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I. INTRODUCTION

Fifties - in 5 years robots would be everywhere.
Sixties - in 10 years robots would be everywhere.
Seventies - in 20 years robots would be everywhere.
Eighties - in 40 years robots would be everywhere.

-Marvin Minsky

Those were the words from one of the pioneers of AI
when asked to comment on the progress of robotics in the
twentieth century. This shows the high expectations and
unforeseen challenges that we are faced with for deploying
robots in complex real-world environments. One of the primary
impediments has been the robustness of scene understanding
models as it is a prerequisite for any action execution or
planning. The tremendous progress made in machine learning
in the last decade has enabled us to learn representations
from raw sensor data, rather than relying on hand-engineered
features. However, these models still perform inconsistently,
especially in challenging weather conditions. The current
dominant paradigms rely on camera images or depth data.
However, alternate modalities such as infrared [1] and sound [2]
need to be exploited for learning the most comprehensive
information about the scene that will enable us to reduce
perceptual ambiguity in challenging conditions.

State-of-art deep learning models rely on thousands to
millions of annotated training data and acquiring this data
is an arduous task, if not impossible for every foreseeable
scenario and for every task. Moreover, learning task-specific
models on task-specific datasets, limits the overall learning
ability of the robot as most models are trained in a supervised
fashion and independently, therefore they have no ability to
share cross-domain information and exploit training signals
from complementary tasks. In order to address this limitation,
our models should be able to learn representations across
different modalities as well as reuse and share the learned
representations across different tasks.

My work enables models to effectively learn fused represen-
tations from multiple modalities and across tasks, exploiting
complementary features and cross-modal interdependencies.
Despite that fact that we are still far away from creating robots
with human-level intelligence, equipping them with these basic
capabilities will enable robots to learn new tasks from limited
amount of data by leveraging transfer learning which facilitates
self-supervised model adaptation. Advancing self-supervised
learning techniques to autonomous learning is a strong starting
point that will enable robots to continuously learn from what
it experiences and perceives in the real-world.
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Fig. 1. Comparison of segmentation obtained using only RGB versus our
multimodal fusion [8] on the datasets: Synthia, Cityscapes and Freiburg Forest.

II. ROBUST SCENE UNDERSTANDING

In the last decade, there has been a sharp transition
in semantic segmentation approaches from employing hand
engineered features with flat classifiers such as Support
Vector Machines [3] or Random Forests [4, 5], to end-to-
end Deep Convolutional Neural Network (DCNN) based ap-
proaches [6, 7]. However, a big drawback in employing the top
performing DCNN approaches is the computational complexity
and substantially large inference time despite using modern
GPUs that hinder them from being deployed in robots. In my
work, I developed solutions for fully-convolutional semantic
segmentation architectures tailored for real-world robotic per-
ception that enable them to achieve state-of-the-art performance
without compromising on speed or memory requirements so
that they can be efficiently deployed on embedded GPUs.
Some of these improvements include multi-scale residual skip
layers [8], pyramid decomposition to enable faster inference,
and multistage refinement for high-resolution segmentation [1].

In an effort to improve robustness as well as granularity of
the segmentation, novel approaches that exploit features from
alternate modalities have been proposed [9, 10, 1]. However
most of these approaches naively combine feature maps
from modality-specific networks at various stages by element-
wise concatenation or summation which inhibits learning
complementary features. I introduced a fusion scheme [11, 8]
that empowers the network with the ability to choose
class-specific features based on the scene condition, followed
by learning deeper representations from the mixture of fused
kernels. More specifically, the proposed framework consists of
three components: modality-specific networks that map the rep-
resentation of the input to corresponding segmentation outputs,
an adaptive gating fusion layer that acts like a multiplexer which
maps outputs of expert networks to a probabilistically fused
representation, and finally a fusion segment that further learns
complementary fused kernels. Extensive experiments on pub-
licly available datasets including Cityscapes [12], Synthia [13]
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Fig. 2. Illustration of semantic motion segmentation using the SMSnet [14]
architecture on the Cityscapes dataset. (Blue=Static Car, Green=Moving Car)

and Freiburg Forest [1], demonstrated that my proposed fusion
approach exceeds the performance of existing fusion techniques
and more importantly yields an accurate representation of
scene in adverse conditions including rainfall and snow. Fig 1
shows qualitative comparisons of segmentation using unimodal
RGB and the proposed multimodal fusion scheme.

