacles and the UAV dynamics.
We demonstrate the efficacy of our system using experiments
from a city scale hyperrealistic simulation environment and in
real-world scenarios with collapsed buildings.

I. INTRODUCTION

Search and rescue operations for finding victims in col-
lapsed buildings is an extremely time critical and dangerous
task. There are several triggers for buildings to collapse
including gas explosions, fires as well as natural disasters
such as storms and earthquakes. The current paradigm fol-
lowed during the response and recovery phase of the disaster
management cycle is to first conduct a manual inspection
of the damaged structures by disaster response teams and
firefighters, followed by actions to search for victims using
bioradars and thermal cameras. However, there are often
several inaccessible areas that take anywhere from a few
hours to days to reach, which not only endangers the lives
of the trapped victims but also the rescue team due to the
inherent instability of the rubble piles.

These factors have increased the interest in employing
Unmanned Aerial Vehicles (UAVs) for reconnaissance op-
erations due to their agile maneuverability, fast deployment
and their ability to collect data at high temporal frequencies.
Typically, in addition to optical sensors such as thermal
cameras, ground penetrating radars such as bioradars that
can detect movements in the internal organs of humans such
as the lungs and heart are used for bioradiolocation [1].
More recently, our partner researchers have miniaturized a
bioradar [2] capable of being mounted as payload on small-
sized UAV. However, due to the large difference in the
electromagnetic impedance between the air and collapsed
structures, the antenna of the bioradar should be in contact

*These authors contributed equally. All authors are with the Department
of Computer Science, University of Freiburg, Germany. This work has
partly been supported by the Federal Ministry of Education and Research
of Germany through the project FOUNT?2.

Abhinav Valada*

Wolfram Burgard

(a) Hyperrealistic Simulation
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Fig. 1: Illustration of the textured 3D volumetric reconstruction of collapsed buildings
showing the minimum-jerk trajectory to the detected safe landing site. The correspond-
ing full costmap computed by our landing site detection algorithm is shown on the
right along with the dense candidate landing sites overlaid on the visual image of
the scene. The blue circles show the detected safe landing spots and the enclosed red
circles indicate the area occupied by the UAV. The circles appear as different sizes
due to the 2D projection on planes at different distances from the camera.

with the surface of the rubble in order to obtain accurate
measurements. Therefore, the UAV should be capable of
reliably detecting safe landing spots in collapsed structures
and autonomously perform the landing maneuver. This prob-
lem is extremely challenging even for an expert human
operator as almost no prior knowledge of the environment
such as digital surface maps can be leveraged. Moreover, as
often communication infrastructures are also damaged during
natural disasters, all the computation has to be performed on-
board on a resource constrained embedded computer.

Most existing work on landing site detection employ
specific markers or patterns that can be identified by a UAV
as the landing site, such as the alphabet "H’ on helipads or
fiducial markers [3]. These approaches require the landing
site to be predetermined and are not employable in unstruc-
tured or unknown environments. Other existing approaches
that only employ planarity constraints [4] are insufficient for
our application as our UAV is required to land on collapsed
buildings that appear as rubble piles. Due to the nature of
these collapsed structures, the algorithm should be able to
handle a multitude of visual terrain features and natural or
man-made obstacles that the UAV might encounter in a post
disaster struck environment. Moreover, a critical requirement
being that the landing site detection algorithm has to run
online on a low-power embedded computer along with other
autonomy packages for state estimation and mapping.

In this paper, we present a solution to the aforementioned
problem through a robust vision-based autonomous landing



system that can detect safe landing sites on rubble piles
from collapsed buildings in real-time and perform the landing
maneuver autonomously to the landing region. Our proposed
algorithm assesses the risk of a landing spot by evaluating the
flatness, inclination and the orientation of the surface normals
using the depth map from a stereo camera, in addition to
considering the confidence of the depth information inferred
and the energy required to land on the detected spot. A set
of dense candidate landing sites are first estimated locally
by computing a weighted sum of the costmaps for each of
the hazard factors, followed by optimizing over the global
area explored by the UAV using a clustering based approach.
We then project the landing sites on to a textured 3D
volumetric reconstruction of the area which is computed
real-time on-board of the UAV. Once the final landing site
has been chosen, the system computes a minimum-jerk
trajectory considering the nearby obstacles as well as the
UAV dynamics and executes the landing maneuver.

