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Zusammenfassung

Fortschritte in der Robotik und im maschinellen Lernen führen zurzeit zu beispiellosen
Veränderungen in verschiedenen gesellschaftlichen Bereichen, einschließlich der Dienst-
leistungsbranche, des Bergbaus, der Hausarbeit und des Transportwesens. Während wir uns
tiefer in das Zeitalter intelligenter Roboter, die nicht mehr nur auf Szenarien in vereinfach-
ten, kontrollierten Umgebungen beschränkt sind, begeben, stehen wir vor der kritischen
Herausforderung, sie mit der Fähigkeit auszustatten, unsere sich ständig weiterentwickeln-
de komplexe Welt wahrzunehmen und zu verstehen. Dies beinhaltet unter anderem, sie
mit der Möglichkeit auszustatten, Objekte aus einer Vielzahl von Variationen zu erkennen,
hochdynamische Umgebungen zu modellieren, Informationen aus unterschiedlichen Sen-
sormodalitäten zu gewinnen und Entscheidungen daraus abzuleiten und sich an Umstände
anzupassen, die das Erscheinungsbild von Orten verändern, wie z. B. unterschiedliche
Wetterbedingungen, Tageszeiten, Lichtverhältnisse und strukturelle Veränderungen. Diese
Faktoren führen dazu, dass aktuelle Methoden, die von Hand für bestimmte Szenarien
entwickelt wurden, fehlschlagen wenn sie mit der Komplexität und dem Reichtums unseres
riesigen Wahrnehmungsraums konfrontiert werden.

In dieser Arbeit stellen wir Techniken vor, die es einem Roboter ermöglichen, die Struk-
tur der Umgebung aus früheren Erfahrungen zu lernen, indem robuste Repräsentationen
von Modalitäten genutzt werden, die über einfache Bilder hinausgehen, und indem gemein-
same Strukturen zwischen unterschiedlichen Aufgaben entdeckt und ausgenutzt werden.
Wenn wir uns davon inspirieren lassen, wie Menschen in einem Gelände ohne visuelle
Wahrnehmung spüren und navigieren, schlagen wir zuerst eine Netzwerkarchitektur vor,
die Fahrzeug-Boden-Interaktionsgeräusche als eine propriozeptive Modalität nutzt, um
ein breites Spektrum von Innen- und Außengeländen zu klassifizieren. Dieses Modell
ermöglicht es Robotern, Bodenverhältnisse ohne visuelle Information und auch unter un-
günstigen akustischen Bedingungen unter Verwendung kostengünstiger Mikrofone genau
zu klassifizieren. Als Zweites stellen wir kompakte Netzwerkarchitekturen für das Sze-
nenverständnis vor, die kontextabhängige Multiskaleninformationen zusammenfassen und
neuartige Techniken für die semantische Segmentierung mit hoher Auflösung integrieren.
Unsere Modelle können effizient auf Robotern mit begrenzten Rechenressourcen eingesetzt
werden, und die daraus resultierende semantische Klassifizierung auf Pixelebene lässt sich
effektiv auf Objekte anwenden, die in natürlichen Umgebungen häufig in unterschiedlichen
Größenordnungen vorkommen, von Szenarien des autonomen Fahrens im Stadtverkehr bis
hin zu Szenarien in Gebäuden und unstrukturierten Waldgebieten. Als Schritt in Richtung
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neuronaler Modelle, die sich entsprechend der jeweiligen Situation neu konfigurieren,
schlagen wir drittens eine selbstüberwachte multimodale Architektur vor, die Informatio-
nen aus komplementären Modalitäten wie visuellen Bildern, Tiefe und Infrarot dynamisch
verschmilzt, um Objekteigenschaften wie Aussehen, Geometrie und Reflexionsgrad für ein
ganzheitliches semantisches Szenenverständnis zu nutzen. Diese Techniken ermöglichen
es Robotern, lokale Unklarheiten in der Klassifizierung aufzulösen und die verschiedenen
Elemente der Szenerie unter schwierigen Wahrnehmungsbedingungen, die auf wechseln-
de Wetter- und Jahreszeiten zurückzuführen sind, zuverlässig zu identifizieren. Viertens
schlagen wir das erste Ende-zu-Ende-Lernnetzwerk für eine gemeinsame semantische
Bewegungssegmentierung vor, welches sowohl Bewegungshinweise zur Verbesserung
des Semantiklernens als auch entsprechend semantische Hinweise zur Verbesserung der
Bewegungsschätzung nutzt. Mit unseren Modellen können Roboter die Dynamik der Um-
gebung verstehen und gleichzeitig die Semantik der Szene zeitlich kohärent erkennen. Zum
Schluss stellen wir eine Multitask-Lernstrategie vor, mit der automatisch Synergien genutzt
werden können, um sich visuell zu lokalisieren, die Szenensemantik vorherzusagen und die
Eigenbewegung des Roboters abzuschätzen. Unser Beitrag geht über die bestehenden Pa-
radigmen hinaus, indem er das kooperative Lernen dieser wichtigen Schlüsseltechnologien
der Roboterautonomie erleichtert und die geometrischen und strukturellen Bedingungen
der Umgebung effektiv kodiert.

Wir werten die in dieser Dissertation vorgestellten Ansätze mit Hilfe von standardisierten
Benchmarks umfassend aus und legen umfangreiche empirische Nachweise dafür vor, dass
unsere Modelle auf dem neuesten Stand der Technik sind. Darüber hinaus präsentieren wir
praxisnahe Versuche aller vorgeschlagenen Methoden mit einer Reihe von verschiedenen
Robotern, und demonstrieren damit die Generalisierbarkeit auf eine Vielzahl von Umge-
bungen und Wahrnehmungsbedingungen. Wir glauben, dass wir Roboter mit Hilfe unserer
Methoden einen Schritt näher daran gebracht haben, zuverlässig in komplexen realen
Umgebungen eingesetzt zu werden, womit sie unsere Gesellschaft für immer grundlegend
verändern werden.



Abstract

Advances in robotics and machine learning are creating unprecedented seismic shifts in
several domains including the service industry, mining, domestic chores and transporta-
tion. As we move deeper into the age of intelligent robots that are no longer confined to
operational scenarios in simplistic controlled environments, we are faced with the critical
challenge of equipping them with the capability of perceiving and understanding our con-
tinuously evolving complex world. Amongst others, this entails enabling them to recognize
objects that have a multitude of variations, model highly dynamic environments, synthesize
and make decisions from disparate streams of modalities and adapt to circumstances that
change the visual appearance of places such as different weather conditions, times of the
day, illumination and structural changes. Such factors render current methods that are
hand-tuned for specialized situations to break down when presented with the complexity
and richness of our vast perceptual space.

In this thesis, we introduce techniques that enable a robot to learn the semantic struc-
ture of the environment from prior experiences by leveraging robust representations from
modalities beyond just visual images as well as by discovering shared structure between
multiple diverse tasks. Firstly, taking inspiration from how humans sense and navigate on
terrains in the absence of visual perception, we propose novel network architectures that
exploit vehicle-terrain interaction sounds as a proprioceptive modality to classify a wide
range of indoor and outdoor terrains. These include recurrent models that enable robots
to accurately classify terrains without visual information and even in adverse real-world
acoustic conditions using inexpensive microphones. Secondly, we present compact fully-
convolutional architectures for scene understanding that aggregate multiscale contextual
information and incorporate novel techniques for high-resolution semantic segmentation.
Our models are efficiently deployable on robots with limited computational resources and
the resulting pixel-level semantic classification effectively generalizes to objects that often
appear at multiple scales in natural images of different environments ranging from urban
autonomous driving scenarios to indoor scenes and unstructured forested environments.
Thirdly, as a step towards neural models that reconfigure themselves according to the en-
countered situation, we propose self-supervised multimodal architectures that dynamically
fuse information from complementary modalities such as visual images, depth and infrared
to correspondingly exploit object properties such as appearance, geometry and reflectance
for a more holistic semantic scene understanding. These techniques enable robots equipped
with our models to resolve local ambiguities in their classification and robustly identify the
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various elements of the scene in challenging perceptual conditions attributed to changing
weather and seasons. Fourthly, we propose the first end-to-end learning network for joint
semantic motion segmentation that simultaneously exploits motion cues to improve learn-
ing of semantics and correspondingly exploits semantic cues to improve motion estimation.
Our proposed models enable robots to understand the dynamics of the environment while
concurrently being able to discern the semantics of the scene in a temporally coherent
manner. Finally, we present a multitask learning strategy to automatically exploit synergies
while learning to visually localize, predict the scene semantics and estimate the ego-motion
of the robot. Our contributions goes beyond existing paradigms by facilitating cooperative
learning of these key robot autonomy enablers as well as by effectively encoding geometric
and structural constraints from the environment.

We comprehensively evaluate the approaches introduced in this thesis on standard
benchmarks and present extensive empirical evidence that demonstrates that our models
achieve state-of-the-art performance. Additionally, we present real-world evaluations of
each of our proposed methods using a number of different robots that demonstrate the
generalizability to a variety of environments and perceptual conditions. We believe that
these techniques have brought robots a step closer towards being reliably deployed in
complex real-world environments where they will fundamentally transform our society
forever.
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Chapter 1

Introduction

The Dartmouth Conference of 1956, where the term Artificial Intelligence was coined [1],
fueled an era of discovery in several domains including cognition, language understanding,
and visual perception. This soon led to some of the foundations of artificial intelligence
for which the four Turing Awards were awarded successively to Marvin Minsky in 1969,
John McCarthy in 1971, Herbert Simon and Allen Newell in 1975. These founders of the
discipline of artificial intelligence, explored how to make machines capable of human-like
perception and intelligence. Each of them predicted that completely intelligent machines
capable of doing any work a man can do would be achieved within twenty years [2, 3].
However, immense obstacles lead to repeated failures to meet the set expectations and to
the subsequent "AI winters" [4]. Towards the end of the twentieth century Marvin Minsky
himself was quoted describing the progress over the years as

"In the fifties, it was predicted that in 5 years robots would be everywhere.
In the sixties, it was predicted that in 10 years robots would be everywhere.
In the seventies, it was predicted that in 20 years robots would be everywhere.
In the eighties, it was predicted that in 40 years robots would be everywhere.”

– Marvin Minsky, 1987

These unanticipated setbacks were primarily due to the underestimation of the com-
plexities of deploying robots in our vast extraordinary world and the oversimplification
of the ability to artificially emulate the capabilities of the human brain [3]. Nevertheless,
due to the tremendous progress in robotics, computer vision and machine learning over
the years [5, 6, 7, 8], we have more robots now than ever today in our factories and
homes. The majority of robots perform the most laborious, repetitious and mundane tasks.
Development of advanced dextrous manipulators have transformed various industries from
automotive manufacturing to electronics assembly. Most cars today are welded, painted
and assembled by a robot, as well as most mobile phones today are assembled and quality-
inspected largely by robots [9]. The sale of industrial robots reached 16.2 billion USD
in 2018 [9]. Robots deployed in these industries have substantially increased production,
reduced defects and as a result boosted our economies.
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Robots have also made their way into critical sectors such as space exploration [10] and
healthcare [11]. All the exploration missions to the moon and mars in the last four decades
have been carried out using autonomous rovers. Robots have enabled the exploration of
the deepest depths of our oceans where the pressure is over 1,000 times the atmospheric
pressure on the surface of the earth [12]. In healthcare, robots are currently being used
to perform complicated surgeries such as coronary artery bypasses which is extremely
intricate to be performed by surgeons [11]. Consumer home robots for vacuuming, lawn
mowing and pool cleaning have been extensively adopted [13]. The worldwide sales of
these robots reached USD 6.6 billion in 2018 [14]. Robots are also being deployed for
material handling and logistics where they are used for picking and sorting in e-commerce
fulfillment warehouses [15]. Telepresence robots [16] are also becoming popular due
to their relatively low price and wide range of application domains such as for remote
business meetings, tour guides, distance education and security patrolling. Education and
therapeutic robots such as the Nao [17] and Paro [18] have gained considerable interest.
Moreover, it is projected that the next few years will see a more significant growth in the
aforementioned areas [14]. However, this raises a question: Are we any closer to having
robots deployed for tasks that were envisioned in the Dartmouth Conference of 1956?

Most of these robots today are constrained to operate in fairly controlled environments.
Industrial robots that are used for manufacturing are enclosed in safety cages and are
fixed to the ground at certain locations in the factory. They are pre-programmed to only
handle specific parts and for a particular task. Robots that are used for space exploration
operate at a very slow pace in static environments and are mostly programmed in advance
by scientists analyzing various forms of imagery. For example the Curiosity rover has a
top speed of 0.14 km h–1 and it has traveled a total distance of 19.75 km in 7 years [19].
Although, domestic robots operate around humans, they only perform very limited sim-
plistic tasks in a highly structured environment where do they do not require a complete
understanding of their surroundings or complex predictions on the various elements of the
scene. Similarly, telepresence robots have basic obstacle avoidance functionalities but they
are mostly teleoperated. The robots used for surgery have highly restricted motions and
are teleoperated by the surgeon. Education and therapeutic robots have a lot of interaction
capabilities but they do not autonomously navigate or perform complex tasks where the
environment is constantly changing.

However, the recent advent of Convolutional Neural Networks (CNNs) [20] algorithms
and parallel computing technology has revolutionized the field of machine learning, com-
puter vision and cognitive robotics, opening doors to a wide range of new domains that
can now be effectively addressed. Interestingly, the first publication titled "Neural Nets
and the Brain Model Problem" [21] which describes theories about learning in neural
networks was introduced by Marvin Minksy in his Ph.D. dissertation. However, one of
the biggest milestones was achieved when Krizhevsky et al. [22] introduced a neural
network architecture in 2010 with eight layers that reduced the classification error rate on
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the ImageNet challenge [23] by half. Subsequent successes in other areas such as semantic
scene understanding [24], object detection [25] and speech recognition [26], demonstrated
that classical methods that employ handcrafted feature descriptors could be significantly
outperformed by employing this feature learning approach that is completely data-driven.
Therefore, CNNs also demonstrate better generalization to different real-world scenarios
that encompass our vast visual space. Moreover, several tasks that were tackled using long
multi-stage pipelines were reduced to an end-to-end approach that substantially decreased
the computation time [20]. In one of the distinguished talks of the early 21st century titled
"It’s 2001: Where is HAL", Minsky was quoted saying

"No program today can distinguish a dog from a cat, or recognize objects in
typical rooms, or answer questions that 4-year-olds can!”

– Marvin Minsky, 2001

Today, these tasks can be solved with a high degree of accuracy using CNNs [27, 28],
in fact surpassing human-level performance in several benchmarks [23, 29]. However,
designing these networks is not remotely trivial as there is no clear analytical solution to
architecting the right topology. There are several layers, configurations, pre-processing,
channels and nonlinearities to choose from. Moreover, there are hundreds of hyperparame-
ters that have to be optimized in addition to the various energy minimization techniques that
can be used to train the network. In the context of the robot cognition domain, obtaining
sufficient amount of real-world training data for every foreseeable scenario and for every
task is an extremely arduous, if not infeasible. As these models have to be deployed for
online operation in robots, they have to be highly efficient in their construction in order to
meet the real-time performance requirements, while maintaining their accuracy, robustness
and generalization ability. Additionally, as robots often have strict computational resource
constrains and several cognition functions that have to be modeled, employing dozens
of specialized task-specific networks on small embedded GPUs is highly impractical.
Multitask learning learning can prove to be an efficient solution by sharing the resources
and exploiting the training signals from complementary tasks to alleviate the need of
requiring a large amount of domain-specific training data. This increases the complexity of
designing suitable architectures as the topology should be structured to facilitate sharing
of cross-domain information and enabling inter-task learning. In this thesis, we introduce
several architectures to solve fundamental robot perception and localization problems
by discovering and leveraging the inherent structure from the sensor data as well as by
exploiting the structure across different tasks and modalities, with the overall goal of
enabling these models to be deployed effectively on real robot systems.

Since the last demi-decade, robots are being developed for the next generation of
applications for which they not only require complete understanding of our complex
dynamic world but they are also required to acquire knowledge, reason about the space,
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be able to accurately localize in every scenario, learn from experience and be resilient to
unexpected situations throughout their deployment. For example, autonomous vehicles
such as self-driving cars [30], trucks [31] and shuttles [32], are being developed to provide
a more safe mode of transportation and to conserve time that humans spend everyday while
driving to their destination. This technology would reduce driver error which accounts
for deaths of about 1.2 million people each year and also improve the overall driving
efficiency, thereby reducing traffic jams and the fuel consumed [33]. The first step in any
safe navigation is to be able to accurately perceive and identify the various objects in the
environment surrounding the autonomous vehicle, therefore scene understanding is an
essential prerequisite. One of the major challenges is that objects in natural images of
outdoor environments often appear in multiple scales, which makes learning features that
capture all the different scales of objects extremely challenging. Different semantic objects
in the environment also have similar local appearances. In order to accurately recognize
these objects, the receptive field of the filters in the network should encapsulate entire
objects that are visible in the images. Additionally, as there are often many objects in
the scene, it is essential to accurately capture the boundaries of these objects in order to
effectively reason about their behavior so that the robot can plan its trajectory to avoid them
in a safe manner. More importantly, all of the aforementioned factors should be addressed
by the model while being able to perform online in real-time, as it is impractical if the
autonomous car navigating amongst human drivers, stops at regular intervals to process its
sensor data. This semantic information from scene understanding can then also be used
in various other autonomy modules such as localization [34], navigation [35], trajectory
planning [36] and human-robot interaction [37].

Another closely related application is focused on last mile logistics [38], where au-
tonomous ground delivery vehicles and aerial delivery vehicles are being developed to
provide a more efficient and cost-effective solution for the transportation of goods from
retailers, distribution centers, postal services or restaurants to the consumers directly at
their doorstep. It is estimated that this would save about 28% of a shipments total cost and
this industry is valued at more than 83 billion, while it is further expected to double in
value in roughly 10 years [39]. While the technology for these last mile logistics robots is
similar to self-driving cars in the context of autonomously navigating in dense dynamic
urban environments amongst pedestrians, cyclists and human drivers, it differs in a few
distinct ways. Self-driving cars have to adhere more on road traffic regulations and societal
driving norms, whereas the last mile delivery robots have to be more agile and be able to
navigate around crowds as most of them traverse on sidewalks.

As opposed to the domains where robots are deployed currently such as industrial
environments and domestic homes, perception in outdoor environments is exceedingly
unpredictable. These environments undergo a wide range of lighting changes that cause
shadows on the objects or over and under exposure of the cameras mounted on the robots.
Changing weather conditions including fog, mist, haze and rain can drastically reduce the
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visibility. Seasonal variations such as shedding of leaves or snow can completely change
the appearance of a place. It would be of little use if these aforementioned autonomous
vehicles are only operable in ideal perceptual conditions which would entail less than 6
out of the 12 months of a year in most part of the world. As the primarily adopted visual
RGB images are extremely susceptible to these disturbances, leveraging complementary
information from other modalities such as infrared and depth can significantly improve the
robustness to such perceptual changes. Additionally, as these changes vary with several
factors such as location, time of the day and type of modality being used, the models
employed should adaptively fuse features from the different modalities to effectively
exploit the complementary information according to the scene condition at that moment.