For autonomous robots navigating in urban environments,
it is not only imperative to understand the distinction between
different objects in the scene such as cars, roads, and buildings,
but also be able to distinguish between a moving and a static
car so that it can plan paths based on this joint knowledge.
There are several challenges that make this problem inherently
hard including the ego-motion of the camera, lighting changes
between consecutive frames and varying pixel displacements
due to motion with different velocities. To this end, I proposed a
DCNN architecture [14] that learns to predict both the semantic
category and motion status of each pixel from a pair of consecu-
tive monocular images. The network builds upon the aforemen-
tioned segmentation architecture [8] and fuses semantic features
with learned motion features from generated optical flow maps
to yield pixel-wise semantic motion segmentation. This work
demonstrated the utility of jointly learning both these tasks as
the features learned to distinguish object classes help infer mo-
tion labels for the corresponding pixels and motion in the image
improves the inference of object distinction. This work is cur-
rently the state-of-the-art for semantic motion segmentation on
the Cityscapes [12] and KITTI [15] datasets. Fig. 2 shows an in-
put frame, the generated optical flow image with the ego-motion
subtracted and the semantic motion segmentation output.

III. GEOMETRY AND STRUCTURE-AWARE LOCALIZATION

Visual localization is one of the fundamental enablers of
robot autonomy as it offers navigation capabilities using
low-cost sensors. It has mostly been tackled using local
feature-based pipelines [16, 17] that efficiently encode
knowledge about the environment and the underlying
geometrical constraints. While, DCNN-based approaches for
pose regression [18, 19] have shown considerable robustness
in the context of significant perceptual changes, repeating
structures and texture-less regions, they have been unable to
match the performance of state-of-the-art local feature-based
localization methods. In my work, I have proposed deep
multitask learning models that overcome these limitations by
simultaneously embedding geometric and semantic knowledge
of the world into the pose regression network [20, 21].

The proposed architecture [21] consists of four CNN streams:
a global pose regression stream, a semantic segmentation stream
and Siamese-type double stream for visual odometry estimation.
The framework aims to exploit the inter-task relationship
between learning semantics, regressing 6-DoF global pose
and odometry, for the mutual benefit of each of these tasks. I
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Fig. 3. Qualitative localization results of VLocNet++ [21] on the Microsoft 7
Scenes dataset depicting the estimated global pose (yellow) versus the ground-
truth pose (red) plotted with respect to the 3D scene model for visualization

proposed a new loss function for global pose regression that
incorporates the predicted relative motion information from
the odometry stream during training and enforces the predicted
poses to be geometrically consistent with respect to the true
motion model. In order to instill structural cues about the
environment into the global pose regression stream, I proposed
an adaptive weighted fusion layer that fuses semantic features
into the pose regression stream based on region activations.
To further exploit the inter-task relationship, I proposed a self-
supervised warping technique that uses the relative motion
from the odometry stream to warp intermediate network repre-
sentations in the segmentation stream for learning consistent se-
mantics. This model is currently the state-of-the-art on the chal-
lenging Microsoft 7-Scenes benchmark, outperforming existing
learning-based competitors and local feature-based pipelines.

IV. FUTURE WORK

In the short term, my focus will be on combining the
aforementioned semantic localization framework with the
semantic motion segmentation network. Subtracting the ego-
motion from the optical flow prediction plays a crucial role in
the estimation of motion features. Moreover, a large number of
dynamic objects in the scene quickly degrades the localization
performance. By learning both these models jointly, the
semantic motion estimation network benefits from utilizing the
learned relative motion and simultaneously, the localization
network can benefit from focusing its attention on regions
in the image that do not have dynamic objects. Furthermore,
incorporating the predicted pixel-wise ephemerality mask [22]
from an auxiliary stream can further benefit both the tasks.

The overall goal of my work is to eventually be able to equip
robots with models that are able to aid in lifelong learning.
The two main directions that I wish to pursue towards this
goal are: self-supervised as well as unsupervised learning, and
uncertainty-aware multitask learning. As we train models to
perform more and more complex tasks jointly, it will no longer
be feasible to annotate data for a multitude of tasks. I aim to
make progress towards self-supervised and unsupervised tech-
niques that use intrinsic signals within the data and that leverage
prior knowledge across tasks. Estimating the uncertainty of
predictions is crucial for making decisions on top of the model
estimates. Further building upon the unsupervised learning
scenario, I plan to develop learning approaches for uncertainty-
aware predictions [23] that are capable of performing self-
calibration based on the uncertainty. This is the most exciting
time to be working on artificial intelligence (and hopefully for
more than 40 years) and I believe the best is yet to come.
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