We evaluate our proposed system using extensive exper-
iments in a hyperrealistic city scale simulated environment
and in real-world environments with collapsed buildings as is
exemplary shown in Fig. 1. To the best of our knowledge, this
is the first such system capable of landing on rubble piles in
catastrophe-struck environments. Although we demonstrate
the utility of our system for autonomous landing on collapsed
buildings, it can also be employed for landing in planned or
emergency situations such as when the UAV has low battery
or has lost communication to the ground station.

II. RELATED WORK

In the last decade, a wide range of vision-based landing
sites detection approaches have been proposed for UAVs.
These techniques can be categorized into methods that either
employ fiducial markers for landing at known locations or
assess various surface and terrain properties for landing in
an unknown environment. In the first category of approaches,
markers are detected on the basis of their color or geometry
using classical image features and then the relative pose of
the UAV is estimated from these extracted feature points.
Over the years, several types of fiducial markers have been
proposed for this purpose including point markers [5], circle
markers [6], H-shaped markers [7] and square markers [8].
More recently, advancement in techniques for robust tracking
of fiducial markers using IR LEDs [9] has also been made.
While the usage of fiducial markers for landing purposes is
reliable and efficient, they are usable only when the desired
landing spots are known in advance such as for landing on
ship decks [10] or a moving mobile robot platform [11].

More relevant to our work are the approaches which
estimate safe landing sites in unknown or unstructured envi-
ronments. Forster ef al. [12] propose an approach that builds
a 2D probabilistic robot-centric elevation map from which
landing spots are detected over regions where the surface of
the terrain is flat. Templeton et al. [13] present a terrain
mapping and landing system for autonomous helicopters
that computes the landing quality score based on the linear
combination of the angle of the best-fit horizontal plane, the
plane fit error, and other appearance factors. Concurrently,
the authors in [14] propose an approach for safe landing

of an autonomous helicopter in regions without obstacles
by utilizing a contrast descriptor and correlation function to
detect obstacles under the assumption that the boundaries
of obstacles have high contrast regions. A stereo vision-
based landing site search algorithm is presented in [15],
in which a performance index for landing is computed
considering the depth, flatness, and energy required to reach a
specific site. Desaraju ef al. [16] employ an active perception
strategy utilizing Gaussian processes to estimate feasible
rooftop landing sites along with the landing site uncertainty
as assessed by the vision system.

Bosch et al. [4] introduce an approach that considers
a sequence of monocular images for robust homography
estimation in order to identify horizontal planar regions for
landing as well as for estimating the motion of the camera.
In [17], the authors propose a similar technique for camera
motion estimation and detection of multiple planar surfaces
in complex real-world scenes. While in [18], Theodore et al.
presents an approach in which they first create a stereo range
map of the terrain and then choose the landing point based on
the surface slope, roughness and the proximity to obstacles.
Johnson et al. [19] propose a Lidar-based approach in which
an elevation map is computed from Lidar measurements,
followed by thresholding the regions based on local slope
and roughness of the terrain. Most recently, Hinzmann et
al. [20] present a landing site detection algorithm for au-
tonomous planes in which they first employ a binary random
forest classifier to select regions with grass, followed by 3D
reconstruction of the most promising regions from which
hazardous factors such as terrain roughness, slope and the
proximity to obstacles that obscure the landing approach are
computed to determine the landing point.