Moreover, in both the aforementioned application domains, the robots will encounter
a wide range of different terrains while navigating in the environment. For example, the
self-driving car will come across terrains such as asphalt, offroad rocky surfaces and sand,
while the last mile delivery robot will have to traverse a wider range of terrains including
cobblestones, paving, asphalt and sand. Additionally, there are factors that transform the
appearance of these terrains such as changing weather conditions, icy or wet roads and
camouflaging due to leaves. These robots have to adapt their traversability strategy by
sensing the terrain in order to avoid potentially dangerous situations. For example, if the
self-driving car employs the same speed that it uses to traverse on asphalt to traverse on
sand or icy roads, it can correspondingly lead to entrenchment of the wheels or slippage.
Similarly, if it traverses with a high velocity on cobblestones with passengers in the car,
it would result in a uncomfortable ride while leading to damage of the car suspensions.
Often different terrain classes also have similar visual appearances such as sand and
granite, therefore entirely relying on camera images makes the system vulnerable to failure.
Alternate extroceptive and proprioceptive modalities can be leveraged for a more robust
classification.

In the context of indoor environments, robot butlers [40] are a similar class of au-
tonomous vehicles that are being developed to deliver room service orders in hotels, escort
people to their destination and deliver packages inside office buildings. On the one hand,
indoor environments pose a different set of challenges where robots have to navigate in
tighter spaces, accurately localize themselves in the absence of GPS and recognize objects
that are often severely occluded. On the other hand, tasks such as localization, motion
estimation and scene understanding are similar to the techniques employed outdoors. In
addition to understanding the semantics of the scene, in both indoor and outdoor environ-
ments it is critical to also estimate if the objects are static or moving. For example, in
outdoor environments, the robot needs to first identify if the object is a pedestrian, car or
cyclist and then estimate if its static or moving in order for it to plan its trajectory in such
a way to avoid potential collision. Similarly, in indoor environments, robots often have
to navigate in narrow corridors alongside humans, where they need to first semantically
classify the object as a person and then estimate the motion status. Detecting the motion
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of objects using images is an extremely difficult task as both the motion parallax effect
and the ego-motion of the robot critically influence the accuracy of the predictions. The
motion parallax effect is often observed for distant moving objects, where the visible
pixel displacement caused by the moving object between two successive frames decreases
with increasing distance from the camera. Secondly, as the robot is itself moving in most
situations, it needs to compensate for its ego-motion in order to accurately estimate the
motion of other objects in the environment from consecutive camera images. Additionally,
in outdoor environments, large objects such as cars and trucks can be partially occluded
due to a tree or a pole causing it to appear as two separate objects. In such situations, the
model needs to robustly estimate if both parts of the object are moving or static. Semantic
information can also be used to enhance learning of motion features as it can provide the
model with the prior on the semantic object classes that are potentially movable. Moreover,
in the context of autonomous navigation, the robot simultaneously requires the information
about both the semantics as well as the motion of the objects in order to effectively reason
about the environment.

In all the applications that we discussed thus far, localizing the robot in the environment
is one of the fundamental capabilities that is essential for autonomous navigation. Reliable
localization in large-scale environments is an exceedingly challenging problem. Localiza-
tion can be performed using active sensors such as LiDARs [41], passive sensors such as
cameras [42] as well as stereo cameras that provide RGB-D data [43]. LiDAR based local-
ization is often accurate due its ability to capture the geometry of the environment, however
the cost of such sensors is prohibitively expensive, whereas vision-based approaches are
preferred due to the relative low cost of cameras and reasonable performance in ideal
conditions. Vision-based localization is most difficult when the environment contains
homogeneously textured regions, reflective surface, repeated structures, motion blur and
challenging perceptual conditions. In order to accurately localize using camera images,
learning-based approaches can be employed as they have demonstrated substantial robust-
ness in learning features that are resilient to challenging perceptual conditions. However,
the network needs to be trained in a way that effectively encodes the geometry of the envi-
ronment or the sequential trajectory information. Semantics about the environment can also
be exploited to improve the robustness in scenes that contain reflective surfaces or repeating
structures. The major challenge lies in how to incorporate the semantic information, as
directly concatenating the semantic features into the localization network would not yield
much benefit as the network needs to be supervised to attend to only the most informative
semantic regions while discarding less informative or ambiguous features. Pre-defining
stable structures that do not undergo seasonal changes such as buildings is one option [44].
However, this restricts the network from being able to focus on different semantic object
classes in different scenes based on the scene context. Therefore, this fusion of semantic
features into the localization network has to be learned in a self-supervised manner in order
to most effectively utilize the semantic information.
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Considering the aforementioned critical challenges that autonomous robots face in
various application domains, we pose the following research questions that we address in
this thesis.

• How can we enable a robot to use sound from vehicle-terrain interactions to reliably
classify terrains using an end-to-end recurrent CNN architecture?

• How do we design a CNN topology for semantic segmentation that accurately
segments scenes in indoor, outdoor as well as unstructured forested environments
and can be effectively employed on a robot with limited computational resources?

• How do we design a self-supervised multimodal CNN fusion framework that im-
proves the robustness of semantic segmentation both in regular perceptual conditions
as well as in adverse conditions?

• How do we design a joint CNN architecture that can enable a robot to simultaneously
predict the semantics and the motion status of various objects in the scene? Addi-
tionally, how do we improve learning of both tasks by exploiting complementary
cues from the other task?

• How do we enable a robot to accurately localize, predict the semantics and estimate
its ego-motion using a multitask CNN architecture? Accordingly, how do we enable
inter-task learning and improve the performance of the mulitask model over the
individual task models?

In the scope of this thesis, we tackle the problems raised by these questions and provide
the corresponding solutions that exceed the performance of current state-of-the-art methods
both in benchmarking metrics as well as computational efficiency, in addition to being
practical for deployment in robots. Although the application scenarios that we described
are in the context of autonomous navigation in indoor and outdoor environments, the
principle behind these methods is generally applicable to any environment in which a
robot needs to perceive and understand its surroundings. These fundamental methods also
extend to other robotic domains such as the perception of objects in domestic homes or
industrial settings. These solutions are a step towards enabling robots to reliably operate in
our complex dynamic world which will pave the way for a new intelligent machine age.

1.1 Scientific Contributions

In this thesis, we make several contributions to the fields of robotics, computer vision
and deep learning, and more specifically in area of robot perception and localization. Our
contributions address the challenges that we highlighted in the previous section that enable
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robots to robustly perceive and understand our continuously evolving complex world. Thus,
bringing us closer to the age of intelligent autonomous robots where these machines are no
longer confined to controlled environments. We briefly describe each of these contributions
in the rest of this section and we also list them concisely at the end of the introduction
section of each chapter.

Terrain Classification from Vehicle-Terrain Interaction Sounds: In Chapter 3, we
address the problem of proprioceptive terrain classification from vehicle-terrain interaction
sounds by presenting two novel CNN architectures, TerrainNet and the recurrent Terrain-
Net++. We first transform the raw audio signals into its spectrogram representation and
subsequently employ them as inputs to our network for learning highly discriminative deep
representations. Our TerrainNet model only considers a single time window for classifica-
tion, whereas our TerrainNet++ model incorporates recurrent units to additionally learn
the temporal dynamics of the signal. We propose a Global Statistical Pooling strategy that
employes three different pooling methods to aggregate statistics of the temporal features. In
order to improve the robustness of our models to various forms of ambient environmental
noises, we propose a noise-aware training scheme that randomly injects ambient noise sam-
ples of different signal-to-noise ratios while training the network. Our proposed networks
are the first end-to-end learning techniques that classify terrains from proprioceptive sensor
data. Extensive evaluations on our dataset consisting of over six hours of vehicle-terrain
interaction sounds of nine different indoor as well as outdoor terrains demonstrate that
our networks achieve state-of-the-art performance and significantly faster inference times
than existing techniques. Additionally, we also present generalization experiments with
different hardware setups that demonstrate the efficacy of our approach for deployment in
environments with different ambient noises.

Efficient Semantic Scene Understanding: In Chapter 4, we address the problem of
accurate and efficient semantic scene segmentation using visual images. A key challenge
in this context is to enable the network to effectively learn features representing objects
of multiple scales and ensuring that the network has a large effective receptive field to
entirely encapsulate objects such as buses or furniture that occupy a substantial portion of
the image in urban and indoor scenes correspondingly. Current techniques that achieve
this consume a substantial amount of parameters that makes these models not employable
in robotic applications that require fast inference times. We address these problems by
introducing two novel fully-convolutional encoder-decoder architectures, AdapNet and
AdapNet++. Both our architectures incorporate our proposed multiscale residual units
for learning multiscale features throughout the network without increasing the number of
network parameters. Additionally, the AdapNet++ architecture incorporates our proposed
efficient Atrous Spatial Pyramid Pooling (eASPP) module that has a topology consisting of
both parallel and cascaded atrous convolutions with different dilation rates for aggregating
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multiscale features and capturing long-range context. We employ a bottleneck structure
in each of the branches of our eASPP module to conserve the amount of parameters
consumed. As urban scenes consist of many thin pole-like structures that are often lost
in the segmentation due to the inherent downsampling in the network, we propose a new
strong decoder with multistage refinement and a multiresolution supervision strategy to
recover the details as well as to also improve the segmentation along object boundaries.
In order to efficiently deploy our models on embedded GPUs that are often employed in
robots, we propose a network-wide holistic prunning approach that is invariant to shortcut
connections in the network. Comprehensive emprical evaluations on multiple benchmark
datasets that contain indoor, outdoor as well as unstructured forested scenes demonstrate
that our networks achieve state-of-the-art performance, while being compact and having
a fast inference time. Furthermore, we present experimental evaluations using our AIS
perception car that demonstrate the generalization ability of our models to previously
unseen cities.

Robust Multimodal Semantic Segmentation: Our AdapNet and AdapNet++ archi-
tectures that we introduce in Chapter 4 perform exceedingly well in normal perceptual
conditions, however, robots should be able to operate even in adverse perceptual conditions
such as rain, snow and fog. In order to achieve this, we propose to leverage features
from complementary modalities such as depth and infrared to improve the resilience of
the model in such challenging conditions. Moreover, there are several situations where
unimodal semantic segmentation networks demonstrate missclassifications, especially due
to inconspicuous object classes. For example, often networks classify pictures of people
on decals or billboards as a real person. This could lead to unpredictable situations if a
self-driving car encounters this scenario. The major challenge in this problem is to enable
the network to effectively exploit the complementary features as several factors influence
this decision including the spatial location of the objects in the world, the semantic category
of the objects and the scene context. Due to the diversity of our world and the numerous
weather as well as seasonal changes that alter it, the fusion of the modalities will not be
beneficial by directly concatenating the features.

In order to address this problem, we propose two novel adaptive multimodal fusion
mechanisms in Chapter 5. We employ a late fusion architecture, where in the first CMoDE
approach, we fuse the features at the end of the decoder, while in the SSMA approach, we
fuse the features at the end of the encoder. Our proposed CMoDE fusion module is trained
in a fully supervised fashion and learns to probabilistically weight features of individual
modality streams class-wise. Therefore, during deployment, the model adaptively fuses the
features depending on the semantic objects in the scene as well as the information contained
in the individual modalities. Our second fusion architecture termed SSMA dynamically
fuses the features from individual modality streams according to the object classes, their
spatial locations in the scene, the scene context as well as the information contained in the
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modalities. In order to effectively leverage complementary features in our SSMA model,
we employ a self-supervised training strategy. Through extensive experiments on multiple
indoor, outdoor and unstructured forest benchmarks, we show that both our networks set
the new state-of-the-art while demonstrating substantial robustness in adverse perceptual
conditions. In order to further evaluate the robustness and generalization of our network,
we present evaluations from real world experiments using our Viona robot that employs the
multimodal semantic segmentation as the only perception module during autonomously
navigating in a forested environment.

End-to-End Joint Semantic Motion Segmentation: As autonomous robots require
knowledge about the semantics of the scene as well as the motion of objects such as
pedestrians and cars, we propose two end-to-end architectures to address the problem of
joint semantic motion segmentation in Chapter 6. Existing approaches that learn to segment
semantic objects do not utilize the valuable motion cues and existing motion segmentation
techniques do not utilize the semantic cues. Learning both semantics as well as the motion
of semantic objects can substantially improve the performance of both tasks. For example,
incorporating semantics can enable the motion segmentation network to attend only to
regions in the image that contain movable objects. Similarly, incorporating motion cues
while learning semantics will enforce temporal consistency in the model. However, the
major challenge lies in how to effectively exploit this complementary information from
both tasks and how to alleviate the problem of the induced flow magnitudes due to the
ego-motion of the robot. In our proposed SMSnet architecture, our main goal is to improve
motion segmentation by incorporating semantic cues into the network. Therefore, we
introduce a two stream architecture, where one stream learns coarse optical flow field
features and the parallel stream learns semantic features. We propose a novel ego-flow
suppression technique to remove the flow induced due to the ego-motion of the robot
from the predicted full optical flow maps. We then fuse semantic features into the motion
segmentation stream and subsequently upsample the feature maps to yield the pixel-wise
semantic motion labels.

In our proposed SMSnet++ architecture, we additionally aim to improve the perfor-
mance of semantic segmentation by exploiting motion cues. In order to achieve this, we
propose to transform the learned optical flow maps into an edge-enhanced representation
which is then used to warp and fuse intermediate network features from the previous
frame into current frame. Furthermore, we employ our SSMA fusion module to adaptively
incorporate semantic features into the motion segmentation stream. We present compre-
hensive experimental evaluations on three benchmark datasets containing scenes in urban
autonomous driving scenarios and show that the performance of both our networks sub-
stantially exceed the state-of-the-art, as well as the performance of networks that address
these two tasks separately. Furthermore, we present evaluations using our AIS perception
car that demonstrate the efficacy of our approach to generalize to different challenging
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scenarios. The networks that we propose are the first end-to-end learning techniques to
address the problem of joint semantic motion segmentation.

Multitask Learning for Semantic Visual Localization and Odometry Estimation:
The problems that we address thus far, primarily focus on scene understanding. However,
the robot requires the fundamental knowledge about where it is in the environment in order
to navigate. Existing end-to-end networks that regress the 6-DoF camera pose are sub-
stantially outperformed by the state-of-the-art local-feature based approaches that utilize
structure from motion information for accurate localization. However, these techniques
often fail to localize in textureless regions due to the inadequate number of correspon-
dences that are found, whereas CNN-based approaches are more robust to this factor. The
key challenge in regressing the 6-DoF poses using CNNs is that the commonly employed
Euclidean loss function does not enable the network to learn geometrical constraints about
the environment. In order to address this problem, in Chapter 7, we adopt a mulitask
learning strategy and propose two architectures complemented with a new loss function
that effectively encodes motion-specific information. Our proposed Geometric Consistency
loss function incorporates the relative motion information during training to enforce the
predicted poses to be geometrically consistent with respect to the true motion model. In
order to effectively employ this loss function, we propose the VLocNet architecture that
consists of a global pose regression stream a Siamese-type double stream for odometry
estimation that both partly share parameters. The network takes consecutive monocular
images are input and regresses the relative odometry estimate which is then used in our
proposed Geometric Consistency loss function to regress the global pose.

Inspired by how humans describe their location with respect to specific landmarks in the
scene and to further improve the localization performance, we propose a new strategy in
our VLocNet++ architecture to simultaneously encode geometric and structural constraints
by temporally aggregating learned motion-specific information and effectively fusing
semantically meaningful representations. We introduce a weighted fusion layer that learns
to optimally fuse semantic features into the localization stream based on region activations
in a self-supervised manner. Additionally, we utilize the relative motion from the odometry
stream for warping and fusing semantic features temporally to improve the performance
of semantic segmentation. We further fuse feature maps from the localization stream
into the semantic stream using our weighted fusion layer to provide weak supervision
signals for training and to enable inter-task learning. Extensive experimental evaluations
on benchmark datasets show that our networks are the first deep learning approach to
outperform local-feature based techniques, thereby setting the new state-of-the-art, while
simultaneously performing multiple tasks with a fast inference time. Furthermore, we
present experimental results using our Obelix robot in urban scenarios that are challenging
for both perception and localization tasks to demonstrate the exceptional robustness of our
models.
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1.2 Live Demos

A live demo and several videos of the methods introduced in this thesis are publicly
available in the websites listed below.

• Audio Terrain Classification: http://deepterrain.cs.uni-freiburg.de.

• Semantic Scene Segmentaion: http://deepscene.cs.uni-freiburg.de.

• Multimodal Semantic Segmentation: http://deepscene.cs.uni-freiburg.de.

• Semantic Motion Segmentation: http://deepmotion.cs.uni-freiburg.de.

• Semantic Visual Localization: http://deeploc.cs.uni-freiburg.de.

1.3 Dataset Contributions

Generally, research on CNN-based techniques for various robotic tasks is facilitated by the
availability of datasets. In the context of this thesis, we published the following annotated
datasets that have thereafter been adopted for standardized benchmarking in many works.
They are publicly available at http://aisdatasets.cs.uni-freiburg.de.

• DeepTerrain Dataset: Audio recordings of over 15 hours of vehicle-terrain interac-
tion sounds on nine different indoor and outdoor terrains with manually annotated
classification labels.

• Freiburg Forest Dataset: Multimodal and multispectral images of unstructured
forested environments with manually annotated pixel-level semantic labels.

• Cityscapes-Motion Dataset: Manually annotated pixel-level motion labels for mov-
ing objects in images from the Cityscapes semantic segmentation benchmark dataset.

• KITTI-Motion Dataset: Manually annotated pixel-level motion labels for moving
objects in images from the KITTI semantic segmentation benchmark dataset.

• ApolloScape-Motion Dataset: Manually annotated pixel-level motion labels for
moving objects in images from the ApolloScape semantic segmentation benchmark
dataset.

• DeepLoc Dataset: Ten image sequences of a large urban environment, with manually
annotated pixel-level semantic labels and localization groundtruth labels for each of
the images.

http://deepterrain.cs.uni-freiburg.de
http://deepscene.cs.uni-freiburg.de
http://deepscene.cs.uni-freiburg.de
http://deepmotion.cs.uni-freiburg.de
http://deeploc.cs.uni-freiburg.de
http://aisdatasets.cs.uni-freiburg.de
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(a) Viona autonomous robot (b) Obelix autonomous robot

Figure 1.1: The autonomous robots that we use in our experiments in (a) unstructured, and (b)
urban environments correspondingly.

1.4 Experimental Robot Platforms

Throughout this thesis, we present several experiments with different robotic platforms to
validate the suitability of our models for real-world deployment. In this section, we briefly
describe these robots and their corresponding sensor setups. Some of these robots were
actively designed and developed by the author of this thesis during the course of this PhD
work.

