
Incorporating Semantic and Geometric Priors in
Deep Pose Regression

Abhinav Valada* Noha Radwan* Wolfram Burgard
Department of Computer Science, University of Freiburg, Germany

Abstract—Deep learning has enabled recent breakthroughs
across a wide spectrum of scene understanding tasks, however, its
applicability to camera pose regression has been unfruitful due
to the direct formulation that renders it incapable of encoding
scene-specific constrains. In this work, we propose the VLocNet++
architecture that overcomes this limitation by simultaneously
embedding geometric and semantic knowledge of the world into
the pose regression network. We employ a multitask learning
approach to exploit the inter-task relationship between learning
semantics, regressing 6-DoF global pose and odometry for the
mutual benefit of each of these tasks. Furthermore, in order
to enforce global consistency during camera pose regression,
we propose the novel Geometric Consistency Loss function
that leverages the predicted relative motion estimated from
odometry to constrict the search space while training. Extensive
experiments on the challenging Microsoft 7-Scenes benchmark
and our DeepLoc dataset demonstrate that our approach exceeds
the state-of-the-art outperforming local feature-based methods
while simultaneously performing multiple tasks and exhibiting
substantial robustness in challenging scenarios.

I. INTRODUCTION

Visual localization is a fundamental transdisciplinary
problem and a crucial enabler for numerous robotics as well as
computer vision applications, including autonomous navigation,
simultaneous localization and mapping, structure-from-motion
and augmented reality. Recently, deep learning-based
localization approaches [1, 2, 3, 4, 5] have shown considerable
robustness in the context of significant perceptual changes,
repeating structures and textureless regions. However, their
performance has been subpar in comparison to state-of-the-art
local feature-based pipelines [6, 7] as they perform direct pose
regression from image embeddings using naive loss functions.

In this work, we propose a principled approach to simultane-
ously embed geometric and semantic knowledge of the world
into the pose regression model, complemented with a novel loss
function that enforces the predicted poses to be geometrically
consistent with respect to the true motion model. To achieve
this, we approach this problem from a multitask learning
(MTL) perspective and propose a framework [8] that jointly
learns semantic segmentation, visual localization and odometry
from consecutive monocular images. Our network utilizes
our proposed Geometric Consistency loss function [9] that
incorporates relative motion information from a shared auxiliary
odometry stream to learn a model that is globally consistent. As
our network also needs to effectively utilize the learned motion
specific features from the previous timestep, we introduce
an adaptive weighting technique to aggregate motion-specific
temporal information in the global pose regression network.
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Fig. 1. Schematic representation of our proposed VLocNet++ architecture. The
network takes two consecutive monocular images as input and simultaneously
predicts the global 6-DoF pose, odometry and semantics of the scene.

Existing semantics-aware localization techniques extract
predefined stable features, emphasize [10] or combine them
with local features [11] but often fail when the predefined
structures are occluded or not visible in the scene. In contrast,
our approach is robust to such situations as we use the proposed
adaptive weighting layer to selectively fuse learned relevant
features not only based on the semantic category but also the
activations in the region. Moreover, by jointly estimating the
semantics, we instil structural cues about the environment into
the pose regression network and implicitly pull the attention
towards more informative regions in the scene. Inspired by early
cognitive studies in humans showing the importance of learning
self-motion for acquiring basic perceptual skills [12], we also
propose a novel self-supervised semantic context aggregation
technique leveraging the predicted relative motion from the
odometry stream. This enables our semantic segmentation net-
work to aggregate more scene-level context, thereby improving
the performance and leading to faster convergence.

II. TECHNICAL APPROACH

Our architecture, depicted in Fig. 1 consists of four CNN
streams; a global pose regression stream, a semantic segmen-
tation stream and a Siamese-type double stream for odometry
estimation. Given a pair of consecutive monocular images
It−1, It ∈Rρ , the pose regression stream predicts the global pose
pt = [xt ,qt ] for image It , where x ∈ R3 denotes the translation
and q ∈ R4 denotes the rotation in quaternion representation,
while the semantic stream predicts a pixel-wise segmentation



mask Mt mapping each pixel u to one of the C semantic
classes, and the odometry stream predicts the relative motion
pt,t−1 = [xt,t−1,qt,t−1] between consecutive input frames.