In contrast to the aforementioned techniques, the approach
presented in this paper detects safe landing sites on collapsed
buildings which often appear as rubble piles therefore it
employs fine-grained terrain assessment considering a wide
range of hazardous factors at the pixel-level. By first estimat-
ing dense candidate landing sites in a local region, followed
by a global refinement, the approach is able to run online
along with other state estimation and mapping processes on
a single on-board embedded computer mounted on a UAV.

III. TECHNICAL APPROACH

In this section, we first briefly describe the overall architec-
ture of our autonomous landing system, followed by detailed
descriptions of each of the constituting components. Fig. 2
shows an overview of our proposed system. We estimate the
current pose of the UAV by fusing raw data from the inertial
sensors with GPS measurements and the poses obtained from
stereo ORB-SLAM?2 [21] using an extended Kalman filter
(EKF) as described in Sec. III-A. Accurate estimation of the
UAV’s pose is an essential requirement for various modules
including volumetric mapping, localization of the detected
humans from the bioradar measurements and for detecting
landing sites using our proposed algorithm. The autonomous
landing protocol detailed in Sec. III-B can be subdivided
into three stages. In the first stage, we evaluate the costmaps
for various metrics such as terrain flatness, steepness, depth
accuracy and energy consumption information in the local
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Fig. 2: Overview of our autonomous landing system. We use the DJI M100 quadrotor with the N1 flight controller and NVIDIA Jetson TX2 for the on-board computer. We
equip our quadrotor with a ZED stereo camera for acquiring depth information. All our mapping, localization and landing site detection algorithms run online on the TX2.

camera frame. We then infer a set of dense candidate landing
sites from the combined costmaps, followed by employing a
nearest neighbor filtering and clustering algorithm to obtain
a sparser set of unique landing sites in the global frame.

In our system, we generate two different 3D representa-
tions of the environment - an OctoMap [22] which serves
as a light voxel-based ’internal’ map for the UAV for trajec-
tory planning and a 3D mesh reconstruction [23] which is
transmitted to the ground station for analysis and verification
by a human operator. We describe the mapping procedure
in Sec. III-C. The UAV also transmits the vehicle status
information, landing sites detected in the explored area and
poses of any detected humans. For the sake of generality,
we express the situations for planned (normal operations)
and forced landings (emergency situations) using a common
landing signal. In case of a planned operation, the operator
selects a specific site to land from the list of candidate sites
detected in the region. While, in case of emergencies, the
UAV chooses a landing site based on whether it needs to
land quickly (low battery) or at a location closest to the
remote station (loss of communication signal). Once the
landing signal has been transmitted/generated, a minimum-
snap trajectory is planned on-board to safely land at the
selected site as described in Sec. III-D. Finally, the waypoints
indicating the planned trajectory are sent to a position-
based model predictive controller which sends the actuation
commands to the flight controller of the UAV.

A. State Estimation

For autonomous operation of UAVs, it is crucial to reliably
estimate the vehicle’s position in the world. Although GPS
provides a straightforward solution, it is highly unreliable in
complex cluttered or confined areas as well as in other GPS-
denied environments. Therefore, we use ORB-SLAM2 [21]
to estimate the pose of the vehicle from the image stream
of a downward-facing stereo camera mounted on the UAV.

The algorithm extracts ORB (oriented FAST and rotated
BRIEF) features from the input frames and performs motion-
only bundle adjustment for tracking the extracted features.
It utilizes a bag-of-words representation during tracking
to match features and runs efficiently even on embedded
computers. Since we use a stereo configuration in our system,
the pose estimated from ORB-SLAM?2 is in absolute scale,
therefore no sensor fusion for scale correction is necessary.
However, to further improve the accuracy of the estimated
pose, we fuse the output from the ORB-SLAM?2 system with
data from the on-board inertial measurement unit (IMU),
barometer and GPS using the multi-sensor fusion (MSF)
module [24] which utilizes an extended Kalman Filter. The
aforementioned sensors are pre-calibrated using the Kalibr
toolbox [25]. This state estimation system provides precise
localization information even in complex environments with
collapsed buildings.