Viona Robot: Our Viona robot shown in Figure 1.1 (a) was designed for navigating
unstructured forested environments with rugged terrain. The robot is equipped with highly
geared strong motors and large wheels that enable it to have a substantial ground clearance.
It has a four wheel swerve drive system that can dynamically reconfigure to also run in a
differential mode. It runs on four large lead acid batteries that further stabilize its mass
while traversing on uneven terrain. Viona is equipped with a suite of sensors including a
Velodyne HDL-64E LiDAR scanner on top a tower on the robot that is used for localization
and mapping, two Velodyne VLP-16 PUCK LiDAR scanners mounted on the sides to
detect obstacles close to the wheels, two SICK LMS LiDAR scanners on the front and
back of the robot to evaluate the traversability of the terrain, four Bumblebee2 stereo
cameras that give it a 360◦ field of view around the robot and a front facing NIR camera to
detect bushes that can be driven over or avoided. It is also equipped with a Applanix POS
LV system that consists of two GPS differential antennas as well as an IMU with three
accelerometers and three gyroscopes. For computation, the robot is equipped with a quad
core Intel Core i7 CPU, 3.50GHz processor and a NVIDIA TX1 that are both connected
using a Gigabit networking switch. We employ this robot for the scene understanding and



14 Chapter 1. Introduction

Figure 1.2: The AIS perception car that we use in our experiments in urban driving scenarios.

autonomous navigation experiments presented in Chapter 5 and Chapter 4.

Obelix Robot: Our Obelix robot [45] shown in Figure 1.1 (b) was designed for au-
tonomous navigation in pedestrian environments. The robot runs on four lead acid batteries
and has two unidirectional wheels as well as two castor wheels in the front and back of the
robot that enables it to take tight turns in a differential configuration. The sensor system
of the robot consists of a Velodyne HDL-32E LiDAR scanner on the top of the robot that
is used for localization and mapping, two SICK LMS-151 scanners in the front and back
of the robot for traversability analysis, a tilting Hokuyo UTM-30LX in the front of the
robot for obstacle avoidance, two Delphi ESR radar sensors which are mounted to the left
and right of the robot for tracking moving objects, a Bumblebee2 and ZED stereo cameras
facing the front of the robot. It is also equipped with a Trimble GPS Pathfinder Pro and and
XSens IMU. We use a laptop with an Intel Core i7 and an NVIDIA GTX 980M GPU for
all the computations. We primarily use our Obelix robot for all the experiments presented
in Chapter 7 for the evaluation of visual localization, temporal semantic segmentation and
odometry estimation.

AIS Car: We built the AIS perception car shown in Figure 1.2 for evaluating our
perception and localization algorithms in self-driving car scenarios. The sensor system
mounted on the roof of an Audi A3 car consists of a Velodyne HDL-64E LiDAR scanner,
two Velodyne VLP-16 PUCK scanners mounted an angle of 30◦ to the horizontal plane,
six ZED stereo cameras that are mounted in a hexagonal configuration to give a 360◦ field
of view and Point Grey Blackfly cameras that are mounted facing the front of the robot to
acquire wide baseline stereo images. It is also equipped with an Applanix POS LV system
consisting of two GPS differential antennas and an IMU. For acquiring all the sensor data
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and computing, we use two custom built computers, each consisting of an Intel Core i7
7700K, 4.20GHz processor and an NVIDIA GTX 1070 GPU. In order to record all the
sensor data simultaneously, we equip the computing systems with 7 hard disks. We used
the Kalibr Toolbox [46] for the camera-camera calibrations to estimate the intrinsic and
extrinsic parameters. We present results of our scene understanding models using our AIS
perception car in Chapter 4 and Chapter 6.

1.5 Publications

Major parts of the research presented in this thesis have been published in journal articles,
book chapters, conference and workshop proceedings. A chronological overview of the
corresponding publications is presented in the following list:

• A. Valada, L. Spinello, and W. Burgard. Deep Feature Learning for Acoustics-based
Terrain Classification. In Proc. of the International Symposium on Robotics Research
(ISRR), Robotics Research, Vol. 2, Springer Proceedings in Advanced Robotics,
ISBN: 978-3-319-60916-4, 2015. Selected in Top 10 papers.

• A. Valada, G. Oliveira, T. Brox, and W. Burgard. Towards Robust Semantic Segmen-
tation using Deep Fusion. In Proc. of the RSS Workshop on Limits and Potentials of
Deep Learning in Robotics, 2016.

• A. Valada, G. Oliveira, T. Brox, and W. Burgard. Deep Multispectral Semantic Scene
Understanding of Forested Environments. In Proc. of the International Symposium
on Experimental Robotics (ISER), Springer Proceedings in Advanced Robotics book
series (SPAR, volume 1), ISBN: 978-3-319-50115-4, 2016.

• A. Valada, A. Dhall, and W. Burgard. Convoluted Mixture of Deep Experts for
Robust Semantic Segmentation. In Proc. of the IROS Workshop on State Estimation
and Terrain Perception for All Terrain Mobile Robots, 2016.

• A. Valada, and W. Burgard. Deep Spatiotemporal Models for Robust Proprioceptive
Terrain Classification. The International Journal of Robotics Research (IJRR),
36(13-14):1521-1539, pp. 1521-1539, 2017, doi: 10.1177/0278364917727062.
ISRR Invited Journal

• A. Valada, J. Vertens, A. Dhall, and W. Burgard. AdapNet: Adaptive Semantic Seg-
mentation in Adverse Environmental Conditions. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 2017.
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• J. Vertens∗, A. Valada∗, and W. Burgard. SMSnet: Semantic Motion Segmentation
using Deep Convolutional Neural Networks. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017.

• W. Burgard, A. Valada, N. Radwan, T. Naseer, J. Zhang, J. Vertens, O. Mees, A.
Eitel and G. Oliveira. Perspectives on Deep Multimodel Robot Learning. In Proc. of
the International Symposium on Robotics Research (ISRR), 2017.

• A. Valada∗, N. Radwan∗, and W. Burgard. Deep Auxiliary Learning for Visual
Localization and Odometry. In Proc. of the IEEE International Conference on
Robotics and Automation (ICRA), 2018.

• A. Valada, and W. Burgard. Learning Reliable and Scalable Representations Using
Multimodal Multitask Deep Learning. In Proc. of the RSS Pioneers Workshop at
Robotics: Science and Systems (RSS), 2018.

• A. Valada∗, N. Radwan∗, and W. Burgard. Incorporating Semantic and Geometric
Priors in Deep Pose Regression. In Proc. of the Workshop on Learning and Inference
in Robotics: Integrating Structure, Priors and Models at Robotics: Science and
Systems (RSS), 2018.

• N. Radwan∗, A. Valada∗, and W. Burgard. VLocNet++: Deep Multitask Learning
for Semantic Visual Localization and Odometry. IEEE Robotics and Automation
Letters (RA-L), 2018, doi: 10.1109/LRA.2018.2869640.

• A. Valada, R. Mohan, and W. Burgard. Self-Supervised Model Adaptation for
Multimodal Semantic Segmentation. arXiv preprint arXiv:1808.03833, International
Journal of Computer Vision (Under Review), 2018.

Moreover, the following publications of the author of this thesis present work related to
perception and localization. However, they are outside the main focus of this thesis and
therefore are not covered.

• F. Boniardi, A. Valada, W. Burgard, and G. D. Tipaldi. Autonomous Indoor Robot
Navigation Using Sketched Maps and Routes. In Proc. of the Workshop on Model
Learning for Human-Robot Communicationat Robotics: Science and Systems (RSS),
2015.

• G. Oliveira, A. Valada, W. Burgard, and T. Brox. Deep Learning for Human Part
Discovery in Images. In Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), 2016.

∗Denotes equal contribution
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• F. Boniardi, A. Valada, W. Burgard, and G. D. Tipaldi. Autonomous Indoor Robot
Navigation Using a Sketch Interface for Drawing Maps and Routes. In Proc. of the
IEEE International Conference on Robotics and Automation (ICRA), 2016.

• N. Radwan, A. Valada, and W. Burgard. Multimodal Interaction-aware Motion
Prediction for Autonomous Street Crossing. arXiv preprint arXiv:1808.06887,
International Journal of Robotics Research (Under Review), 2018.

• M. Mittal∗, A. Valada∗, and W. Burgard. Vision-based Autonomous Landing in
Catastrophe-Struck Environments. Proc. of the IROS Workshop on Vision-based
Drones: What’s Next?, 2018.

1.6 Collaborations

This thesis covers work that involved collaborations with other researchers. Prof. Wolfram
Burgard was the supervisor of this thesis and therefore, contributed through scientific
discussions. The collaborations beyond this supervision are outlined below.

• Chapter 6: The initial work on the SMSnet architecture for semantic motion segmen-
tation was formulated in collaboration with Johan Vertens for his Master’s thesis,
which the author of this thesis supervised. The insights gained during the aforemen-
tioned thesis supervision influenced the subsequent improved implementations of
SMSnet that the author of this thesis carried out. No parts of the experiments on
SMSnet reported in this thesis intersects with the work carried out in collaboration
with Johan Vertens. The results on SMSnet reported in this thesis outperforms the
initial work [54]. Furthermore, the subsequent work on the SMSnet++ architecture
introduced in the second part of this chapter was entirely carried out by the author of
this thesis.

• Chapter 7: The VLocNet and the VLocNet++ architectures are a result of collab-
oration with Noha Radwan. Noha Radwan contributed to the derivation of the
Geometric Consistency Loss function and the formulation of the self-supervised
warping layer in the VLocNet++ architecture. The topologies of the VLocNet and
VLocNet++ architectures consisting of the global localization stream, the visual
odometry stream and the semantic segmentation stream as well as the weighted
fusion layer, were developed by the author of this thesis. The related publications
are Valada et al. [56] and Radwan et al. [34].

∗Denotes equal contribution
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1.7 Outline

This thesis is organized as follows. In Chapter 2, we introduce the main theoretical concepts
and principles that are foundation for our proposed techniques. Chapter 3 presents our
architectures for proprioceptive terrain classification using sound from vehicle-terrain
interactions. In Chapter 4, we present our novel architectures for efficient semantic
segmentation and subsequently in Chapter 5, we present our proposed self-supervised
adaptive multimodal fusion frameworks for semantic segmentation. Chapter 6 presents our
proposed architectures for joint semantic motion segmentation. In Chapter 7, we introduce
our novel architectures for multitask learning of visual localization, semantic segmentation
and odometry estimation. We review the relevant related research work at the end of each
chapter in this thesis. Moreover, for each of the problems, we benchmark our proposed
models on standard datasets and also provide generalization evaluations on data collected
by our robots in Freiburg. Additionally, each chapter lists the corresponding qualitative
results as videos that are published online. Finally, we conclude the thesis and discuss
directions for future research in Chapter 8.



Chapter 2

Background Theory

In this chapter, we briefly discuss the theoretical concepts and principles that are the
foundation of the approaches presented in this thesis. We first describe the camera model
that maps points in the three-dimensional world to the two-dimensional image created by
the camera. We then give an overview of feed-forward neural networks, followed by a
description of the basic components of a convolutional neural network and loss functions
that can be employed for training the networks.

2.1 Camera Model

The pinhole camera model describes the geometric relationship between the coordinates
of a point in a three-dimensional space and its two-dimensional corresponding projection
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Figure 2.1: The pinhole camera model that describes the relationship between a 3D point [X Y Z]ᵀ

and its corresponding 2D projection [u v]ᵀ onto the image plane.
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onto the image plane. This geometric mapping from 3D→ 2D is referred to as perspective
projection. A point P in the three-dimensional world can be mapped into a two-dimensional
point on the image P′ using the projective transformation π defined as

π : R3 → R2 (2.1)

The geometry related to the mapping of a pinhole camera is illustrated in Figure 2.1.
The pinhole camera allows only a single ray from each point on the object to pass through
an infinitely small aperture. The center of the perspective projection where all the rays
intersect is called as the optical center C and the line perpendicular to the image plane
passing through the optical center is called the principal axis or the optical axis. In addition,
the intersection point of the image plane with the optical axis is called the principal point,
while the distance from the optical center to the principal point is the focal length f of
the camera. For convenience, we put the image plane behind the optical center as this
avoids the need to flip the image coordinates about the origin. The standard coordinate
system of the camera has its origin at the center of the projection and its Z axis along the
optical axis, perpendicular to the image plane. The image plane is located at Z = f in the
camera coordinate system. A point P ∈ R3 on an object with coordinates [X Y Z]ᵀ will be
projected at a pixel position [u v]ᵀ in the image plane. The relationship between these two
coordinate systems is given by

π[X Y Z]ᵀ → [u v]ᵀ (2.2)

u =
X f
Z

+ cx (2.3)

v =
Y f
Z

+ cy (2.4)

As the origin of the pixel coordinate system is defined at the top-left corner of the image,
the 2D points are offset by a translation vector (cx, cy) to account for the misalignment
between the optical center and the origin of the image coordinates. In Eq. (2.3) and
Eq. (2.4), it was implicitly assumed that the pixels of the image sensor are square. In the
case when the pixels on the sensor chip of the camera are rectangular of size 1/sx and 1/sy,
different scaled focal lengths fx = sx f and fy = sy f are employed, where, sx and sy are in
units of horizontal and vertical pixels per meter respectively. The 2D point can also be
back-projected to the 3D space, given the depth Z and the camera parameters. We can
express this transformation as

π–1[u v Z]ᵀ → [X Y Z]ᵀ (2.5)

X =
u – cx

fx
Z (2.6)

Y =
v – cy

fy
Z (2.7)
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Figure 2.2: Depiction of the biological neuron cell [64].

where the intrinsic camera parameters (fx, fy, cx, cy) constituting the focal length and the prin-
cipal point can be obtained by standard camera calibration. We employ the aforementioned
equations in the proposed self-supervised warping layer in Chapter 7.

2.2 Feed-Forward Neural Networks

Neural networks, also called as artificial neural networks were originally inspired by the
goal of modeling biological neural systems. About 86 billion neurons make up the human
nervous system which are connected via approvimately 1014 to 1015 synapses to form an
enormous communication network that manifests complex activation patterns. We first
describe the biological neural cell at the high-level that inspired the modeling of artificial
neural networks.

The biological neural cell, also known as the neuron shown in Figure 2.2 is the basic
computational unit of the brain. Each neuron receives electrical signals through its dendritic
branches to the dendrites that are directly connected to the main body of the cell. The
neuron accumulates signals from from multiple sources and once the signal reaches a
certain threshold, it generates a pulse called the action potential. However, the signals
received via the dendritic branches are not uniform as they depend on several factors such
as the strength of the signal generating neuron and the number of redundant connections.
The action potential propagates through the axon to the synaptic terminals that are then
connected to the dendritic branches of other neurons. The neurons learn to adapt to new
situations by varying the threshold of the action potential.

The computational model of an artificial neuron shown in Figure 2.3 is a highly simplified
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Figure 2.3: Depiction of the artificial neuron cell inspired by the biological model.

model of the biological neuron. It has n input values xi ∈ R that propagate through the
axons and interact multiplicatively with the dendrites of other neurons based on the synaptic
strength at that synapse wi. The synaptic strengths or the weights w are learnable and they
control and propagation of signals from one neuron to another. The bias b acts as another
weight to the constant input. All the signals are first summed at the cell body and when the
sum reaches a certain threshold, the neuron fires with the help of a non-linear activation
function σ. We model the artificial neuron as

f (x) = σ

(
N∑

i=0

wixi + b

)
(2.8)

We can also write Eq. (2.8) in a vectorized form considering the inputs as a vector x
with the same activation function σ and the sum as a scalar product or a matrix-vector
multiplication in the case of multiple neurons with the same inputs. Neural Networks are
modeled as collections of artificial neurons that are connected in an directed acyclic graph,
also called feed-forward neural networks. They can be organized into layers of neurons,
where the outputs of one layer become inputs to the following layer. Cyclic connections
are not allowed as they can lead to an infinite loop and yield undefined network outputs.
The most common layer is the fully-connected layer, also called the inner-product layer in
which neurons within the same layer are not connected but neurons between two adjacent
layers are fully pairwise connected. Figure 2.4 shows an example of a three layer neural
network consisting of two hidden layers. The term hidden layer was coined as its values
are not observed in the training set.
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Figure 2.4: Example of a three-layer feed-forward neural network architecture with three inputs,
two hidden layers and one output layer.

We denote the network shown in Figure 2.4 as a three-layer network, as the input layer is
usually not counted. All the neurons in the same layer have the same properties such as the
activation function and the connections do not exist within a layer. In the aforementioned
example, there are a total of 9 neurons with 32 weights and 9 biases. This amounts to a
total of 41 learnable parameters. Note that the output layer does not have an activation
function as the number of units usually represent the number of classes for classification
tasks or a real-valued target in case of regression. We represent each layer l in this network
as

f l(x) = σl (W(l)x + b(l)) (2.9)

where W(l) ∈ Rm×n is the weight matrix of layer l, b(l) ∈ Rm is the corresponding bias
vector and σl is the activation function. The weights and biases are commonly defined
with the variable θ and the output of the network then be represented as ŷ = f (x; θ). The
common activation functions that are usually employed include tanh, sigmoid, Rectified
Linear Unit (ReLU) [65] and Exponential Linear Unit (ELU) [66]. The tanh non-linearity
squashes a real-valued number to the [–1, 1] range, while sigmoid reduces it to the [0, 1],
ReLU thresholds at zero and ELU are similar to ReLUs except for negative inputs. These
activation functions can be represented as

tanh(x) = 2σ(2x) – 1 (2.10)

σ(x) =
1

(1 + e–x)
(2.11)
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relu(x) = max(0, x) (2.12)

elu(x) =

{
x if x > 0

α(ex – a) if x ≤ 0
(2.13)

We primarily use ReLUs in the architectures presented in this thesis. However, we also
employ the sigmoid activation function and ELUs in the networks that we introduce in
Chapter 6 and Chapter 7 respectively. We further detail the loss functions that can be used
for training the networks in the following sections.

2.3 Convolutional Neural Networks

In the previous section, we briefly introduced neural networks in which adjacent layers
are fully connected to one another and every neuron in the network is connected to every
neuron in the adjacent layers. However, it can be observed that the number of connections
grows quadratically with the size of each layer and the number of trainable weights
increases correspondingly. Moreover, such networks do not model the spatial relationship
in the input data due to the feed-forward interconnection and as a consequence there is no
translation invariance, which is a critical factor to model, especially while learning visual
concepts from images. As a solution to these problems, Convolutional Neural Networks
(CNNs) that consist of several convolutional layers with local connections, followed by
pooling layers that provide translational invariance and one or more fully-connected layers
can be employed. CNNs are easier to train and have fewer parameters than standard neural
networks with the same number of hidden units. In the following sections, we discuss the
basic constituting components of a CNN architecture and the loss functions that can be
employed for training the models.