A. Network Architecture

We base each stream of our network on the ResNet-50 [13]
architecture as it offers a good trade-off between learning
highly discriminative deep features and the computational
complexity required. For both the camera pose regression and
visual odometry streams, we add a global average pooling
layer after the fifth residual block, followed by three inner-
product layers fc1, fc2 and fc3 of dimensions 1024, 3 and
4 respectively, where fc2 and fc3 regress the translational x
and rotational q components of the pose. Additionally, we use
ELU [14] for the activation function as it helps in learning
representations that are more robust to noise and also leads to
faster convergence. In order to estimate the odometry, we adopt
a Siamese-type double stream architecture, were we maintain
separate streams upto the last downsampling stage (Res4), after
which the feature maps are concatenated and convolved through
the last residual block (Res5), followed by the regressors. While,
for learning the semantics, we build upon our AdapNet [15]
architecture which follows the general encoder-decoder design
principle. The encoder incorporates our multi-scale residual
units [15] which have dilated convolutions [16] parallel to
the 3×3 convolutions for aggregating features from different
spatial scales without increasing the number of parameters. The
output of the encoder is 16-times downsampled with respect
to the input dimensions, therefore our decoder consisting of
deconvolution layers and skip refinement stages, upsamples
the downscaled feature maps back to the input resolution.

We incorporate geometric knowledge into the global pose
regression stream as three-folds: a) we employ hybrid hard pa-
rameter sharing between the camera pose regression stream and
the odometry stream that both take the image from the current
timestep as input. This exploits the task-specific similarities
among both tasks, as well as influences the shared weights of
the camera pose regression stream to integrate motion-specific
features due to the inductive bias from odometry estimation,
while effectuating implicit attention on regions that are more
informative for relative motion estimation. b) As opposed to
naively minimizing the Euclidean loss between the groundtruth
and predicted poses, we employ our proposed Geometric
Consistency Loss (Sec. II-B), which in addition to minimizing
the Euclidean loss, adds another loss term to constrain the
current pose prediction by minimizing the relative motion error
between the ground truth and the estimated motion obtained
from the odometry stream. c) Finally, in order to incorporate
the relative motion information into the global pose regression
stream, we integrate the intermediate representation from the
last downsampling stage (Res5a) of the previous timestep into
the current timestep. As opposed to naively concatenating these
feature maps, which often accumulates irrelevant information,
we utilize our proposed adaptive weighted fusion layer that
learns the optimal element-wise weightings for the fusion based
on the activations in the region, followed by a non-linear feature
pooling over the weighted tensors. We formulate the output of
our proposed fusion layer with respect to two activation maps

za and zb from layers a and b as follows

ẑ f use = max
(

W∗
(
(wa� za)⊕

(
wb� zb

))
+b,0

)
, (1)

where wa and wb are learned weightings having the same
dimensions as za and zb; W and b are the parameters of
the non-linear feature pooling; with � and ⊕ representing
per-channel scalar multiplication and concatenation across the
channels; and ∗ representing the convolution operation.

Incorporating semantic knowledge of the environment into
the pose regression stream enables the network to focus its
attention on areas of the image that are more informative for es-
timating the current pose. In order to identify and fuse only the
semantically relevant information, we utilize our adaptive fusion
layer to fuse semantic feature maps into the global pose regres-
sion stream at Res4c, as shown by the red block in Fig. 1. Con-
currently, knowledge of the camera poses can be used to learn a
globally consistent semantic representation of the scene. In or-
der to facilitate this action, we leverage the relative motion infor-
mation from the odometry stream to warp intermediate feature
maps of the segmentation stream from the previous timestep
into the current view using a predicted depth map obtained
from a CNN [17]. We then fuse the warped feature maps with
the intermediate representations using the adaptive fusion layer
at the end of Res3 and Res4 blocks. This does not require any
pre-computation as it is fully differentiable. Moreover, by incor-
porating feature maps from multiple views and resolutions using
the representational warping concept from multi-view geometry,
we enable our model to be robust to camera angle deviations, ob-
ject scale and frame-level distortions, while implicitly introduc-
ing feature augmentation which facilitates faster convergence.