B. Landing Site Detection

The criteria for the selection of candidate landing sites is
to locate regions from aerial imagery that are reasonably flat,
within the range of the accepted slope, free of obstacles and
large enough for the UAV to land on. Quantifying each of
these requirements through a costmap makes our approach
generic to the various structures that the UAV may encounter
in the aftermath of catastrophic events, as well as in other
emergency situations. Using the estimated current pose of the
UAV and the depth map obtained from synchronized stereo
images, the key costmaps that we compute in our algorithm
are described in the following sections. Fig. 3 provides an
overview of our landing site detection algorithm. We denote
the minimum and the maximum range for which the sensor
data is valid by d,;;, and d4x, and the depth map obtained
from the stereo camera by D.

1) Confidence in Depth Information Jpg: In [26],
Nguyen et al. empirically derived a noise model for an
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Fig. 3: Overview of our landing site detection algorithm. The figure illustrates the various costmaps for hazard estimation. Scale: Red indicates high score while blue indicates
lower score. The detected landing sites are projected on to a volumetric 3D reconstructed mesh of the environment.

RGB-D sensor according to which the variance in axial
noise distribution of a single ray measurement varied as a
squared function of the depth measurement in the camera
frame. More specifically, when the UAV is operating at a
high altitude, inaccurate depth information may be obtained
for objects closer to the ground. In order to encode this con-
fidence on the depth information, we evaluate the costmap
function Jpg such that Jpg(p) € [0,1] is the score given to
each pixel p = (x,y) in the depth map such that
D(p)? —min(D?)
max(D?)

2) Flatness Information Jpr: From the depth map of
the topography containing ground obstacles, the flatness
of an area can be represented by the portion in the map
having the same depth. The size of this area can then be
determined by inscribing a circle in every portion of the
image with the same depth level and selecting the location
which has the largest diameter. We evaluate the flatness
information using the aforementioned analogy. By applying
a Canny edge detector over the depthmap, we obtain a binary
image where non-zero elements represent the edges for depth
discontinuities. In order to find the inscribed circle, we apply
a distance transform which assigns a number to each pixel
depending on the distance of that pixel to the nearest nonzero
pixel of the binary edge map. For each pixel p = (x,y) in
the image plane, the Euclidean distance transform of a binary
image B, is defined as

di(B, p) = min{\/ (p—LI)T(p—q)’B(q) = 1}- 2)
Using this operator, we calculate the flatness score as
JrL(p) = di(Canny(D), p). 3)

It can be inferred that the flatter areas in the depth map
are given higher scores in the evaluated flatness map Jrr.

Jpe(p) =1— )

3) Steepness Information Jy: Another criteria to measure
the quality of a landing site is based on the steepness of
the area around the region. We quantify the steepness by
computing the surface normals from the generated depth
map. However, while estimating this information online, it
is essential to account for the deviation in the calculated
normals due to the orientation of the UAV as the depth map
is represented in the camera frame. In order to account for
this factor, we generate a point cloud from the depth map
and transform it into the global frame. Using the transformed
depth information, we estimate the surface normals using the
average 3D gradients algorithm to obtain a normals map N.
Compared to the covariance based method, the average 3D
gradients approach computes the normals significantly faster
and the results are comparable to a 30-nearest neighborhood
search in the covariance method [27]. For each pixel in the
calculated surface normals map N, we evaluate deviation of
the normalized surface normal 72 with respect to the z-axis
in the global frame using the vector dot product as

0 = cos ! (A.3). 4)
The steepness score for each pixel p is then given by
92
n(p) =expq — 262 (° (&)

where we set 0;, to 159 in this work, which is the maximum
tolerable slope that our UAV can perch on safely.