2.3.1 Architecture Overview

A convolutional neural network consists of several convolutional and pooling layers,
optionally followed by fully-connected layers or deconvolutional layers. The input to a
convolutional layer is an image x of dimensions H×W ×C such that x ∈ RH ×RW ×RC,
where H is the height, W is the width and C is the number of channels. Each convolutional
layer has k filters or kernels of size F × F × Q, where F is smaller than the dimensions of
the input image and Q varies for each kernel. This restricts the connections to a local spatial
neighborhood of the input where each filter is convolved with the image to yield K feature
maps of height = H – F + 1 and width = W – F + 1. Restricting the connections enables
a reduction of the number of neuron inputs and weights substantially. Subsequently, an
additive bias and a nonlinearity is applied to each feature map. The feature maps are then
downsampled using different pooling layers along the spatial dimensions. Depending
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Figure 2.5: Example architectural topology of a convolutional neural network. The convolution
and pooling layers learn about the local structure in the input, while the fully-connected layers learn
at a more abstract level by integrating global information across the entire input.

upon the task at hand, fully-connected layers or deconvolution layers with a softmax
layer follows after alternating convolution and pooling layers to yield the class scores.
Figure 2.5 shows an example topology of a CNN consisting of three convolution layers,
one pooling layer, two fully-connected layers and a softmax layer to yield the classification
scores. In the following sections, we describe the individual layers and their corresponding
hyperparameters.

2.3.2 Layers

There are a number of different layers that have been proposed over the years. In this sec-
tion, we describe the fundamental layers that we employ to build our proposed architectures
that we present in this thesis.

Convolution Layer: The convolutional layer is one of the building blocks of CNN and
it consists of learnable filters having small spatial dimensions while extending through
the entire depth of the input tensor. Each filter is convolved over the width and height of
the input tensor to yield a two-dimensional activation map that represents the responses
of that filter at a spatial location. The activation maps are then stacked along the depth
dimension to yield the output tensor. An important aspect of convolution layers that differs
from fully-connected layers is that each neuron is only connected to a local region of
the input tensor whose spatial extent is indicated by the receptive field, while its depth
extends through the entire input tensor. There are three hyperparameters that control the
size of the output tensor, namely, depth, stride and zero-padding, where depth denotes the
number of filters that the convolution layer will use, stride denotes the number of pixels
that the filter should move (stride 1 indicates that the filter will move one pixel at a time),
and zero-padding pads the input tensor with zeros around the border. The spatial size of
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the output tensor can be computed as a function of the input tensor size (W), size of the
receptive field (Fw, Fh), stride (S) and the zero-padding (P) as

OCw =
W – Fw + 2P

Sw
+ 1, (2.14)

OCh =
W – Fh + 2P

Sh
+ 1, (2.15)

where OCw is the output width and OCh is the output height.
A convolution layer conserves parameters by sharing the same weight vector and bias

with all the neurons in the same two-dimensional slice of the depth. Therefore, in the
forward-pass, each depth slice is computed as a convolution of the weights of the neurons
with the input tensor and during backpropagation, the gradient of every neuron in the tensor
is added across each depth slice and only a single set of weights are updated for each slice.

Atrous Convolution Layer: Pooling and striding that is commonly employed in CNNs,
decreases the spatial resolution of the feature maps. For tasks such as semantic seg-
mentation, this decimates the details which cannot be completely recovered even using
deconvolution or transpose convolution layers. To alleviate this problem, atrous convolu-
tions also known as dilated convolutions [67] can be used to enlarge the field of the filter
thereby effectively capturing larger context. Moreover, by using atrous convolutions of dif-
ferent dilation rates, we can aggregate multiscale context. While the standard convolution
filters are contiguous, atrous convolution is equivalent to convolving with a filter which
has zeros inserted between two consecutive filter values across the spatial dimensions. Let
F : Z2 → R be a discrete function, Ω = [–r, r]2 ∩ Z2, k : Ωr → R be a discrete filter of
size (2r + 1)2 and r be a dilation rate. The atrous convolution ∗r can be defined as

(F ∗r k)(p) =
∑

(s+rt=p)

F(s) k(t), (2.16)

where the dilation rate r denotes the stride with which we sample the input signal. Therefore
a larger dilation rate indicates a larger receptive field. The standard convolution can be
considered as a special case by setting r = 1.

Pooling Layer: The pooling layer is employed after the convolution layer to downsample
each depth slice of the input tensor independently using different operations depending on
the type of pooling. As convolution layers restrict the neuron inputs to a local neighborhood,
employing only a series of convolution layers makes the network loose the global context.
Pooling provides translation invariance to the information in the input tensors to a certain
extent by aggregating information globally. It reduces the the number of parameters and
computational operations in the network. The two hyperparameters, the filter size (F) and
the stride (S) control the size of the output tensor. The different types of pooling operations
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include max, average, L2-norm and stochastic. In practice, max pooling is most commonly
employed compared to the other methods. The spatial size of the output tensor can be
computed as function of the input tensor size (W), size of the receptive field (F) and the
stride stride (S) as

OPw =
W – F

S
+ 1, (2.17)

OPh =
W – F

S
+ 1, (2.18)

where OPw is the output width and OPh is the output height.
During the forward-pass, it is common to keep track of the index of the resulting

activation so that during the backpropagation, the gradients can be routed through it. Archi-
tectures that are designed for certain tasks such as semantic segmentation and adversarial
learning do not incorporate pooling layers as they cause the network to loose the exact
position information of the features. Instead, they use a larger stride in the convolution
layer to perform the downsampling.

Fully-connected Layer: Neurons in fully-connected layers have connections to every
neuron in the previous later. This is similar to the standard neural network, also called the
multi-layer perceptron that we described in Section 2.2. The activations of fully-connected
layers are computed with matrix multiplication, followed by a bias offset. The only
difference between a fully-connected layer and a convolution layer is that the convolution
layers have local connectivity and parameters are shared for the neurons in the same depth
slice, however their functional form is identical. Fully-connected layers are often used
towards the end of CNN architectures to aggregate information from all the feature maps
and output a vector that corresponds to the number of objects to classify. We only use
fully-connected layers in the architectures that we present in Chapter 3 and Chapter 7 in
which we propose a network for classification and regression respectively.

Deconvolution Layer: Deconvolution layers, also called transposed convolutions or
fractionally strided convolutions, transform the input tensor in the opposite direction of
standard convolutions such as mapping the feature maps from low-dimensional space to a
higher-dimensional space while maintaining the connection patterns of the convolution. In
practice, the deconvolution operation is implemented as taking the gradient of the convolu-
tion with respect to its inputs. In other words, the only difference between the standard
convolution and the deconvolution is how the forward and backward passes are computed.
Deconvolution layers are often employed to obtain a mapping from the convolved values
to the original inputs. Similar to convolution layers, three hyperparameters control the size
of the output tensor including depth, stride and zero-padding. The spatial size of the output
tensor can be computed as a function of the input tensor size (W), size of the receptive field
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(Fw, Fh), stride stride used (S) and the zero-padding. Deconvolution layers are extensively
used in architectures that are designed for semantic segmentation, depth estimation and
optical flow estimation. As opposed to naively resizing the outputs to a larger dimension,
employing a deconvolution layer with learnable parameters yields an upsampled output
with finer details.

Dropout Layer: CNNs are plagued by the overfitting problem where the weights of the
network are excessively tuned for the training data which causes the network to perform
poorly on new examples that have not been seen before. In order to alleviate this problem
the dropout layer can be employed as a regularization technique to randomly drop a set
of activations by setting them to zero while training the network. This forces the network
to learn redundant connections and therefore improves the generalization of the network.
Dropout layers are often used towards the end of the network on the convolution or fully-
connected layers but certain architectures also employ them on max pooling layers to
create image noise that acts as data augmentation. More recently [68], dropout has also
been employed during test-time to obtain the predictive mean and predictive uncertainty
by Monte Carlo averaging of stochastic forward passes through the model.

Network-in-Network Layer: A 1 × 1 convolution layer was initially called as the
network-in-network layer by Lin et al. [69]. Unlike in standard applications of the con-
volution layer where the receptive fields are large, it employs a convolution layer with
the filter size of 1× 1. As convolutions operate on three-dimensional tensor that span the
entire depth of the input, a 1× 1 convolution layer performs a N-dimensional element-wise
multiplication, where N is the depth of the input tensor into the layer. We extensively
employ the 1× 1 convolution layer in the architectures proposed in this thesis.

2.3.3 Architectural Network Design

Thus far, in the previous sections, we introduced the basic building blocks a CNN. In this
section, we discuss how these layers are often stacked together to form entire architectures.
Classical CNNs usually stack convolution layers with ReLU, followed by a pooling layer
and then repeat this pattern until learned features are highly discriminative and spatially
small in size. Multiple convolution layers can also be stacked before employing a pooling
layer to learn more complex features before loosing the location information. As opposed
to employing one convolution layer with a large receptive field, a stack of convolution
layers with smaller filters are more beneficial as a stack of convolutions with non-linearity
makes the learned features more discriminative and consumes lesser number of parameters.
For example, a stack of three 3 × 3 convolution layers makes the effective receptive
field at the third convolution layer 7× 7 with 27C2 parameters with C as the number of
channels in the convolution layers, while in comparison, a single 7× 7 convolution layer
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consumes 49C2 parameters. However, a disadvantage being that it requires more memory
to store the results of the intermediate convolutions while performing backpropagation. For
classification and regression architectures, two or more fully-connected layers are added
after the stack of convolution and pooling layers to aggregate information and yield the
final object class scores or regress the outputs.

However, recent architectures that have achieved state-of-the-art performance as the
Inception architectures [70], residual networks [27] and dense networks [71] have moved
away from this conventional paradigm of employing linear list of layers. They have a
more intricate connectivity structure. In most of the architectures that we present in this
thesis, we employ the residual learning framework. Therefore, we give a brief overview of
residual networks in the rest of this section.

Residual Networks: The residual network architecture won the ILSVRC (ImageNet
Large Scale Visual Recognition Challenge) challenge [23] in 2015. It is generally believed
that deeper networks are capable of learning more complex functions and correspondingly
have a larger representational capacity. However, in practice this does not appear to
be true due to two main challenges, vanishing gradients and the optimization difficulty.
Vanishing gradients occur when the gradient becomes very small as it reaches the earlier
layers resulting in hampering the convergence of the network. Although better parameter
initialization techniques and batch normalization enables deeper networks to converge,
their performance is still substantially lower than their shallower counterparts. Secondly,
introducing more layers increases the number of parameters that have to be trained which
makes the optimization of the network harder and leads to larger training errors. The
ResNet architecture addresses these aforementioned challenges that have prevented training
of very deep networks.

The main difference between ResNets and CNN architectures that employ a linear list
of layers is that ResNets provide a clear path for the gradients to propagate to earlier layers
of the network. A standard CNN stream shown in Figure 2.6 (a) maps the input to the
output with a non-linear function h(x), where each layer is expected to learn distinct feature
maps. ResNets introduce the residual units in which the intermediate units learn a residual
function with reference to the input tensor. Residual architectures contain multiple such
units serially connected to each other, in addition to a shortcut connection that runs parallel
to each unit. These shortcut connections enable the gradient to flow easily through them
which results in faster training. The standard residual unit shown in Figure 2.6 (b) can be
expressed as

yl = h(xl) + F(xl,Wl),

xl+1 = f (yl),
(2.19)

where F is the residual function (convolutional layers in the residual unit), xl is the input
feature to the l-th unit, while xl+1 is the output, Wl = {Wl,k|1≤k≤K} are the set of weights
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Figure 2.6: Topology of the standard CNN stream in comparison to the original residual unit [27]
and the improved full pre-activation residual unit [72].

and biases of the l-th residual unit and K is the number of layers in the unit. The function
f is a non-linearity such as a ReLU and the function h is set to the identity mapping
h(xl) = xl. Note that we described the bottleneck structure of the residual unit that enables
training of deeper networks, as opposed to the two layer design that contains consecutive
3× 3 convolution layers. Instead, the bottleneck structure consists of three layers 1× 1
convolution, 3 × 3 convolution and a 1 × 1 convolution. The first 1 × 1 convolution
layer reduces the number of feature maps, making the 3× 3 convolution have a smaller
input/output dimension, while the last 1× 1 convolution restores the dimensions to that of
the input. There are two types of residual units, identity shortcuts and projection shortcuts.
Identity shortcuts are used when the input and outputs are of the same dimensions and
the projection shortcut is used when the dimensionality of the output is different from the
input so a 1× 1 convolution layer to used on the input tensor to match the dimensions of
the output tensor.

The activation f in the original residual unit described above affects both paths in the
next unit. Therefore, He et al. [72] proposed an improved residual unit where the activation
f̂ only affects the path F, which can be defined as

xl+1 = xl + F(f̂ (xl),Wl), (2.20)

This pre-activation residual unit shown in Figure 2.6 (c) enables the gradient to flow
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through the shortcut connection to any unit l without any obstruction. Batch normalization
is extensively used in residual networks that help in regularizing the network. However, in
the standard residual unit, the batch normalization is applied before the addition which
causes the output of the residual unit be un-normalized and consequently, the input to the
next residual unit is also not normalized. In the full pre-activation residual units structure,
the input is normalized at the beginning of the identity unit which makes the convolutions
always receive the normalized inputs. These full pre-activation residual units have been
demonstrated to reduce overfitting, improve the convergence and also yield improved
performance. The initial architectures that we propose in this thesis employ the standard
residual unit, while the improved architectures employ the full pre-activation residual units.

2.3.4 Loss Functions

Loss functions are used to supervise the training process of a neural network. In this thesis,
we primarily use two different loss functions according to the task at hand. In Chapter 3,
4, 5, and 6, we employ the softmax function that uses the cross-entropy loss for training
our proposed architectures that perform classification and pixel-wise classification. Let
f (xi) be the activations of the output layer for the CNN, yi be the groundtruth label, C is
the number of object classes to classify, and N is the number of training examples. Let the
weights and biases of the last layer of the CNN be W and b. The softmax classifier that
uses the cross-entropy loss can be defined as

Ls = –
1
N

N∑
i=1

yi log
exp

(
W

ᵀ
yi f (xi) + byi

)∑C
j=1 exp

(
W

ᵀ
j f (xi) + bj

) (2.21)

While, for regressing the 6-DoF poses in the architectures that we propose in Chapter 7,
we use the L2-norm loss function. It minimizes the sum of the square of the differences
between the target and the estimated value as

Ll2 =
N∑

i=1

(yi – f (xi))2 (2.22)

where yi is the groundtruth and f (xi) is the estimated output of the model. The protocol
that we employ for training our architectures is described in the respective chapters.





Chapter 3

Proprioceptive Terrain Classification

In this chapter, we address the problem of terrain classification us-
ing sound from vehicle-terrain interactions. Terrain classification
is a critical component of any autonomous mobile robot system op-
erating in environments with unknown spatially-varying terrains.
Most existing techniques are predominantly based on using visual
features which makes them extremely susceptible to appearance
changes and occlusions. Therefore, relying solely on them inhibits
the robot from functioning robustly in all conditions. As a solution
to this problem, we propose an approach that uses vehicle-terrain
interaction sounds as a proprioceptive modality to classify a wide
variety of terrains. We present a novel convolutional neural net-
work architecture to learn deep features from spectrograms of au-
dio signals. As audio signals are inherently sequential and temporal,
we also present a recurrent variant of the model that incorporates
Long Short-Term Memory units to learn the complex temporal dy-
namics. Experiments on two extensive datasets collected with dif-
ferent microphones on various indoor and outdoor terrains demon-
strate that our networks achieve state-of-the-art performance com-
pared to existing techniques. In addition, we present experimen-
tal results in adverse acoustic conditions with high ambient noise
and propose a noise-aware training scheme that enables learning of
more generalizable models which are essential for robust real-world
deployments.

3.1 Introduction

As robots are increasingly being employed for tackling complex tasks in unknown envi-
ronments such as in mining, forestry, space exploration as well as search and rescue, they
face an immense amount of perceptual challenges. Mobile robots in particular should have
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(a) Asphalt (b) Carpet (d) Granite (e) Sand (f) Long grass (g) Short grass

(h) Beach sand (i) Concrete (j) Sand (k) Tile (l) Gravel (m) Concrete

Figure 3.1: Ambiguous appearance of terrains that make traversability analysis using optical
sensors extremely challenging. Visually similar terrains having different traversability properties
are shown in pairs.

the ability to distinguish the terrain that they traverse on to determine the corresponding
trafficability. Failing to adapt their navigation strategy according to the terrain including
the control, driving style and planning strategy, can lead to disastrous situations. For
instance, if a robot employs the same speed that it uses to traverse on asphalt to traverse on
sand, it would lead to entrenchment of the wheels. Similarly, several such scenarios may
be encountered while operating in environments with unknown spatially-varying terrains,
where the wheels of the robot may experience slippage and entrenchment. Often situations
may also be encountered, where a rocky terrain can act as a non-geometric hazard and can
cause mechanical damage to the robot. Moreover, the predominately adopted extroceptive
sensor-based approaches such as using cameras are highly susceptible to failure due to the
similar visual appearance of terrains as shown in Figure 3.1. Appearance of terrains also
often rapidly change with varying weather conditions including shadows due to lighting
changes, dampness due to rain and camouflaging with leaves, which make reliable terrain
classification using vision-based approaches extremely challenging.

Over the years, these factors have motivated the development of techniques that exploit
other extroceptive modalities for terrain classification such as depth and remission values
from Lidars [73, 74], as well as proprioceptive modalities such as vibrations induced on
the vehicles body [75], vehicle-terrain interaction sounds [47, 76, 77, 78] and the change
in acceleration perpendicular to the ground [79, 80]. Each of these approaches have
their own benefits and drawbacks: optical sensors perform well in the presence of good
illumination but they are drastically affected by visual appearance changes. Classification
with RGB images is typically performed using color and texture features extracted from
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images [81]. The use of texture-based image descriptors such as local ternary patterns [82]
have also been explored. In such approaches, features extracted using local ternary patterns
are used on sequences of images and classified using Recurrent Neural Network (RNN)
configurations [83]. Lidars have also been extensively used for traversability analysis
where features extracted often include statistics on remission values, roughness and slope.
Recently, semi-supervised learning approaches [74, 84] that only require partially labeled
Lidar data have been proposed. However, they are not suitable for fine-grained terrain
classification where two or more terrains may have the same degree of coarseness.

As visual images and Lidar data provide complementary information, techniques have
also been proposed that combine features from both modalities. The combined feature set
includes image features such as color and texture, as well as geometric features from Lidar
data such as surface normals, curvature, ground height, point feature histograms, linearity
and planarity [85, 86]. CNN-based approaches for both near-range and far-range terrain
classification using stereo and RGB images have been demonstrated during the Learning
Applied to Ground Robots (LAGR) program [87, 88] of the Defense Advanced Research
Projects Agency (DARPA). These approaches have demonstrated substantial robustness
in the real-world by combining both supervised and unsupervised learning using deep
hierarchical networks. However, their scope was limited to segmenting navigable areas
from obstacles and not distinguishing among the various types of navigable terrains.