B. Loss Function
In this section, we first detail the loss functions that we use

for training the task-specific networks, followed by the joint
loss function for training the multitask model. For training
the semantic segmentation network, we use the cross-entropy
loss function to minimize the Kullback-Leibler divergence
between the predicted and the groundtruth pixel labels. We
define a set of training images T = {(In,Mn) | n = 1, . . . ,N},
where In = {ur | r = 1, . . . ,ρ} denotes the input frame and the
corresponding ground truth mask Mn = {mn

r | r = 1, . . . ,ρ},
where mn

r ∈ {1, . . . ,C} is the set of semantic classes. We define
θ as the network parameters. Using the classification scores s j
at each pixel ur, we obtain the probabilities P = (p1, . . . , pC)
with the softmax function σ(.) such that p j(ur,θ | In) =

σ (s j (ur,θ)) =
exp(s j(ur ,θ))

∑
C
k exp(sk(ur ,θ))

denotes the probability of pixel
ur being classified with label j. θ is estimated by minimizing

Lseg(T ,θ) =−
N

∑
n=1

ρ

∑
r=1

C

∑
j=1

δmn
r , j log p j(ur,θ | In), (2)

for (In,Mn) ∈ T , where δmn
r , j is the Kronecker delta. For

training the odometry network, we utilize the loss function
shown in Eq. (3) which minimizes the Euclidean distance
between the groundtruth and predicted relative motion.

Lvo ( f (θ | It , It−1)) := Lx ( f (θ | It , It−1))exp(−ŝxvo) (3)
+ ŝxvo +Lq ( f (θ | It , It−1))exp(−ŝqvo)+ ŝqvo ,



Lx ( f (θ | It , It−1)) := ‖xt,t−1− x̂t,t−1‖2 (4)
Lq ( f (θ | It , It−1)) := ‖qt,t−1− q̂t,t−1‖2 .

where Lx and Lq refers to the translational and rotational
components respectively. We also employ learnable weighting
parameters, ŝxvo , ŝqvo , to balance the scale between components.

In order to learn geometrically consistent poses, we employ
the proposed Geometric Consistent Loss function, which in
addition to minimizing the Euclidean loss, adds another loss
term to constrain the current pose prediction by minimizing the
relative motion error between the groundtruth and the estimated
relative pose. By utilizing the predictions of the network from
the previous timestep along with the current prediction, the
relative motion loss term LRel ( f (θ | It)) can be computed as
a weighted summation of the translational and rotational errors.
Eq. (5) details this loss term, in which we assume that the
quaternion output of the network has been normalized a priori

LRel ( f (θ | It)) = LxRel ( f (θ | It))exp(−ŝxRel )+ ŝxRel (5)
+LqRel ( f (θ | It))exp(−ŝqRel )+ ŝqRel

LxRel ( f (θ | It)) := ‖xt,t−1− (x̂t − x̂t−1)‖2

LqRel ( f (θ | It)) :=
∥∥qt,t−1−

(
q̂−1

t−1q̂t
)∥∥

2 .

Following the notation, the Euclidean loss can be defined as

LEuc ( f (θ | It)) = Lx ( f (θ | It))exp(−ŝx) (6)
+ ŝx +Lq ( f (θ | It))exp(−ŝq)+ ŝq.