4) Energy Consumption Information Jpc: Often, there are
several flat areas where the UAV could potentially land and
in some cases, it might be desirable to land on a site that
consumes lesser energy to navigate to. In order to account
for this factor, we compute the energy consumption required
to follow a safe trajectory to a landing site at pixel p as

iy

Jec(p) = | P(t)dt, (6)

fo



where 7y and t; are the time of flight for the path to
reach location p and P(¢) is the instantaneous battery power.
However, computing a costmap by evaluating this integral is
a computationally expensive task since a trajectory for the
UAV would need to be computed for each pixel. However,
the battery power consumed by the UAV is directly related
to the amount of energy required to reach the location of
that pixel [15]. Therefore, we can approximate the afore-
mentioned integral operation by computing the Euclidean
distance in the 3D space between the UAV and the location
of that point relative to body frame of the UAV. Following
this approximation, we assign the value computed for each
pixel to obtain the costmap Jgc.

5) Dense Landing Sites Detection: After evaluating the
individual costmaps, we perform min-max normalization
over the depth accuracy, flatness and the energy consumption
costmaps to scale their values to the same range and remove
any biases due to unscaled measurements in the evaluated
costs. We then take a weighted sum of the scores assigned
to each pixel in their respective costmaps and calculate a
final decision map J given by

J = ciJpe +caJrr + c3Jy + caJEc, @)

where ¢y, ¢, c3 and ¢4 are weighting parameters for each
map with the constraints ¢; € [0,1], Vi € {1,2,3,4} and ¢; +
ct+cz3+ceqs=1.

The sites with scores above a certain threshold are con-
sidered as candidate landing sites in the local input frame.
We perform further filtering of the landing site by evaluating
whether the area available around each site is large enough
for a UAV to land on. We achieve this by comparing the
flatness score of the site to the pixel-wise size of the UAV
obtained by projecting the UAV on to the image plane using
a pinhole camera model and the depth information of the
landing site. Once the filtering has been performed, the
locally detected candidate sites are then forwarded to the
next stage for aggregation into a global list of detected sites.

6) Clustering of Landing Sites: As we perform landing
site detection on frame-to-frame basis, the same landing site
detected on the image frame maybe detected in different
frames depending on the motion of the UAV. Therefore, in
order to account for this factor, we use the depth information
and the pose of the UAV to infer the 3D position corre-
sponding to the pixel coordinates of each detected landing
site. We then store this location using a k-D tree to efficiently
search for a neighboring landing site within a certain distance
threshold to an input candidate site. We add the location of
the new landing site to the global list only if it currently has
no existing neighbors in the list.

Moreover, in large flat regions, several landing sites might
be detected within close proximity of each other. If the entire
exhaustive list of detected sites is provided to the human
operator, it reduces the reaction time which is critical in
rescue situations. In order to alleviate this problem, we apply
an agglomerative hierarchical clustering algorithm over the
global list of detected landing sites. Clusters are formed on
the basis of the euclidean distance between landing sites
and the difference in their locations along the z-axis. This

(a) OctoMap representation

(b) Mesh visualization

Fig. 4: A minimum-jerk polynomial trajectory is generated to the selected landing
site while considering a minimal set of waypoints and a differential flat model of
the quadrotor. The on-board planner uses the OctoMap representation for planning a
collision free path, while the mesh visualization is created for structural analysis as
well as search and rescue planning.

yields a sparse set of landing sites with each site location
corresponding to the centroid of a cluster. This also helps
in overcoming the effect of drift (dy,d,,d;) in the estimated
3D positions of dense landing sites in events such as loop
closures. Since the centroid of a cluster k is given by

m m m
_ i—1 x‘,kJFdx YL y',kery Yo ziktd:
(xc,ka)’c,kvzc,k) = : nl1 , = ,,11 y = ,,l,

, (8)

the net drift of the resulting centroid is reduced by a factor
of the number of dense sites m present in that cluster. We set
the cluster distance threshold as a factor of the UAV size.