Humans from an early age are self-trained to leverage the sound of their footsteps to
identify the terrain they there are walking on, especially in darkness. Similarly, robots can
exploit the vehicle-terrain interaction sounds to characterize the terrain. This is extremely
beneficial to mobile robots that perform repeated long-term tasks in unknown environments
as most of the robot’s energy is spent on mobility and the rate of expenditure is a function
of the terrain over which its driving [89]. By predicting the traversability as the robot
is driving over a terrain, we can build spatial traversability maps based on the robot’s
experience which can be used to plan minimal-energy paths. Moreover, acoustics-based
approaches are robust to the disturbances that affect optical or active sensors which enables
us to employ them as complementary classifiers or for fusion and self-supervision of
classifiers based on other modalities. Although several proprioceptive terrain classifiers
have been proposed over the last decade, they have failed to gain widespread adoption.
This can be attributed to the following:

• Manually designing feature sets that perform well for every imaginable real-world
condition is tedious and impractical.
• Existing techniques have slow run time making them unusable for real-time robotics

applications.
• Most techniques require specific hardware setups that are difficult to replicate.
• Approaches often lack reliability in real-world scenarios.

In this chapter, we propose a novel multiclass proprioceptive terrain classification ap-
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Figure 3.2: The Pioneer P3-DX platform equipped with a shotgun microphone with an integrated
shock mount that we use in our experiments. The microphone is mounted close to the wheel with
the supercardioid pointing towards the tire-terrain interface.

proach that overcomes these impediments by using sound from vehicle-terrain interactions
to classify both indoor and outdoor terrains. We propose two DCNN architectures: one that
considers a single time window for classification and a recurrent variant that incorporates
Long Short-Term Memory (LSTM) units to capture the temporal dynamics of the signal.
Both our architectures incorporate our proposed Global Statistical Pooling (GSP) strategy
in which three temporal pooling methods are combined to achieve the time-series represen-
tation learning. In addition, our recurrent model forms compositional representations in
the time domain, similar to convolutional models that form compositional representations
in the spatial domain. The structure of our proposed network exploits the temporal infor-
mation in each clip as well as in the transitioning clips. In order to evaluate the efficacy
of our approach, we gathered two extensive vehicle-terrain interaction datasets consisting
of data from nine different indoor and outdoor terrains. The first dataset was collected
using a mobile robot equipped with a shotgun microphone as shown in Figure 3.2 and the
second dataset was collected using a mobile phone microphone. The rationale behind using
two different microphones was to evaluate the generalizability of the model to different
hardware setups and to demonstrate that even inexpensive microphone can be effectively
utilized with our proposed system.

Although DCNN-based approaches are more robust to environmental noise than classical
approaches that employ handcrafted features, their performance still degrades in high
ambient noise environments. Noise sensitivity is strongly correlated to the capability to
operate in different real-world environments. Moreover, there are two different types
of noise sources in our application; ambient noise and the noise from the drive motors
of the robot. As the motor noise is captured in the training data, the model learns to
account for this noise corruption. In order to make our model tolerant to ambient noise
and generalize effectively to different real-world environments, we present a noise-aware
training scheme. Our training scheme randomly injects ambient noise signals from the
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Diverse Environments Multichannel Acoustic Noise Database (DEMAND) [90] at different
Signal-to-Noise (SNR) ratios. We demonstrate that our network trained using our noise-
aware scheme shows substantial improvement in the robustness of the model to adverse
ambient noises. The approach presented in this thesis is the first proprioceptive terrain
classification technique to be able to robustly classify nine different indoor and outdoor
terrains with a classification rate of over 80 Hz.

Concretely, we make the following contributions in this chapter:
• A novel convolutional neural network architecture for terrain classification from

vehicle-terrain interaction sounds that operates on a single audio clip of fixed length.
• A recurrent convolutional neural network architecture for terrain classification from

vehicle-terrain interaction sounds.
• A new Global Statistical Pooling (GSP) scheme for aggregating statistics of learned

temporal features.
• A noise aware training scheme that substantially increases the generalizability of the

model to real-world environments with different ambient noises.
• Thorough empirical evaluations of our proposed system on over 6 h of audio data

using two different audio acquisition systems and in seven different environments
having adverse acoustic conditions.

The remainder of this chapter is organized as follows. In Section 3.2, we detail our
proposed network architectures and the noise-aware training strategy. We then describe our
data collection methodology in Section 3.3, followed by extensive experimental evaluations
that demonstrate the efficacy of our approach in Section 3.4. Finally, we discuss the related
work that has been previously done using acoustics and other proprioceptive sensors in
Section 3.5, before concluding the chapter in Section 3.6.

3.2 Technical Approach

In this section, we describe our approach to terrain classification using vehicle-terrain
interaction sounds. Recent work has shown that learning audio features from simple
transformations such as spectrograms are more effective than directly leaning from raw
audio waveforms [26, 91]. Therefore, we first transform the vehicle terrain interaction
signals into their spectrogram representation, and then use them as inputs to our network for
feature learning and classification. Figure 3.3 depicts the preprocessing that we perform on
the training set. In the following sections, we first describe the spectrogram transformation
technique that we apply on the raw audio waveforms. We then detail our proposed
TerrainNet architecture that operates on spectrograms of independent audio frames of
vehicle-terrain interactions, followed by our recurrent TerrainNet++ architecture which
incorporates LSTM units to model the sequential nature of the signal and more effectively
exploit the temporal dynamics.
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Figure 3.3: Overview of the preprocessing pipeline that we employ on the training data. The
raw audio waveform is first transformed into its spectrogram representation and then a series of
waveform augmentations is applied in order to enable the learned representation to be invariant to
commonly observed signal perturbations.

3.2.1 Spectrogram Transformation and Augmentation

Unlike speech decoding or handwriting recognition tasks that require specific alignment
between the audio and transcription sequences, terrain classification from acoustic signals
does not require a specific target relation for each frame. Therefore, we use individual
audio clips of fixed length as new samples for classification. We first split the raw audio
signal into short clips of length tw. We then experimentally determine the shortest clip
length that achieves the right trade-off between the classification performance and the
computation time.

We compute the spectrogram based on the Short-Time Fourier Transform (STFT) of each
clip in the sequence by breaking each audio clip into M frames with 50% overlap between
the frames in order to avoid boundary artifacts. Each frame is then Fourier transformed and
successive frames are then concatenated into a matrix to form the spectrogram. Let x[n] be
the recorded raw audio signal with duration of Nf samples, fs be the sampling frequency,
S(i, j) be the spectrogram representation of the 1D audio signal and f (k) = kfs/Nf . We apply
STFT on the length M windowed frame of the signal as

X(i, j) =
Nf –1∑
p=0

x[n] w[n – j] exp
(

–p
2πk
Nf

n
)

, p = 0, . . . , Nf – 1. (3.1)

We apply a Hamming window function w[n] to compensate for the Gibbs effect while
computing STFT by smoothing the discontinuities at the beginning and end of the audio
signal. The Hamming window function can be expressed as

w[n] = 0.54 – 0.46 cos
(

2π
n

M – 1

)
, n = 0, . . . , M – 1. (3.2)
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We then compute the log of the power spectrum as

Slog(i, j) = 20 log10(|X(i, j)|). (3.3)

We chose Nf as 2048 samples, therefore the spectrogram contains 1024 Fourier coeffi-
cients. By analyzing the spectrum, we found that most of the spectral energy is concentrated
below the lower 512 coefficients. Hence we only use the lower 512 coefficients to reduce
computational complexity and to accelerate the inference time. The noise and the sound
intensity levels vary substantially across the entire dataset as we recorded the data in
different environments. Several factors contribute to this imbalance including ambient
environmental noise at different times of the day, wind conditions and servo noise at
different speeds. Therefore, we normalize the spectrograms with the maximum amplitude.
Normalization also makes our approach invariant to the capture level of the microphone,
distance of the microphone from the vehicle-terrain interface and the type of microphone
being used. We compute the normalized spectrogram as

S(i, j) =
Slog(i, j)

maxi,j Slog(i, j)
. (3.4)

In order to create additional training data and to enable the learned representations to be
invariant to commonly observed signal perturbations, we apply several frequency domain
signal augmentations. We use the two dimensional affine transform and warping, with
random offsets in time and frequency to shift the spectrogram randomly. Furthermore,
we create additional samples using time stretching, modulating the tempo, random equal-
ization, varying the volume gain, using frequency and time normalization with a sliding
window and local contrast normalization.

In the following section, we first describe our TerrainNet architecture that operates on
spectrograms of independent audio frames of vehicle-terrain interaction sounds, followed
by the recurrent TerrainNet++ architecture which incorporates LSTM units to model the
sequential nature of the signal and more effectively exploit the temporal dynamics. By
incorporating LSTMs, we enable our model to capture how the frames change during a
time period and thereby improve the robustness in the real-world.

3.2.2 TerrainNet Architecture

The spectrograms in our training set are of the form S = {s1, . . . , sM} with si ∈ RN . Each
of them are of size v × w and number of channels d (d = 1 in our case). We assume
M to be the number of samples and yi as the class label in one-hot encoding yi ∈ RC,
where C is the number of classes. Our architecture shown in Figure 3.4 consists of twelve
convolutional layers, two inner-product layers, eight pooling layers and a softmax layer.
All the convolutional and pooling layers are one dimensional and the convolutions convolve
along the temporal dimension, making the resulting learned features translation-invariant
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Figure 3.4: Depiction of our proposed TerrainNet architecture. The term MP refers to max-
pooling. We first transform the raw audio signal of vehicle-terrain interactions into its spectrogram
representation which is taken as input by the DCNN for feature learning and classification.

only in time domain. Unlike images, the two axes of the spectrogram have different units
and represent different quantities, time vs. frequency, therefore we do not use square filters
in the convolutional layers as typically employed in DCNNs using image data. The layers
conv1, conv4 and conv7 have a kernel size of three with a fixed stride of one. We then ass
two 1× 1 convolutional layers with a stride of one after each of the aforementioned conv1,
conv4 and conv7 layers in order to enhance the discriminability for local patches within the
receptive fields. Each of the 1× 1 convolutions have the same number of filter channels as
the preceding convolutional layer and the filters learned by them are a better non-linear
function approximator. The use of 1× 1 convolutions for better abstraction was introduced
in the influential Network in Network architecture [69]. We add a max-pooling layer with a
kernel of two after conv3, conv6 and conv9 to downsample the intermediate representations
in time. Max-pooling achieves partial invariance by only taking the high activations from
adjacent hidden units that share the same weight, thereby providing invariance to small
phase shifts in the signal.

DCNNs that are designed to operate on images for various perception tasks, specifically
preserve the spatial information of features learned in order to be able to localize the objects
of interest in the image. However, for the task of estimating the type of the terrain from
spectrograms of the audio signal, the network only needs to be able to identify the presence
or absence of terrain-specific spectrogram features, rather than having the ability to localize
these features. Therefore, we introduce a new Global Statistical Pooling (GSP) scheme that
applies different pooling mechanisms across the entire input tensor and combines them to
aggregate statistics of the features learned across a particular dimension. Our architecture
employs the proposed GSP in our network by incorporating three different global pooling
layers after conv9 to compute the statistics of the features learned across time.

We use an inner product layer fc11 to combine the outputs of global max pooling, global
L2-norm pooling and global average pooling. Subsequently, we feed the resulting output to
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another inner-product layer to yield the number of classes in the dataset. We investigated
various combinations of different pooling layers and found that for other configurations, the
accuracy dropped by over 3%. We also investigated the effect of adding global stochastic
pooling, however, the network did not show any significant improvement in performance.
We use Rectified Linear Units (ReLUs) f (x) = max(0, x) after the convolutional layers and
dropout regularization [92] on the inner-product layer fc11. ReLUs have significantly aided
in overcoming the vanishing gradient problem and they have been shown to considerably
accelerate training compared to tanh units. We also investigated the effect of employing
Parameterized Rectified Linear Units (PReLU) [93] that improve model fitting. However,
it drastically affected the performance of our network.

We use the multinomial logistic loss with softmax to train our network. Let fj(si, θ) be
the activation value for spectrogram si and class j, C is the total number of terrain classes,
θ be the parameters of the network with weightsW and biases b. The softmax function
and the loss is computed as

P(y = j | si, θ) = softmax(f (si, θ)) =
exp(fj(si, θ))

C∑
k=1

exp(fk(si, θ))
, (3.5)

where P(y = j | si, θ) is the probability of the jth terrain category. The loss function can then
be computed as

L(u, y) = –
∑

k

ykloguk. (3.6)

Using Stochastic Gradient Decent (SGD), we then solve

min
θ

N∑
i=1

L(softmax(f (si, θ)), yi). (3.7)

We detail the training protocol that we employ and our choice of hyperparameters in
Section 3.4.1.

3.2.3 TerrainNet++ Architecture

In the previous section, we presented an architecture that operates on individual spectro-
grams of fixed length, representing independent audio frames. However, as an audio signal
is a function that measures the air pressure variation over time, modeling this sequential
nature of the signal can improve the classification performance and the robustness in the
real-world. LSTM-based Recurrent Neural Networks (RNNs) have recently achieved
state-of-the-art results for sequential learning tasks such as language translation [94],
speech recognition [26] and image captioning [95]. The standard RNN learns the temporal
dynamics from a sequence by mapping inputs x = (x1, . . . , XT), to a sequence of hidden
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Figure 3.5: Depiction of our proposed recurrent TerrainNet++ architecture. The input to the
network is a window of spectrograms representing the vehicle-terrain interaction sounds. The
LSTM is unrolled in time and MP refers to max pooling.

states h = (h1, . . . , hT), and the hidden states to an output sequence y = (y1, . . . , yT). This is
achieved by iterating through the following equations from t = 1 to T , as

ht = g(Wihxt +Whhht–1 + bh), (3.8)

yt =Whoht + bo, (3.9)

where g is is the hidden layer activation function such as an element-wise application
of sigmoid non-linearity, W and b terms denote the weight matrices and bias vectors,
with subscripts i, h, and o denoting the input layer, the hidden layer and the output layer
respectively. For example, Wih is the weight matrix connecting the input layer and the
hidden layer, while Whh is the weight matrix connecting the different hidden layers.
Similarly, bh and bo are the bias vectors for the hidden and output layers respectively.
As discussed extensively in previous works [26, 95, 96], traditional RNNs often suffer
from vanishing and exploding gradient problems that occur from propagating gradients
through several layers of the RNN. The larger the length of temporal input, the harder
it is to train the RNN. The Long Short-Term Memory (LSTM) [96] was proposed as a
solution to this problem and to enable exploitation of long-term temporal dynamics from a
sequence. LSTMs incorporate memory units containing several gates that regulate the flow
of information in and out of the cells. We incorporate LSTMs in our proposed TerrainNet++
architecture which builds upon the TerrainNet architecture described in Section 3.2.2.

The input to TerrainNet++ is a spectrogram sequence of a certain time window length T .
The TerrainNet++ architecture shown in Figure 3.5 has a structure similar to TerrainNet
until the global statistical pooling (GSP) layer which combines three different pooling
strategies. Two inner-product layers fc11 and fc12 with 4096 filters are then added after
the GSP module. Similar to TerrainNet, we add dropout on the inner-product layers to
regularize the model. The resulting sequence of features from fc12 is then fed into an
LSTM layer which exploits the temporal dependencies, followed by a time-distributed



3.2. Technical Approach 43

 σ

φ

 σ

 σ

××

×
Forget
Gate

Memory
Cell

Input
Gate

Input
Modulation
Gate

Output
Gate

ht

ht-1

xt

φ

Figure 3.6: Depiction of the Long Short-Term Memory (LSTM) unit.

inner-product layer and a softmax layer. Figure 3.6 illustrates the topology of the LSTM
unit, where xt is the input at time t. The activations can then be formulated as

it = σ(Wxixt +Whiht–1 + bi), (3.10)

ft = σ(Wxf xt +Whf ht–1 + bf ), (3.11)

ot = σ(Wxoxt +Whoht–1 + bo), (3.12)

gt = φ(Wxcxt +Whcht–1 + bc), (3.13)

ct = ft � ct–1 + it � gt, (3.14)

ht = ot � φ(ct), (3.15)

where σ(x) = (1 + e–x)–1 is the sigmoid nonlinearity and φ(x) = (ex – e–x) · (ex + e–x)–1 =
2σ(2x) is the hyperbolic tangent nonlinearity. The symbol ht ∈ RN is the hidden unit,
gt ∈ RN is the input modulation gate, ct ∈ RN is the memory cell, it ∈ RN is the input gate,
ft ∈ RN is the forget gate, and ot ∈ RN is the output gate. The symbolsW and b are the
weight matrices and bias vector with subscripts i, f , h, c, and o representing the input gate,
forget gate, hidden gate, cell state and output gate respectively. The symbol � represents
element-wise product operator. The hidden state ht models the terrain that the robot is
traversing on at time t. The output of the memory cell changes over time based on the past
states and the current state of the cell. Therefore, the hidden state is formed based on the
short-term memory of the past clip. At timestep t, the predicted distribution P(yt) can be
computed by taking the softmax over the outputs of the sequence from the LSTM units zt,
i.e.,

P(yt = c) =
exp(Wzczt,c + bc)∑

c′∈C
exp(Wzczt,c′ + bc)

. (3.16)

We train the entire model end-to-end using minibatch Stochastic Gradient Decent (SGD),
similar to TerrainNet. As the TerrainNet++ architecture utilizes LSTM units to model the
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temporal relationships in addition to the proposed GSP module, we evaluate its utility in
the architectural analysis presented in Section 3.4.3.1.

3.2.4 Noise-Aware Training

Noise robustness is a critical factor that substantially influences the performance of the
model in real-world environments. The performance especially degrades when the vehicle-
terrain interaction signal has a significantly lower Signal-to-Noise Ratio (SNR) making
the model more susceptible to additive noise and reverberations. Conventional techniques
employed in the speech recognition domain are loosely based on known mechanisms of
auditory frequency encoding [97], therefore they are not directly employable while classi-
fying vehicle-terrain interaction sounds. Moreover, as vehicle-terrain interaction sounds
have very similar spectral properties as noise sources modeled for speech recognition tasks,
existing front-end signal processing techniques are not applicable.

As a solution to this problem, we propose a noise-aware training scheme that substan-
tially improves the robustness and the generalizability of our model without any additional
preprocessing or computational burden. The basic principle of our noise-aware training
scheme is to randomly inject common ambient environmental noises into the training data
so that the model learns to distinguish between noise corruption patterns and the relevant
vehicle-terrain interaction features. As our model learns hierarchical representations, the
lower layers learn both pure vehicle-terrain interaction features as well as ambient noise
features, whereas the higher layers learn compositional representations by distinguishing
between them. Furthermore, the temporal component of our network enables the model to
learn the evolution of both signals. Due to the temporal depth, the network is able learn
heterogeneous signal patterns and at what stage to de-emphasize the noise while making
decisions. Noise-conditioned decision boundaries are learned as we train the network with
signals corrupted with noise at different SNRs. Additionally, the perturbation introduced
by the injected noise regularizes the network and improves the generalization ability of
the model. It helps improve the classification of pure signals as the easily degraded parts
of the signal are blurred by noise which forces the network to learn the more dominant
features, hence avoiding over-fitting. In summary, the goal of our noise-aware training is to
enable the model to learn the common discriminative noise patterns and better regularize
the network to improve the generalization performance to real-world environments with
different ambient noises.