The final loss term to be minimized is

Lloc ( f (θ | It)) := LEuc ( f (θ | It))+LRel ( f (θ | It)) . (7)

By minimizing the aforementioned loss function, our network
learns a model that is geometrically consistent with respect to
the motion. Moreover, by employing the adaptive fusion layer
to aggregate motion specific features temporally, we enable
the Geometric Consistency Loss to efficiently leverage this
information. In order to jointly learn all the tasks, we minimize
the following loss function:

Lmulti := Lloc exp(−ŝloc)+ ŝloc +Lvo exp(−ŝvo)+ ŝvo (8)
+Lseg exp(−ŝseg)+ ŝseg,

where Lloc is the global pose regression loss as per Eq. (7);
Lvo is the visual odometry loss from Eq. (3), and Lseg is the
cross-entropy loss for semantic segmentation from Eq. (2).

III. EXPERIMENTAL RESULTS AND CONCLUSIONS

We evaluate the performance of our proposed approach on
the indoor Microsoft 7-Scenes benchmark [6] and the outdoor
DeepLoc dataset [8]. In Fig. 2, we present the localization
accuracy of our proposed approach on the 7-Scenes dataset
using the median localization error metric and the percentage of
poses for which the error is below 5cm and 5◦. From the results
presented in Fig. 2, we see that our single-task VLocNet++
model achieves an accuracy of 96.4%, improving over the state-
of-the-art [5] by 20.3% and by over an order of magnitude
compared to the other deep learning approaches [1, 3, 2].
Moreover, by employing our proposed multitask framework,
VLocNet++ further improves on the performance and achieves
an accuracy of 99.2%, setting the new state-of-the-art on
this benchmark. Furthermore, for the task of visual odom-
etry estimation, VLocNet++ outperforms end-to-end learning

Fig. 2. Benchmarking 6DoF localization on the entire 7-Scenes dataset.

TABLE I
MEDIAN LOCALIZATION ERROR ON THE DEPLOC DATASET.

PoseNet [21] B-PoseNet [22] SVS [23] VLocNet [9] VLocNet++

2.42m, 3.66◦ 2.24m, 4.31◦ 1.61m, 3.52◦ 0.68m, 3.43◦ 0.32m, 1.48◦

approaches [18, 19, 20, 9] by 25.8% and 24.8% in the
translational and rotational components respectively.

Tab. I shows the median localization error for the DeepLoc
dataset, where VLocNet++ achieves almost half the localization
error as previous methods. Moreover, despite the difficulty of
accurately estimating ego-motion in outdoor environments due
to the more apparent motion parallax, VLocNet++ surpasses the
accuracy of end-to-end approaches by 20.0% in the translational
and 40.0% in the rotational components. While, for the task
of semantic segmentation on the DeepLoc dataset, VLocNet++
consistently outperforms all baselines [24, 25, 26, 27, 28, 15],
achieving a mean IoU score of 80.44%. In an effort to
investigate the effect of incorporating semantic information into
the global pose regression stream, we visualize the regression
activation maps of the network for both the single-task and
multitask variants of VLocNet++ using Grad-CAM++ [29].
In Fig. 3 we show two example scenes that contain glass
facades and optical glare. Despite their challenging nature,
our model is able to accurately segment both the scenes
with high granularity. As we compare the activation maps
of our single-task and multitask models, we observe that the
multitask activation maps have less noisy activations focusing
on multiple structures to yield an accurate pose estimate.

To summarize, we presented a deep learning approach to
address the problem of camera pose regression. Experimental
evaluations show that by integrating both the motion prior
and the semantic knowledge, our network is able to accuartly
estimate the pose while being robust to motion blur and
perceptual aliasing. Comprehensive evaluations demonstrate
that VLocNet++ sets the new state-of-the-art on the Microsoft
7-Scenes and DeepLoc datasets. More extensive evaluations [8]
and a live demo is presented at http://deeploc.cs.uni-freiburg.de.

(a) Input Image (b) Semantic Output (c) ST Activation (d) MT Activation

Fig. 3. Qualitative analysis of the segmentation output along with a
visualization of the regression activation maps [29] on the DeepLoc dataset.

http://deeploc.cs.uni-freiburg.de
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