C. 3D Volumetric Mapping

Exploring the unknown environment consisting of col-
lapsed buildings is one of the foremost tasks for the UAV dur-
ing the search and rescue operation. The UAV is required to
build a map of the environment not only for its navigation but
also for the rescue team to remotely assess the situation. In
order to create 3D volumetric maps, the UAV primary relies
on the depth information from the stereo camera to sense the
environment. We generate two different 3D map representa-
tions of the environment, an occupancy grid for its navigation
and planning, and a textured 3D mesh for visualization. The
two maps are generated at different resolutions since a high-
resolution map is required for planning a human-lead rescue
operation, while a low-resolution map enables faster trajec-
tory planning of collision-free paths for the UAV navigation.

We use OctoMaps [22] for the internal representation
of the environment at a low-resolution (typically 0.5m).
OctoMaps use octrees to efficiently create a probabilistic
3D volumetric map of the area and models the environment
efficiently. Whereas, for generating a 3D textured mesh, we
employ Voxblox [23] which is based on Truncated Signed
Distance Fields (TSDFs). This framework allows for dynam-
ically growing maps by storing voxels in form a hash table



(b) Real-World Outdoor Environment

(a) Simulation Environment

Fig. 5: Evaluation scenarios for our autonomous landing system showing collapsed
buildings, overturned vehicles and uprooted trees.

which makes accessing them more efficient compared to an
octree. Using Voxblox, we reconstruct a textured mesh from
the updated TSDF voxels on the on-board NVIDIA Jetson
TX2 and transmit the mesh for analysis by the rescue team.

D. Landing Trajectory Estimation

When the human operator selects a landing site or when
the on-board vehicle status monitor detects the need to land,
the UAV plans a trajectory to the selected site and initiates
the landing maneuver. To do so, we utilize a minimum-jerk
trajectory generator [28] with non-linear optimization. The
algorithm firsts finds a collision free path to the landing
site using RRT*, followed by generating waypoints from the
optimal path according to a line-of-sight technique. Using
unconstrained nonlinear optimization, it generates minimum-
snap polynomial trajectories while considering the minimal
set of waypoints and a differential flat model of the quadrotor.
This allows the UAV to travel in high speed arcs in obstacle
free regions and ensures low velocities in tight places for
minimum jerk around corners. Fig. 4 shows the trajectory
planned to a safe landing site along with the OctoMap and
the textured mesh of the area explored by the UAV.

IV. EXPERIMENTAL EVALUATION

We evaluate our system extensively in both simulated and
real-world scenarios with collapsed buildings. We created a
small city-scale simulation environment using the Unreal En-
gine consisting of collapsed buildings, damaged roads, debris
and rubble piles, overturned cars, uprooted trees and several
other features resembling a catastrophe-struck environment.
While, for real-world evaluations, we exhaustively performed
experiments at the TCRH Training Center for Rescue in
Germany, spanning an area of 60,000 square meters and
consisting of scenarios with earthquake and fire damage.
Fig. 5 shows example scenes from both these environments.

A. Hyperrealistic Simulation Experiments

We use the open-source AirSim plugin [29] with our
Unreal Engine environment and ROS as the middleware for
our simulation experiments. The simulator considers forces
such as drag, friction and gravity in its physics engine, and
provides data from various inertial sensors that are required
for state estimation. We simulate a downward facing stereo
camera mounted to the UAV which provides RGB-D data
at 20Hz with a resolution of 640 x 480 pixels, similar to
our real-world setup. We clip the groundtruth depth map
so that the depth sensor has the range d,,;, = 0.05m and
dmax = 20.0m. We use the same pipeline for state estimation,

trajectory planning and landing site detection as in our real-
world UAV system. We build an OctoMap at a resolution
of 0.5m and the textured mesh at a resolution of 0.1m.
Fig. 6(a) shows an example mesh visualization of a city block
created using TSDFs while the UAV followed a lawn-mover
surveillance path with a speed of 0.5ms.