We randomly select a noise following a multinomial distribution Mult(µ1,µ2, . . . ,µn)
while training, where n is the types of noises and µi is sampled from a Dirichlet distribution
as (µ1,µ2, . . . ,µn) ∼ Dir(α1,α2, . . . ,αn), where αi is set to control the base distribu-
tion of the noise types. The SNR of the noised sample follows a Gaussian distribution
N (µSNR,σSNR), where µSNR and σSNR are the mean and variance. Following a uniform
distribution, we randomly select a start time s on the noise signal and scale it according
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to the desired SNR before adding it with the pure vehicle-terrain interaction signal. We
use the Praat framework [98] for all the signal processing computations and the ambient
noise recordings from the Diverse Environments Multichannel Acoustic Noise Database
(DEMAND). The recordings in the DEMAND database were captured using 16 omnidi-
rectional electret condenser microphones in over 18 different environments. We categorize
the ambient noise environments into seven classes for in-depth experiments as follows:

• White: White noise has a very wide band and it is one of the most common noise
sources. It has a very similar effect to that of various physical and environmental
disturbances including wind and water sources.
• Domestic: This category includes ambient noises from living rooms, kitchens and

washing rooms. As our terrain categories also contain indoor terrains, it is crucial to
train the model with common indoor ambient noises.
• Nature: The nature category contains outdoor noise samples from a sports field, a

river creek with flowing water and a city park.
• Office: This category contains recordings from an office with people working on

computers, a hallway where people pass by occasionally and from interior public
spaces.
• Public: The public category contains recordings from interior public spaces such a

bus station, a cafeteria with people and from a university restaurant.
• Street: The street category contains noise recordings from outdoor inner-city public

roads and pedestrian traffic. It contains a busy traffic intersection, a town square
with tourists and a cafe at a public space.
• Transportation: This category contains recordings of vehicle noises such as cars,

subways and buses.

As vehicle-terrain interaction sounds are unstructured in nature, corrupting it with
various heterogeneous noises might quash the most relevant discriminative features leading
to poor performance in the real-world. Therefore, we first investigate the effect of these
noise disturbances by evaluating the model trained on the pure uncorrupted training set
with the noise corrupted test set. We then perform noise-aware training with different
SNRs. The training procedure that we employ is further detailed in Section 3.4.1.

3.2.5 Baseline Feature Extraction

There is a wide range of audio features that have been proposed for various speech
and sound recognition tasks. Recent work has explored the utilization of these features
for audio-based terrain classification [76, 77, 78]. We evaluate the performance of our
proposed architectures against the following set of classical baseline audio features that
include both time and frequency domain features:
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• Ginna features [99]
• Spectral features [76]
• Ginna & Shape features [99, 100]
• MFCC & Chroma features [101]
• Trimbral features [102]
• Cepstral features [103]

Recently, Ginna and Shape features have demonstrated the best results for terrain
classification using wheeled mobile robots [76]. Ginna features [99] is a six dimensional
feature vector consisting of three features extracted from the time domain and three
features extracted from the frequency domain. The time domain features are Zero Crossing
Rate (ZCR), Short Time Energy (STE) and entropy (U), while the frequency domain
features include Spectral Centroid (SC), Spectral Flux (SF) and Spectral Rolloff (SR).
Zero Crossing Rate (ZCR) can be defined as the rate at which the signal changes from
positive to negative and it is a measure of the noisiness of the signal. ZCR is one of the
most traditional audio feature used for speech and music classification. STE is the energy
in a short segment of the signal which can be computed as the square of the amplitude of
the signal. Entropy characterizes the abrupt energy changes in the signal. ZCR, STE and
entropy can be computed as

ZCR =
1

2N

N–1∑
m=0

| sgn[y(m)] – sgn[y(i – 1)]|, (3.17)

where, sgn[x(m)] =

{
1, x(n) ≥ 0

–1, x(n) < 0
,

STE =
N–1∑
m=0

X((m).w(n – m))2, (3.18)

U = –
N–1∑
i=0

σ2 · log2(σ2), (3.19)

where X(n) is a sample of the power spectrum at bin n, f (n) is the center frequency of
the bin n, w(n) is the windowing function, N is the size of the window and σ denotes the
normalized energy.

The most commonly used frequency domain feature is the Spectral Centroid (SC), which
is also referred to as the median of the power spectrum. It indicates where the center of
mass of the spectrum lies and it provides a measure of the spectral shape. Spectral Flux
(SF) indicates the change in the power spectrum between successive windows and it is a
measure of the amount of local spectral change. Spectral Rolloff (SR) is the frequency
below the 95th percentile of the power in the spectrum and it is a measure of the skewness



3.2. Technical Approach 47

of the spectral shape. SC, SF and SR can be computed as

SC =

N–1∑
m=0

f (m)X(m)

N–1∑
m=0

X(m)
, (3.20)

SF =

√
N–1∑
m=1

(X(m, n) – X(m, n – 1))2

N – 1
, (3.21)

SR = K, (3.22)

where
K∑

m=0

X(m) = 0.95
fmax∑
m=0

X(m),

where fmax is the maximum frequency at bin m.
Shape features [100] is a four dimensional feature vector characterizing the shape of the

distribution. It consists of spectral centroid, spectral standard deviations, spectral skewness
and kurtosis. Spectral Skewness (SS) measures the symmetry of the distribution of the
spectral magnitude around the mean. Spectral Kurtosis (SK) measures the similarity of the
distribution of the spectral magnitude to that of a Gaussian distribution. SS and SK can be
computed as

SS =
1
S

N–1∑
m=0

(
X(m) – µ

σ

)3

, (3.23)

SK =
1
S

N–1∑
m=0

(
X(m) – µ

σ

)4

– 3, (3.24)

where µ =
1
S

N–1∑
m=0

X(m),

σ =

√√√√1
S

N–1∑
m=0

(X(m) – µ)2,

where S is half the size of the window N, µ is the mean across the windows and σ is the
standard deviation across the windows.

A combination of Mel-frequency Cepstral Coefficients (MFCCs) [104] and Chroma
features [105] have demonstrated state-of-the-art performance for music classification
tasks [101]. MFCCs are one of the most widely used features for audio classification and
Chroma features are strongly related to the harmonic progression of the audio signal. We
use a combination of 12-bin MFCCs and 12-bin Chroma features for our comparisons.
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Timbral features have shown impressive results for music genre classification [102]. They
contain means and variances of spectral centroid, spectral rolloff, spectral flux, zero
crossing rate, low energy, and first 5 MFCCs. We also use this 19 dimensional feature
vector for our baseline comparison. For our final baseline, we use a combination of
cepstral features containing 13-bin MFCCs, Line Spectral Pair (LSP) and Linear Prediction
Cepstral Coefficients (LPCCs) [103].

3.3 Data Collection and Labelling

To the best of our knowledge, there is no publicly available audio-based terrain clas-
sification dataset till date. Therefore, in order to facilitate this work, we collected an
extensive dataset of vehicle-terrain interactions that we made publicly available. We used
the Pioneer P3-DX platform which has a small footprint and feeble motor noise. We
equipped the P3-DX with rugged wheels that enabled us to collect data both indoors as
well as in unstructured outdoors environments. Interference from nearby sound sources
in the environment can drastically influence the classification. It can even augment the
vehicle-terrain interaction data by adding its own attributes from each environment. In
order to prevent such biases in the training data, we use a shotgun microphone that has a
supercardioid polar pattern which helps in rejecting off-axis ambient sounds. We chose
the Rode VideoMic Pro and mounted it near the right wheel of the robot as shown in
Figure 3.2. The microphone has an integrated shock mount that prevents the pickup of any
unwanted vibrations caused during the traversal. Note that our approach presented in this
chapter is platform independent, as the network learns features from the given training
data.

Thus far, audio-based terrain classification using mobile robots has only been focused
on outdoor terrains that have a large variation in geometric properties and therefore
produce very distinct audio signatures. Recently, audio-based terrain classification has
been demonstrated for both indoor and outdoor terrains using legged robots. However,
legged robots have significantly lesser drive motor noise and they produce very isolated
sounds from their leg-terrain interaction which are substantially easier to detect and classify.
In this chapter, our objective is to classify a wide variety of both indoor and outdoor terrains
using vehicle-terrain interaction signals. Therefore, we collected over 15 h of audio data
from a total of 9 different indoor and outdoor terrains. We particularly choose our terrain
categories such that some of them have similar visual features (Figures 3.7 (a), (h), and (i))
and hence pose a big challenge for classification using vision-based approaches.

We collected the data in several different locations to have enough variability in the
terrains and to enable our model to generalize effectively to a wide range of environments.
Therefore, even the audio signals in the same terrain category have varying spectral and
temporal characteristics. Furthermore, we varied the speed of the robot from 0.1 m s–1 to
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(a) Asphalt (b) Mow. Grass (c) Grass MH

(d) Paving (e) Cobble (f) Offroad

(g) Wood (h) Linoleum (i) Carpet

Figure 3.7: Examples of terrain categories from our dataset showing the visual image of the terrain
with the corresponding spectrogram for a 2 s clip. Grass MH refers to Grass Medium-High.

1.0 m s–1 during the data collection runs. We recorded the data in the lossless 16-bit WAV
format at 44.1 kHz to avoid any recording artifacts. There was no software level boost
added during the recordings as we identified that it amplifies the ambient noise substantially,
instead we used a 20 dB hardware level boost. We manually labeled the data using the
live tags and timestamps made during the recordings. A waveform analyzer tool was then
used to crop out significant noise disturbances that had substantially higher amplitudes
than the vehicle-terrain interaction signals. By noisy disturbances, we refer to uncommon
temporary environmental disturbances such as a nearby car or train passing. Finally, we
split the dataset into train and test sets, ensuring that each terrain class approximately has
the same number of samples to prevent any bias towards a specific class. We also ensured
that the training and testing sets do not contain clips from the same location. We made the
dataset publicly available at http://deepterrain.cs.uni-freiburg.de.

3.4 Experimental Evaluation

In this section, we first describe the training protocol that we employ in Section 3.4.1
and extensive results using our proposed TerrainNet and TerrainNet++ architectures in

https://drive.google.com/open?id=13cgOgx0AItelUF4kzP5QQhMtEiSx-jRs
https://drive.google.com/open?id=1n6LmdSNIImx8sLBPS-m88WsrUVJlMIfq
https://drive.google.com/open?id=1ftM6VZyD5TOmWkEUBXguc0lR1YxVVv7u
https://drive.google.com/open?id=1rVZ1rCgg_zmu5IMA8qWOhYg_vC2aGsd0
https://drive.google.com/open?id=1t3CcY6woTC8jSMYDPpg7A3PCq_4xWMR-
https://drive.google.com/open?id=1mF2oDR92w4KAi5OawcUqz1DSMJQFUdAS
https://drive.google.com/open?id=11It4GanXPPrDEYxQ3tz9jRbbLJl63zP4
https://drive.google.com/open?id=1lnRCgb9x4GQLHVUAdyot64i4iLFFs_Fi
https://drive.google.com/open?id=1e5a0dB6WlFaTvRnoYM01ifZZNfyxL1xs
http://deepterrain.cs.uni-freiburg.de
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comparison to approaches that employ state-of-the-art audio features in Section 3.4.2. We
also present comprehensive ablation studies on the various architectural configurations and
parameter choices in Section 3.4.3, followed by detailed class-wise analysis in Section 3.4.4
and performance analysis in the presence of substantial amount of ambient noise in
Section 3.4.5. In Section 3.4.6, we then present experiments that demonstrate the efficacy
of our noise-aware training scheme in improving the robustness of our models in adverse
ambient noise conditions. Finally, in Section 3.4.7, we present experiments using a low-cost
mobile phone microphone that demonstrates the hardware independence of our approach.
Note that we do not retrain the network on data using the inexpensive microphone, we
only test our previously trained model.

We use the Caffe [106] deep learning library for all the experiments presented in
this chapter and the LSTM described in [107]. We employ a more efficient LSTM
implementation that is faster than the default Caffe LSTM [95] by computing gradient
with respect to recurrent weights with a single matrix computation. All our models were
trained end-to-end and the experiments were run on a system with an Intel Xeon E5,
2.4GHz and an NVIDIA TITAN X GPU with cuDNN acceleration. We primarily report
the classification accuracy metric to quantify the performance of our models but we also
report the precision, recall, confusion matrices, classification error and the inference time
for in the detailed comparisons. The results from our experiments are described in the
following sections.

3.4.1 Training Protocol

As the input to our network is the spectrogram of the audio clip, we performed experiments
training our network with spectrograms of audio clips of varying lengths from 200 ms
to 2000 ms and identified the shortest clip length that yields a good trade-off between
performance and computation time. Results from this experiment is shown in the ablation
study presented in Section 3.4.3.2. We initialize the convolution and inner-product layers
with Xavier weight initialization [108]. The Xavier weight filler initializes weights by
drawing from a zero mean uniform distribution from [–a, a] and the variance as a function
of the number of input neurons, where a =

√
3 / nin and nin is the number of input neurons.

This enables us to move away from the traditional layer by layer generative pre-training.
Furthermore, we use a dropout probability of 0.5 on the inner-product layers in order to
regularize the network.

We found the network to be extremely sensitive to the hyperparameters employed,
especially the hyperparameters in the recurrent TerrainNet++ architecture. Therefore, we
use the Spearmint Bayesian optimization library [109] to tune the hyperparameters. We first
optimized the learning policy and the initial learning rate over fixed, inverse, step and poly
learning rate policies. We obtained the best performance using an initial learning rate of
λ0 = 0.01 and the poly learning rate policy which can be defined as λn = λ0× (1 – N/Nmax)c,
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Table 3.1: Comparison of the classification accuracy of TerrainNet and TerrainNet++ against
several state-of-the-art audio features extracted from our dataset. Results are reported for an audio
clip of length 300 ms in terms of the mean across all the classes and its standard deviation.

Features SVM Linear SVM RBF k-NN
(%) (%) (%)

Ginna [99] 44.87± 0.70 37.51± 0.74 57.26± 0.60
Spectral [76] 84.48± 0.36 78.65± 0.45 76.02± 0.43
Ginna & Shape [99, 100] 85.50± 0.34 80.37± 0.55 78.17± 0.37
MFCC & Chroma [101] 88.95± 0.21 88.55± 0.20 88.43± 0.15
Trimbral [102] 89.07± 0.12 86.74± 0.25 84.82± 0.54
Cepstral [103] 89.93± 0.21 78.93± 0.62 88.63± 0.06

TerrainNet (Ours) 97.52± 0.016
TerrainNet++ (Ours) 98.76± 0.009

where N is the iteration number, Nmax is the maximum number of iterations and c is power.
We further tuned the number of outputs in the inner-product layers and the LSTM layer
as they were both highly correlated and they had a big impact on the performance of
the model. This parameter tuning is further discussed in the ablation study presented in
Section 3.4.3. We train the entire model end-to-end using minibatch Stochastic Gradient
Decent (SGD) with a batch size of 256. We optimize SGD by smoothing the gradient
computation for minibatchs using a momentum coefficient α as 0 < α < 1. We train the
models for a maximum of 350,000 iterations (∼ 135 epochs), which took about 4 days on
a system with a single NVIDIA TITAN X GPU.

3.4.2 Comparison with the State-of-the-Art

In this section, we empirically evaluate our proposed TerrainNet architecture and our
recurrent TerrainNet++ architecture in comparison to several state-of-the-art audio features
described in Section 3.2.5. For all the state-of-the-art comparison experiments, we use a
fixed audio clip length of 300 ms. As a preprocessing step for the baseline features, we
normalize the data to have zero mean. We compare against Support Vector Machines
(SVM) and k-Nearest Neighbor (kNN) classifiers, which have previously achieved the
best performance for audio-based terrain classification [76]. SVMs perform well in high
dimensional spaces and kNNs perform well when there are irregular decision boundaries.
We use the one-vs-all voting scheme with SVMs to handle multiple classes and experiment
with both Linear and Radial Basis Function (RBF) as decision functions. We use the inverse
distance weighting for kNNs and we optimize the hyperparameters for both classifiers by
performing a grid-search using leave-one-out-cross-validation. We use scikit-learn [110]
and LibSVM [111] for the implementation of the baseline classifiers.
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Table 3.1 shows the results from this comparison. The best performing baseline feature
combination was Cepstral features using a linear SVM kernel which achieves an accuracy
of 89.93%. While, Trimbral features using a linear SVM kernel achieves a comparable
performance. Libby et al. [76] used Ginna and Shape features using an SVM RBF
kernel which was the previous state-of-the-art for audio-based terrain classification. This
approach achieves an accuracy of 80.37% on our dataset, which is 9.56% lesser than the
best performing baseline. The lowest performance was obtained using only Ginna features
with an SVM RBF kernel. Moreover, it can be observed that the feature sets containing
MFCCs (MFCC & Chroma, Trimbral, and Cepstral) outperform other feature combinations
by a substantial margin, thereby validating their utility for audio classification tasks.

Our proposed TerrainNet architecture achieves an accuracy of 97.52%, which is an
improvement of 7.59% over the best performing Cepstral features and 12.02% over the
previous state-of-the-art which uses Ginna and Shape features. Our recurrent TerrainNet++
architecture achieves an improved accuracy of 98.76% with a temporal window length of
three, thereby setting the new state-of-the-art on this dataset. This demonstrates that the
recurrent TerrainNet++ architecture is able to exploit the complex temporal relationships
in the vehicle-terrain interaction signal and further improve the performance. Moreover,
our TerrainNet model performs inference in 9.15 ms and our recurrent TerrainNet++ model
performs inference in 12.37 ms for a audio clip length of 300 ms, whereas, the previous
state-of-the-art approaches presented in Table 3.1 have feature extraction and classification
times in the order of a few seconds. Note that noise-aware training and parameter tuning
discussed in the following sections further improves upon the classification performance
of our models reported in this section.

Furthermore, in order to compare the per-class classification performance of TerrainNet
and TerrainNet++, we show the comparison of error rates of both these models in Figure 3.8.
It can be seen that the TerrainNet++ model substantially decreases the classification error
of most terrains. Paving and Offroad classes have the largest decrease in error, followed by
Linoleum and Wood which have the highest false positives in the predictions of TerrainNet
as seen on the confusion matrix shown in Figure 3.11. This is due to the fact that these
terrains have very similar spectral responses when we consider short clip lengths. However,
as our TerrainNet++ architecture learns features over a window of frames, it is able to better
exploit the temporal dynamics of the signal. The improvement in performance achieved by
TerrainNet++ for these classes demonstrates that even this complex relationship between
these terrains can be learned by our temporally recurrent model.

3.4.3 Ablation Study

In this section, we describe the various experiments that we performed to gain insight
on the learning of temporal relationships from the vehicle-terrain interaction signal using
different DCNN architecture configurations. We first describe each of the architectures
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Figure 3.8: Comparison of the per-class classification error rate of TerrainNet and TerrainNet++
for an audio clip of length 300 ms. The recurrent TerrainNet++ model achieves a 1.24% decrease
in the error rate compared to the TerrainNet model.

and then present an in-depth analysis on their performance. We also study the effect of
different parameter configurations for our architecture and identify the critical parameters
that yield the best performance.

3.4.3.1 Architectural Analysis

We compare the performance of the following DCNN architectural configurations:

1. M1 (DCNN): Network topology similar to the TerrainNet architecture shown in
Figure 3.4 with alternating convolution and max-pooling layers and without the GSP
module. Conv9 is followed by two inner-product layers and a softmax layer.

2. M2 (DCNN with GSP): Network topology similar to the M1 architecture, but it
includes the GSP module after Conv9, which is followed by two inner-product layers
and a softmax layer. This model is the TerrainNet architecture shown in Figure 3.4.

3. M3 (DCNN with LSTM): Network topology similar to the TerrainNet++ architecture
shown in Figure 3.5 with alternating convolution and pooling layers and without the
GSP module. Conv9 is followed by two inner-product layers, an LSTM unit, another
inner-product layer to yield the number of classes and a softmax layer.

4. M4 (DCNN with GSP & LSTM): Network topology similar to the M3 architecture,
but it includes the GSP module after Conv9, which is followed by two inner-product
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Table 3.2: Performance comparison of various architecture configurations using an audio clip
length of 300 ms. Our temporally recurrent DCNN architecture with our proposed GSP and LSTM
(M4), achieves a 7.47% improvement in accuracy over the architecture without any temporal
learning component.

Model Acc.
(%)

Prec.
(%)

Rec.
(%)

M1 (DCNN) 91.29 91.88 91.56
M2 (DCNN + GSP) 97.52 97.56 97.61
M3 (DCNN + LSTM) 95.73 95.93 95.88
M4 (DCNN + GSP & LSTM) 98.76 98.75 98.82

layers, an LSTM unit, another inner-product layer to yield the number of classes and
a softmax layer. This model is the TerrainNet++ architecture shown in Figure 3.5.

For the experiments described in this section, we use an audio clip of length 300 ms
and for the LSTM models, we use a window size of three. Results from the comparison
of the aforementioned architectural configurations is shown in Table 3.2. The M1 model
which does not include any temporal representational learning component achieves an
average accuracy 91.29%, which outperforms the previous state-of-the-art. This shows the
ability of our proposed DCNN architecture to learn features that are more discriminative
than classical audio features. The M2 model (TerrainNet) which includes our proposed
GSP module that aggregates the statistics of temporal features, achieves an improvement
of 6.23% over the M1 model demonstrating the utility of the GSP for temporal feature
learning tasks. Interestingly, the M3 model which incorporates an LSTM unit and does
not include the GSP module, achieves a lower accuracy than the M2 model. This can be
attributed to the fact that the LSTM model does not benefit substantially from learning
using a large audio clip length and a short temporal window. In the following section, we
investigate the influence of the audio clip length and the temporal window length on the
classification performance. Finally, our M4 model (TerrainNet++) which includes both
our proposed GSP module that aggregates the statistics of pooled features across time and
the LSTM unit that learns the temporal dynamics across several clips, outperforms all the
other models by achieving an accuracy of 98.76%, which is a 7.47% improvement over the
performance of the M1 model. Similar improvement can also be seen in the precision and
recall values of the models. This illustrates that our proposed GSP module is critical for
learning effective temporal relations from the vehicle-terrain interaction signals.

Figure 3.9 shows the per-class recall of the various TerrainNet architecture configurations
discussed above. The DCNN model without the temporal feature learning components
(M1) perform substantially worse than the other configurations for almost all the classes.
While, the performance of the DCNN with GSP and LSTM model (M4) surpasses all
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Figure 3.9: Comparison of the per-class recall of the various architecture configurations. Our
temporally recurrent TerrainNet++ (M4) which includes the GSP and an LSTM unit substantially
outperform the other model configurations in most of the terrain categories.

the other models for most terrain classes by a large margin demonstrating that learning
temporal features is a necessary step for accurate audio-based terrain classification. All the
models have near perfect recall for the Carpet class which is primarily due to the flatness of
the spectral responses of the carpet terrain compared to the other terrain classes which can
also be seen in the spectrograms of the terrains shown in Figure 3.7. The LSTM models
(M3 and M4) perform better for flatter terrains such as Wood, Carpet and Paving, while the
GSP (M2 and M4) models perform better when the terrains are more irregular. Therefore
combining both the GSP and LSTM in the M4 model enables us to learn temporal relations
that generalize to a wide range of coarse and flat terrains.

3.4.3.2 Influence of Audio Clip length and LSTM window size

The audio clip length is one of the most critical parameters in our TerrainNet and Ter-
rainNet++ architectures as it influences both the accuracy and the inference time. The
biggest trade-off is with selecting an optimal clip length. As each clip is a new sample for
classification, the shorter the clip length, the faster is the inference time and the higher
is the rate at which we can infer the terrain. However, a larger clip length yields a better
accuracy, but it correspondingly increases the inference time and decreases the rate at
which we can infer the terrain, which is undesirable. For real-world robotic systems, fast
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Table 3.3: Classification accuracy of our TerrainNet++ model for varying audio clip lengths and
LSTM window lengths. Accuracy is shown is in percent.

Clip Length Window Length

2 3 4 5 6

300 ms 97.43 98.76 80.09 98.70 98.62
250 ms 96.74 97.38 98.93 79.96 98.67
200 ms 96.69 96.22 97.86 99.03 79.58

Table 3.4: Performance comparison of the TerrainNet model and the TerrainNet++ model at varying
audio clip lengths. We use an LSTM window length of three in the TerrainNet++ architecture. The
corresponding inference time consumed is also shown.

Clip Length TerrainNet TerrainNet++

Accuracy (%) Time (ms) Accuracy (%) Time (ms)

2000 ms 99.86 45.40 99.88 23.27
1500 ms 99.82 34.10 99.83 21.16
1000 ms 99.76 21.40 99.78 16.43
500 ms 99.41 13.30 99.45 13.75
300 ms 97.36 9.15 98.76 12.37
250 ms 94.05 9.15 98.93 12.36
200 ms 91.30 9.14 99.03 12.23

classification rates are essential for making quick trafficability decisions. Moreover, the
TerrainNet++ architecture also has an LSTM window length that needs to be optimized
as it dictates the temporal length to be considered for classification. However, using an
LSTM to learn temporal relationships allows us to use a shorter audio clip length. In this
section, we investigate the relationship between these parameters by individually training
models with various audio clip lengths and LSTM window lengths.

The results shown in Table 3.3 demonstrate that for a certain clip length, the classification
accuracy of the model does not increase by just considering a larger LSTM window length.
In fact, we found the models to be increasingly difficult to train for large LSTM window
lengths. For a 300 ms audio clip, we obtained the best performance using an LSTM window
length of three, above which the accuracy dropped significantly for a window length of four
and then saturates for higher window lengths. We also experimented with smaller audio
clip lengths of 250 ms and 200 ms, for which we observe the same pattern of obtaining the
best performance for a certain LSTM window length, followed by a significant drop for
larger window length and then the performance saturates for increasingly larger window
lengths. Furthermore, we also trained models with lower audio clip lengths and with
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Figure 3.10: Inference time comparison of the TerrainNet model and the TerrainNet++ model for
varying audio clip lengths. Our TerrainNet++ model has a comparatively faster inference time even
for very long clip lengths.

higher LSTM window lengths, but they performed worse than the results reported in
Table 3.3. The overall best performance among the models trained with various LSTM
window lengths and audio clip lengths was obtained using a clip length of 200 ms and with
a window size of five. This model achieves a classification accuracy of 99.03%, which is
an improvement of 9.1% over the previous state-of-the-art models that employ classical
audio features.

We further compared the performance of our TerrainNet model and our TerrainNet++
model for a wide range of audio clip lengths as shown in Table 3.4. It can be seen that
our recurrent TerrainNet++ model outperforms our TerrainNet model for all audio clip
lengths between 200 ms and 2000 ms. Furthermore, the TerrainNet++ model also has a
faster inference time for most of the clip lengths. The speed-up is achieved by computing
gradients with respect to recurrent weights in a single matrix computation. It can be seen
that using audio clip lengths spanning longer than 500 ms yields an accuracy over 99%.
However, it is impractical to use such a large clip length as the robot would not be able to
continuously navigate at a reasonable speed while sensing the terrain. We observe that the
best trade-off is achieved by the TerrainNet++ model with a clip length of 200 ms where it
achieves a classification rate of over 81 Hz and an accuracy of 99.03%. This demonstrates
the effectiveness of efficiently learning temporal relationships using our proposed GSP
and LSTM units in our TerrainNet++ architecture.

Figure 3.10 shows a plot of the classification rates of both the TerrainNet and Ter-
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rainNet++ models at varying audio clip lengths from 200 ms to 2000 ms. Although the
TerrainNet model has a faster inference time for a clip length of 200 ms, it achieves an
accuracy which is 7.73% lower than that of the TerrainNet++ model. Considering the trade-
off between the audio clip length which influences the inference time and the classification
accuracy, we choose the TerrainNet++ model which takes a 200 ms audio clip as input for
the in-depth performance evaluation experiments described in the following sections.

3.4.4 Performance Evaluation

In order to further investigate the performance of our TerrainNet and TerrainNet++ ar-
chitectures, we present the confusion matrix in Figure 3.11, which gives us insights on
the misclassifications between the terrain classes. Figure 3.11 (a) shows the confusion
matrix of the TerrainNet model in which we can see that the best performing classes were
Carpet and Asphalt, while the most misclassified classes were Offroad and Paving. The
Offroad and Paving classes have similar spectral responses when the audio clip length is
smaller than 500 ms. Wood and Linoleum also have a fair amount of misclassifications as
both these terrains are almost flat and have similar spectral responses when the robot is
navigating at low speeds.

Figure 3.11 (b) shows the confusion matrix of our best performing recurrent Terrain-
Net++ model for a clip length of 200 ms and an LSTM window length of five. We can
see that there is a substantial reduction in the number of false positives compared to our
TerrainNet model. Paving and Offroad classes have a reduction of about 3.15% in the
number of false predictions. While Wood and Linoleum have a reduction of 1.66% in the
number of false predictions. Another notable reduction of 0.88% can be observed in the
misclassification between Offroad and Grass Medium-High. The best performing classes
were Carpet and Linoleum. In fact, the Carpet class demonstrated no false positives.
Moreover, most of the classes demonstrate an accuracy of over 99%. The TerrainNet++
model outperforms TerrainNet by 1.51% in accuracy and with a shorter audio clip as input,
thereby increasing the classification rate.

Furthermore, we also compare the per-class recall of the TerrainNet and TerrainNet++
models in Figure 3.12 as it gives us insights on the ratio of the correctly classified instances.
For the TerrainNet model, the lowest recall was obtained for Offroad, Wood and Paving
terrains, whereas the highest recall was obtained for the Carpet terrain. A substantial
improvement in the recall of these terrains can be observed in the recall plot of the recurrent
TerrainNet++ model shown in Figure 3.12 (b). The overall recall achieved by TerrainNet
was 97.61%, while the TerrainNet++ model demonstrates an improvement of 1.44% and
achieves an overall recall of 99.05%.
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(a) Confusion matrix of our TerrainNet model for a clip length of 300 ms
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(b) Confusion matrix of our recurrent TerrainNet++ model for an audio
clip length of 200 ms and a LSTM window length of five.

Figure 3.11: Comparison of the best performing TerrainNet model with our recurrent TerrainNet++
model. Paving and Offroad terrain classes have a substantially lesser number of false positives in
the predictions of the TerrainNet++ model. Furthermore, the Carpet class demonstrates no false
positives in the predictions of the TerrainNet++ model.
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(a) Per-class recall of our TerrainNet model for an
audio clip length of 300 ms
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Figure 3.12: Comparison of the per-class recall of our TerrainNet model with our recurrent
TerrainNet++ model. The TerrainNet++ model achieves an improvement of 1.44% in the overall
recall compared to the TerrainNet model.

3.4.5 Evaluation of Noise Tolerance

In this section, we investigate the noise tolerance of our TerrainNet++ model by adding
ambient noise only to the test set and evaluating its performance on the model trained
on clean noise-free signals. For the experiments described in this section, we use the
vehicle-terrain interaction sounds corrupted with ambient noises from the DEMAND noise
database which is categorized into seven classes and at varying SNRs as described in
Section 3.2.4. We first only added noise to our test set using the technique described
in [112] and evaluated the performance of the TerrainNet++ model trained on clean noise-
free signals to obtain an estimate of the noise tolerance before performing the noise-aware
training. Results from this experiment shown in Table 3.5 demonstrate that the performance
drastically decreases with decreasing SNRs. Moreover, different ambient noises affect the
performance of the model at varying degrees. Overall, ambient noises from the Domestic,
Street and White categories are the most damaging.

Figure 3.13 shows the accuracy of our model for the various ambient noises at decreasing
SNRs. It can be seen that for all the ambient noise categories the models are fairly robust
for SNRs until 20 dB, thereafter the performance drops rapidly for noises from categories
such as Domestic, Street, as well as white noise. This can be attributed to the broadband of
these noises which corrupts vehicle-terrain interaction signals in most frequencies, while
the other categories of ambient noises are present only at certain isolated frequencies.
Hence, vehicle-terrain interaction signals consisting of high frequency components are
relatively robust to ambient noises from the Nature category due to their presence mostly
only in the low frequencies of the spectrum.
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Table 3.5: Influence of various ambient noises on the classification accuracy of our TerrainNet++
model. Noise samples were extracted from the DEMAND noise database. Ambient noises in
the White, Domestic and Street categories are the most damaging, while the noises in the Nature
category are the least damaging. Results are shown in terms of the average accuracy of the model
in percent.

Noise SNR (dB)

Clean 30 20 10 0 -10 mean

White 99.03 99.00 93.42 69.66 20.85 9.16 58.42
Domestic 99.03 98.63 82.84 55.24 25.38 9.16 54.25
Nature 99.03 99.03 99.02 98.99 98.63 90.27 97.19
Office 99.03 99.03 99.02 98.65 77.40 22.23 79.27
Public 99.03 99.02 99.01 98.17 73.01 12.99 76.44
Street 99.03 98.93 95.23 71.10 36.19 9.68 62.22
Transportation 99.03 99.03 98.99 97.48 57.02 28.65 76.23

mean 99.03 98.95 95.36 84.18 60.87 26.02
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Figure 3.13: Performance evaluation of our TerrainNet++ model when subject to different ambient
noises from the DEMAND noise database at varying SNRs. Our model demonstrates substantial
robustness against ambient noises with SNRs of upto 20 dB and the performance quickly decreases
for noises with SNRs lower than 20 dB.
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Figure 3.14: Per-class precision of our TerrainNet++ model when subject to various ambient noises
from the DEMAND noise database at different SNRs mentioned in the legend. Terrains are still
recognizable for ambient noises in the Nature category, even for SNRs lower than 0 dB.
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Figure 3.15: Per-class precision of our TerrainNet++ model when subject to different levels of
white Gaussian noise. The levels mentioned in the legend are SNRs. White Gaussian noise is only
damaging at very low SNRs.

Ambient noises in the Domestic category have the most damaging effect, where the
mean accuracy at SNRs from 30 dB to –10 dB was 61.71%. From the results shown in
Figure 3.13, we can see that the performance of the model drops linearly for decreasing
SNRs for noises from the Domestic category. The second most damaging noises were from
the Street category for which our model achieved a mean accuracy of 68.36%. Nevertheless,
we observe remarkable robustness to ambient noises from the Nature category for which
our model yields an average accuracy of 97.49% and even for extremely low SNRs.
This is primarily due to the fact that the noises in the Nature category have very distinct
spectral patterns that have prominent structures throughout the signal unlike vehicle-terrain
interaction signals. Therefore, the model is inherently robust to these corruption patterns.

Often, it is also of interest to know how each of these ambient noises influence the
classification of a specific terrain. Therefore, we computed the per-class precision of the
TerrainNet++ model for each of the ambient noise categories. Results from this experiment
is shown in Figure 3.14 for ambient noises from the DEMAND noise database and in
Figure 3.15 for white noise. The Carpet terrain is recognizable for all the ambient noises
and at all SNRs. While, the Paving terrain is the most affected by noise corruption,
followed by Offroad and Asphalt terrains. Interestingly, classification of indoor terrains
such as Linoleum, Wood and Carpet are less affected by indoor noises than outdoor terrains.
However, the converse does not appear to be true, where the outdoor terrains are less
affected by outdoor noises. This is due to the fact that, generally, outdoor ambient noises
have continuous noise corruption patterns that span long periods, whereas, indoor ambient
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Table 3.6: Influence of various ambient noises on the classification accuracy of our noise-aware
TerrainNet++ model. There is a substantial increase in the robustness of the model to ambient
noises from all the categories in the DEMAND noise database. Results are shown in terms of the
average accuracy of the model in percent.

Noise SNR (dB)

Clean 30 20 10 0 -10 mean

White 99.72 99.68 98.77 97.63 97.11 96.38 97.91
Domestic 99.72 99.66 98.69 97.87 97.04 96.97 98.05
Nature 99.72 99.71 99.69 99.51 99.08 97.28 99.05
Office 99.72 99.72 99.65 98.70 98.61 96.00 98.53
Public 99.72 99.70 99.67 98.71 98.49 97.63 98.84
Street 99.72 99.68 98.73 97.90 97.81 96.36 98.10
Transportation 99.72 99.69 98.77 98.62 97.65 97.47 98.44

mean 99.72 99.69 99.13 98.42 97.97 96.87

noises are usually short impulses.
Moreover, a curious phenomenon can be observed in the prediction of certain terrain

classes when they are corrupted with ambient noises from categories such as Office, Public,
Street and Transportation. In these cases, the model demonstrates a sudden increase in
precision for samples that are noised at an SNR of –10 dB in comparison to samples that
are noised at higher SNRs. We hypothesize that this is caused by the spectral responses
of these noises that blur the inherently noisy lower frequency components of the vehicle-
terrain interaction signals, which enhances the ability of the network to classify these
terrains by focusing on the more distinct higher frequency responses.

On the contrary, white noise severely affects the classification ability when the vehicle-
terrain interaction signals are corrupted with SNRs below 0 dB. Terrain classes such as
Mowed-grass, Asphalt, Cobble and Wood are robust to noise corruption upto a SNR of
0 dB. Whereas, classes such as Linoleum, Offroad, Grass Medium-High and Carpet have
an exponential increase in classification error for decreasing SNRs. Furthermore, Paving
and Offroad terrains are not recognizable for SNRs greater than 10 dB. These experiments
demonstrate the critical need for noise robustness in order for these models to be effectively
utilizable in high ambient noise environments.