For the simulation experiments, we set the weights ¢; =
0.05, ¢ =0.4, c3 =0.4 and ¢4 = 0.15 for the depth accu-
racy, flatness, steepness and energy consumption costmaps
respectively. We consider all the points with scores above
0.72 in the final decision map as candidate landing sites. We
set ¢ = 0.05 as the depth map is the groundtruth generated
from the simulator. We choose equal weights for flatness and
steepness costmaps since they play an equally important role
in the landing sites detection. These two costmaps are critical
for estimating safe landing sites in collapsed structures as
they contain many parts of broken buildings piled on top
of each other which appear as several cluttered planes in
different orientations. We set the euclidean distance and
depth threshold for hierarchical clustering of landing sites
to 0.50m and 0.01m. As it can be seen in the a.1 and a.3
scenarios, the flatness score ensures that the landing sites
are not detected close to the edges of the roof of broken
buildings or other obstructions. On the other hand, in the
a.4 and a.5 scenarios, the steepness score that accounts for
the orientation of the UAV, ensures that steep flat surfaces
such as sections of broken walls are avoided from being
detected as landing sites. Moreover, in the a.2, a.3, and a.5
scenarios, we can see that the trees are automatically given a
lower score in both the flatness and steepness costmaps, thus
discarding them from the landing site search area, which is
crucial in catastrophe-struck environments as they often have
uprooted trees. Fig. 7 compares the trajectories generated
using a strictly sampling-based RRT* approach and the joint
polynomial optimization method used in our system.

B. Real-World Outdoor Experiments

We use the DJI M100 quadrotor equipped with a NVIDIA
TX2 embedded computer and a downward facing ZED stereo
camera for our real-world experiments. The stereo camera
provides RGB-D images with a resolution of 640 x 480
pixels at 20Hz. As shown in Fig. 2, we use an EKF to fuse the
raw inertial sensor data with GPS measurements and the pose
output obtained from ORB-SLAM?2. Similar to the simula-
tion experiments, we use ROS as the middleware on the TX2
which runs all the processes in real-time for state estimation,
trajectory planning, landing site detection and bioradar pro-
cessing. We use an OctoMap resolution of 0.5m and a tex-
tured mesh resolution of 0.1m. Fig. 6(b) shows an example
mesh visualization created by the UAV while exploration.

Since in the real world, the depthmap generated from
stereo images are often noisy, we set ¢; = 0.15 in order
to account for this factor in the depth accuracy costmap.
We set the weights for the flatness, steepness, and energy
consumption costmaps to ¢; = 0.35, ¢3 =0.4 and ¢4 = 0.1
respectively, while we set the overall thresholding value for
the final decision map to 0.7. For the hierarchical clustering
parameters, we choose 0.5m for the euclidean distance
(frame size of UAV being 0.26m) and the depth threshold
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Fig. 6: Illustrations of costmap evaluation and dense landing sites detection steps in both simulated and real-world scenarios. Inset: The top row shows the depth accuracy,
flatness, steepness and energy consumed costmaps respectively, while lower row shows the final decision map and the detected landing sites projected on to the camera image.

Fig. 7: Comparison of the path generated using a strictly sampling-based RRT* ap-
proach with a polynomial steer function (yellow line) and joint polynomial optimization
method (red line). The landing site is selected from view a.1 in Fig. 6. The polynomial-
based steering function requires more time to compute a smooth path and has a higher
cost than the trajectory generator that we use.

as 0.05m. The effect of noisy depth data can also be seen
in the other costmaps due to which the final decision map
does not appear as clear as in the simulation environment.
Nevertheless, our landing site search algorithm demonstrates
detection of safe landing sites reliably even in situations
where an expert safety operator is unable to make decisions.
In scenarios b.1, b.4 and b.5, landing sites are clearly detected
on flat surfaces engulfed by debris from collapsed buildings.
Similar to the results observed in the simulation environ-
ment, several landing sites are reliably detected on roofs of
collapsed structures in the .1 and b.2 scenarios. Moreover,
landing sites are also detected on the roof of the bus in the 5.3
scenario. While, in the b.6 scenario, landing sites are detected
closer to the edge of the roof containing small rubbles that
have tolerable roughness for landing. These sites are often

TABLE I: Runtime and memory consumption for processing each frame in the real-
world scenario. Values are reported as u & ¢. Evaluated on a system containing an
Intel Core i7-8750H @ 2.20GHz CPU.

Algorithm Time (ms) Memory (MB)
Costmap Evaluation
Depth Accuracy Costmap 1.7+2.4 20.7+6.7
Flatness Costmap 91.7+£38.8 222+6.8
Steepness Costmap 27.4+£42 69.31+0.1
Energy Costmap 1.6+2.4 21.6+5.5
Final Costmap 1.1+2.1 21.3+5.8
Dense Landing Sites Detection 15.5+£24.3 13.1£0.2
Clustering 28.5+£22.3 25.5+0.2
Total 167.5+61.4 193.8+6.6

more safe to land on in comparison to other sites on the roof
where larger rocks can be seen.

C. Computation Costs

Runtime efficiency is one of the critical requirements of
our system as all the on-board processes for state estimation,
planning, landing site detection and bioradar analysis have to
run online on the embedded computer. The total computation
time of the entire landing site detection algorithm, with
the OctoMap and textured mesh reconstruction along with
the state estimation running in the backend, amounts to
167.5ms and has a memory consumption of 193.8MB. A
detailed breakdown of this computation cost for each of the
components of our algorithm is shown in Tab. L.

The computation time for costmaps is evaluated for each
input depth map. The cost of computing the depth accuracy
Jpe, steepness Jy and energy consumption Jgc scores
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Fig. 8: Computational runtime analysis of our landing sites detection system. Number
of samples considered: 455. Evaluated on Intel Core i7-8750H CPU @ 2.20GHz.

linearly depends on the size of the input image. During op-
eration, the resolution of sensor images is unchanged leading
to a constant computation time to evaluate these costmaps.
On the other hand, the time consumed for evaluating the
flatness score Jpy depends on the distance transformation
operation which varies with the image content of the binary
map obtained from the canny edge operation. Due to this
factor, a large variation in the computation time is observed
while evaluating the flatness costmap. As shown in Fig. 8a,
calculation of the flatness scores is the most time consuming
step. It has a time complexity of &'(dk) where d =2 for an
image and k is total number of pixels in the image.

The dense landing sites detection step involves identifying
candidate landing sites on the basis of their scores in the final
decision map and aggregating these sites into a global list
using k-d trees while removing duplicates. Since the number
of landing sites detected in each frame varies according to the
scene, we observe a large variance in the computation time
for this step. However, for clustering, the time and memory
complexity grow as &(n®) and €(n) respectively with n as
the total number of landing sites detected.

V. CONCLUSION

In this paper, we presented a vision-based autonomous
landing system for UAVs equipped with bio-radars tasked
with search and rescue operations in catastrophe-struck en-
vironments. Our landing site detection algorithm considers
several hazardous terrain factors including the flatness, steep-
ness, depth accuracy and energy consumption information to
compute a weighted costmap based on which we detect dense
candidate landing sites. Subsequently, we employ nearest
neighbor filtering and clustering to group dense sites into
a safe landing region. We generate a low-resolution 3D

volumetric map for trajectory planning and a high-resolution
mesh reconstruction for structural analysis and visualization
of the landing sites by the rescue team. We employ a
polynomial trajectory planner to compute a minimum-jerk
path to the landing site considering nearby obstacles and
the UAV dynamics. Our proposed system is computationally
efficient as it runs online on an on-board embedded com-
puter with other processes for state-estimation and bioradar
processing being run in the background. We demonstrated
the utility of our system using extensive experiments in a
hyperrealistic small city-scale simulation environment and
in real-world environments with catastrophe-struck scenarios
such as earthquakes and gas explosions.
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