3.4.6 Evaluation of Noise-Aware Training

In order to make our model robust to the presence of ambient noises in the environment,
we employ our proposed noise-aware training scheme described in Section 3.2.4. We
use transfer learning to first initialize the network with weights and biases from the
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Figure 3.16: Comparison of the classification error rates of our base TerrainNet++ model and our
noise-aware TerrainNet++ model for each of the ambient noise categories in the DEMAND noise
database. Our noise-aware TerrainNet++ model achieves substantially lower error rates compared
to our base TerrainNet++ model.
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Figure 3.17: Comparison of classification error of our base TerrainNet++ model and our noise-
aware TerrainNet++ for white Gaussian noise at varying SNRs. Our noise-aware model shows a
significant decrease in the classification error compared to the model trained only on pure signals.

model trained on pure vehicle-terrain interaction signals. We then perform noise-aware
training by injecting ambient noises from the DEMAND noise database at varying SNRs.
We use a learning rate 1/10th of the initial leaning rate used for training the network.
This noise injection enables the network to learn to distinguish between probable noise
corruption patterns that may occur in real-world environments and the relevant vehicle-
terrain interaction signals. We evaluate the models trained with our noise-aware scheme
on the same noise corrupted test set used for the noise tolerance evaluation experiments
presented in Section 3.4.5.

Table 3.6 shows the results from this experiment. It can be observed that there is a
substantial increase in the overall classification accuracy for SNRs lower than 10 dB. Even
for extremely low SNRs, our model demonstrates state-of-the-art performance. Strikingly,
for a SNR of –10 dB, our noise-aware model achieves an improvement of 70.85% in the
classification accuracy. Moreover, the noise-aware model shows an improved performance
even for clean signals without any noise corruption. This verifies our hypothesis that
noise-aware training can also act as a regularization for the network and improve its
generalization capability.

Furthermore, in Figures 3.16 and 3.17, we compare the classification error rates of the
model trained on pure signals and the noise-aware model for each of the noise categories
in the DEMAND noise database and for white Gaussian noise. The plots further illustrate
that there is a significant decrease in the classification error after the noise-aware training.
Our base model trained on pure signals shows increasing classification error for decreasing
SNRs, while our noise-aware model consistently demonstrates substantial robustness in
each of the ambient noise categories. This demonstrates that our noise-aware training
scheme enables the network to learn a general distribution of noise corruption signals for a
wide range of SNRs as well as for different types of ambient noises, thereby making it a
critically necessary step for robust terrain classification in noisy environments.



3.4. Experimental Evaluation 67

Figure 3.18: Map showing one of the trajectories that the robot followed during the classification
experiments using a mobile phone microphone mounted on the robot. The variation in the robots
speed along the path is shown as a heatmap on the trajectory. Thicker red lines indicate slower
speed.

3.4.7 Evaluation of Hardware Independence

One of the biggest challenges for classification systems is to generalize to different hard-
ware setups. The dataset that we introduced in this work is the only publicly available
audio-based terrain classification dataset till date. Therefore, models trained on our dataset
should generalize to different hardware setups in order to be easily employable in different
robots. DCNN have the ability to learn highly discriminative deep features that general-
ize effectively to different environments as well as data acquisition setups. In order to
evaluate the hardware independence of our models, we collected a supplementary dataset
using a mobile phone microphone mounted on the robot. Moreover, in order to further
evaluate the boundaries to which the model can generalize, we collected this dataset in a
different region than where our main dataset was gathered. Note that we do not train our
architecture on this mobile phone microphone dataset, we only test our noise-aware model
that was trained on the main shotgun microphone dataset. Each sample in this dataset
was tagged with a GPS location to visualize the trajectory of the robot in georeferenced
maps and to visually correlate terrain. This dataset contains of over 2.5 h of vehicle-terrain
interaction sounds. Unlike the shotgun microphone that we used for collecting our main
dataset, mobile phones are equipped with a condenser microphone that collects sound from
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Figure 3.19: Terrain predictions made by our model while the robot was traversing the path shown
in Figure 3.18. The model effectively generalizes to new environments and demonstrates substantial
robustness.

every direction, including a considerable amount of ambient noise. The main purpose of
evaluating on this dataset is threefold:

1. to quantify the performance of the model using a new hardware setup;
2. to verify the adaptability of the noise-aware model to a new environment; and
3. to quantify the performance in the presence of substantial amount of real-world

ambient noise.

Figure 3.18 shows an example trajectory that the robot traversed during a part of this
data collection run. The figure shows the variation in speed 0 - 2 m s–1 along the path as a
heatmap on the trajectory, where thicker red lines indicate slower speed. Our noise-aware
TerrainNet++ model achieves an accuracy of 98.68% on the mobile phone microphone
dataset. In addition, the plot presented in Figure 3.19 shows the true positives and the false
positives along the path traversed by the robot shown in Figure 3.18. Interestingly, most
of the false positives occur when the robot is traversing on Paving and when the speed of
the robot is above 1 m s–1. This can be attributed to the fact that the height of the Paving
was often irregular in this case and when coupled with the higher speed caused it to be
misclassified as the Offroad terrain.

In order to further investigate the performance on the mobile phone dataset, we present
the confusion matrices of TerrainNet and TerrainNet++ models in Figure 3.20. Paving,
Wood and Linoleum terrains demonstrate the highest misclasifications using the Terrain-
Net++ model. Nevertheless, compared to the TerrainNet model, it achieves a reduction
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(a) Confusion matrix of our noise-aware TerrainNet model for a clip
length of 300 ms
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(b) Confusion matrix of our noise-aware TerrainNet++ model for a clip
length of 200 ms and a LSTM window length of five.

Figure 3.20: Performance comparison on the audio data collected using a mobile phone microphone.
There is a significant decrease in misclassifications between the Paving and Ofroad terrains, as well
as Cobble and Grass Medium-High terrains.
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of 3% in the misclassifications between the Paving and Offroad terrains, as well as a
similar reduction of misclassifications between the Cobble and Offroad terrains. These
experiments demonstrate that our models trained using our noise-aware training scheme
not only generalize effectively to different environments but also to different hardware
setups used for acquiring the data, thereby making our model effectively employable for
robust audio-based terrain classification in different real-world environments.

3.5 Related Work

In this chapter, we addressed the problem of audio-based terrain classification using vehicle-
terrain interaction sounds. Terrain classification is a critical and essential component of a
robot’s autonomy system that enables safe and efficient navigation on unknown terrains.
Unlike conventional approaches that employ cameras or Lidars for terrain classification,
using vehicle-terrain interaction sounds as a proprioceptive modality enables our system to
be robust to visual appearance changes and allows us to perform classification of terrains
at finer level. The techniques that we presented in this chapter enables a robot to utilize a
low-cost microphone to robustly classify a wide range of indoor and outdoor terrains. To
the best of our knowledge, our contribution is the first successful proprioceptive terrain
classification system to not require any manual feature engineering. In this section, we
discuss prior work in the literature on terrain classification using proprioceptive modalities.

Terrain classification using proprioceptive modalities has not been explored in the same
depth as vision based approaches, yet there is a sizable amount of work in this area. The
most researched proprioceptive terrain classification technique is using accelerometer
data [80, 113, 114]. Classification of terrains is performed by extracting features such
as power spectral density, discrete fourier transform and other statistical measures from
the vibrations induced on the vehicles body. Such approaches demonstrate a substantial
amount of false positives for finer terrain classes such as asphalt and carpet. However,
accuracies as high as 91.8% has been reported for a seven class problem using SVMs [80].
Subsequently, accelerometer data from a mobile sensor network system was used to detect
potholes and other road anomalies [79]. Hand-engineered features were used and the
system achieves an average accuracy of 90% in real-world experiments.

There is a body of work in terrain classification tailored to legged robots. Unlike
in wheeled mobile robots, proprioceptive terrain classification can enable safe foothold
placement which is critical to ensure the stability of such legged systems. In one of the
initial works [115], Hoepflinger et al. extracted features from ground contact forces and
joint motor current measurements to train a multiclass AdaBoost classifier. Although they
did not test the efficacy of their approach on real-world terrains, they demonstrated the
capability of the classifier to identify different coarseness and curvatures of surfaces as a
first step towards real-world proprioceptive terrain classification. In another approach [116],



3.5. Related Work 71

Best et al. demonstrate the ability to classify four different outdoor terrains using position
measurements from leg servos of a hexapod robot. They extract a 600-dimensional feature
vector consisting of gait-phase domain as well as frequency domain features. Their
approach utilizes a 2.7 s window of data and a SVM is trained to classify the terrains.

Vibration data from contact microphones has also been successfully used for terrain
classification. The vibrations captured from contact microphones are similar to accelerom-
eter data than that of air microphones that we use in this work. Contact microphones pick
up only structure-borne sound and minimal environmental noise. Brooks et al. equip the
wheel of an analog rover with a contact microphone to capture the vibrations induced on
the vehicles body and classify the terrain [75]. The approach extracts log-scale power
spectral density features and uses a pairwise classifier. Their approach was evaluated on
three terrain classes and achieves an average accuracy of 74% on a wheel-terrain testbed
and 85.3% in the real-world experiments using a rover. In a subsequent work, they present
a self-supervised classification approach where a visual classifier is trained using labels
provided by a vibration-based terrain classifier [117].

The use of vehicle-terrain interaction sounds for terrain classification has been the
most sparsely explored among all the proprioceptive modalities. In one of the early
works, Durst et al. [118] proposed an approach for classifying terrain surfaces from single
impact sounds that were produced when the surfaces were struck by an aluminum cane.
The approach extracts the most significant spikes in the frequency domain as features
and employs a decision-tree classifier to identify the surface type. In the works that
followed, typically, combinations of state-of-the-art classical audio features are used
with traditional machine learning algorithms. Recently, a multiclass audio-based terrain
classification system [76] for mobile robots was proposed in which several audio features
were incorporated including spectral coefficients, spectral moments and various other
spectral and temporal statistics. The approach employs a SVM-based classifier that
achieves an average accuracy of 78% over three terrain classes and three hazardous
vehicle-terrain interaction classes. Furthermore, they also show that smoothing over larger
temporal window of about 2 s yields an improved accuracy of 92%. Ojeda et al. propose an
approach [113] in which a suite of sensors including microphones, accelerometers, motor
current and voltage sensors, infrared, ultrasonics and encoders were used along with a
feedforward neural network classifier. However, their audio-based classifier only achieves
an average accuracy of 60.3% for five terrain classes. They concluded that the overall
performance was poor and such an approach was promising only for terrains such as grass.

Microphones have also been used for terrain classification with legged robots. Ozkul et
al. [78] propose an approach in which the terrain is classified from the steps taken by
a hexapod robot. They use a feature set that includes zero-crossing rate, frequency
band coefficients and delta-features along with a functional trees classifier. They also
experiment with different noise elimination techniques to remove motor/gear-head noise,
but concluded that the performance was worse after the noise elimination. Their seven class
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terrain classifier achieves an average accuracy of 90%. More recently, Christe et al. [77]
introduced an approach that employs an SVM-based classifier using statistics of spectral
and band features to classify terrains from the sounds produced during the locomotion of
hexapod robot. Their classifier was trained on a dataset that contains 5 min audio clips
from each terrain and uses 1 s windows for classification while operating at 1 Hz. Their
approach achieves an average accuracy of 89.08% for seven terrain classes. They also
investigated the use of spectral subtraction to eliminate the servo noise and report an
improvement of 2.2% in the recall of the classifier.

In all of the previous works, manually handcrafted features were extracted after spe-
cialized preprocessing steps. The approaches were evaluated on comparatively limited
data and only in one environment. Most importantly, these approaches do not model the
temporally discriminative information in proprioceptive data. As we demonstrated in
this chapter, modeling the temporal information substantially improves the classification
performance, increases robustness and reduces false detections. Furthermore, they do not
address the robustness of their models to ambient noise, which is one of the most critical
requirements for real-world deployment. Whereas, in this chapter, we presented two
DCNN architectures that learn to classify terrains from vehicle-terrain interaction sounds
without the need for manually designing the features. Our recurrent DCNN architecture
exploits the complex temporal dynamics in the vehicle-terrain interaction signal and has a
classification rate of 81 Hz. We also introduced a noise-aware training scheme to improve
the robustness of our model to different ambient noises, better regularize the network and
to enable our model to effectively generalize to different real-world environments.

3.6 Conclusions

In this chapter, we presented a robust proprioceptive terrain classification approach that
uses sound from vehicle terrain-interactions to classify a wide range of indoor and outdoor
terrains. We proposed two novel deep convolutional neural network architectures that learn
features from spectrograms of vehicle-terrain interaction signals. Both our architectures
employ one dimensional convolution and pooling layers to learn spectrogram features
across the temporal dimension. Additionally, our networks incorporate our proposed
GSP module that aggregates the statistics of pooled features across time. In order to
further learn the complex temporal dynamics in the vehicle-terrain interaction signal, our
recurrent TerrainNet++ architecture incorporates long short-term memory units that exploit
temporal relationships in the sequence of input audio frames. Furthermore, we introduced
a noise-aware training scheme that injects ambient environmental noise from the diverse
environments multichannel acoustic noise database into the pure vehicle-terrain interaction
signals while training to improve the robustness of the model and to regularize the network.
In order to facilitate this work, we collected an extensive vehicle-terrain interaction dataset
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consisting of over 15 h of audio data using two different hardware setups. Our dataset was
collected on a total of nine different indoor as well as outdoor terrains and we made the
dataset publicly available to foster future progress in proprioceptive terrain classification.

We presented extensive empirical evaluations that demonstrate that both our TerrainNet
and recurrent TerrainNet++ architectures outperform existing approaches that employ
classical audio features and achieve state-of-the-art results for proprioceptive terrain
classification. In depth analysis of our TerrainNet++ architecture shows that exploiting
the temporal dynamics by incorporating both our proposed GSP module and the LSTM
unit substantially improves the classification performance while simultaneously increasing
the classification rate. We presented thorough ablation studies on the influence of various
hyperparameters on the classification performance of our network. Our best performing
TerrainNet++ model achieves an overall accuracy of 99.03% with a classification rate of
81.7 Hz. Additionally, we presented extensive robustness evaluations of our models that
demonstrate high ambient noise tolerance in various real-world environments. Furthermore,
we presented thorough evaluations of our proposed noise-aware training scheme that
enables our model to further improve its performance and achieve an accuracy of 99.72%
while demonstrating exceptional robustness to a variety of ambient noises, even for very
low signal-to-noise ratios. We also presented experiments using an inexpensive low-quality
microphone in an unknown environment and demonstrated the generalization capability
as well as the hardware independence of our approach. To the best of our knowledge, the
approach presented in this chapter is the first proprioceptive terrain classification technique
that does not require manual hand-engineering of features and achieves an accuracy of
over 98% on a wide range of indoor as well as outdoor terrains while being over twice as
fast as real-time.





Chapter 4

Semantic Scene Segmentation

Semantic segmentation is an essential task for autonomous robots,
as accurate understanding of the surroundings is a precursor for
navigation and action planning. Recently, deep learning-based ap-
proaches have achieved unprecedented performance for various se-
mantic segmentation problems, yet they face an immense challenges
in terms of encoding multiscale information, incorporating global
context, accurately capturing object boundaries and in achieving
computational efficiency. In this chapter, we propose two CNN ar-
chitectures that address the aforementioned challenges. Our first
architecture termed AdapNet incorporates our multiscale residual
units with atrous convolutions that effectively enlarges the recep-
tive field of filters to incorporate a larger context. In addition, we
employ modules with parallel atrous convolutions with different di-
lation rates to learn multiscale features without increasing the pa-
rameters. We also propose the AdapNet++ architecture that builds
upon AdapNet and integrates our efficient atrous spatial pyramid
pooling for aggregating multiscale information as well as captur-
ing long range context, complemented with a novel decoder with a
multi-resolution supervision scheme that recovers high-resolution
details. Furthermore, we propose a network-wide holistic pruning
approach invariant to shortcut connections. Extensive experiments
on multiple indoor and outdoor benchmarks demonstrate that our
architectures achieve state-of-the-art performance while being effi-
cient in terms of parameters and inference time.

4.1 Introduction

In the previous chapter, we proposed an approach to robustly classify different indoor
and outdoor terrains in order to enable the robot to adapt its navigation policy so that it
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Figure 4.1: Example segmentation output from our proposed AdapNet++ model overlaid on the
input image. Top row shows images from the Cityscapes dataset in a driving scenario and the
bottom row shows images from the indoor SUN RGB-D dataset. Each color corresponds to a
specific semantic object category in the dataset. The images illustrate the difficulty in segmentation
due to the different scales of objects, substantial clutter and very thin structures that are hard to
capture.

can traverse the terrain most effectively. In addition to being able to identify the different
types of terrains, the robot simultaneously needs to acquire a comprehensive understanding
of its surroundings before it can plan for future actions. Humans have the remarkable
ability to instantaneously recognize and understand a complex visual scene which has
piqued the interest of researches to model this ability since the 1960s [119]. Semantic
segmentation with the goal of assigning semantic class labels to each pixel in an image is
one of the fundamental tasks for modeling the complex relationship of semantic entities
in the environment that pave the way towards complete scene understanding. There are
numerous ever-expanding applications to this capability ranging from robotics [120] and
remote sensing [121] to medical diagnostics [122] and content-based image retrieval [123].
Moreover, it has several applications in robot perception including inferring support
relationships among objects [124], improving object detection [125], discarding regions
that do not contain objects of interest [126], autonomous driving [127] and in combination
with 3D scene geometry [128]. However, there are several challenges imposed by the
multifaceted nature of this problem that makes this task extremely challenging including
the large variation in types and scales of objects, clutter and occlusions in the scene as
well as thin structures that are difficult to capture due to the inherent downsampling in the
network. Example scenarios depicting these challenges are shown in Figure 4.1.

Classical techniques that rely on low-level vision cues [129, 130, 131] have recently
been superseded by deep CNN based methods modeled as a Full Convolutional Network



4.1. Introduction 77

(FCN) [24, 53, 132] that are trained in an end-to-end manner. This success can be attributed
to the ability of CNNs to learn highly discriminative hierarchical deep features. The general
structure of a FCN follows an encoder-decoder design principle, in which the encoder
resembles the topology of a classification network and the decoder semantically projects
the low-resolution discriminative features learned by the encoder onto the high-resolution
pixel space to obtain a dense classification. However, unlike in pure classification networks
where the built-in invariance of CNNs to local image transformations is beneficial, it is
highly undesirable in dense prediction tasks where abstraction of spatial information affects
the performance. Concretely, the following are the major challenges for employing CNNs
for semantic segmentation:

• Decrease in feature resolution caused by pooling and striding.
• Existence of objects at multiple scales.
• Reduced localization accuracy due to invariance.
• Large model size and runtime.

In the rest of this section, we discuss each of the aforementioned challenges and describe
the techniques that we employ to overcome them in our proposed architectures. CNNs
designed for classification tasks that are often employed as the encoder in FCNs have
multiple pooling or convolution layers with striding operations to learn increasingly abstract
feature representations that are invariant to local image transformation. However, this
significantly reduces the spatial resolution of feature maps at the output of the encoder,
which have rich semantic information. Due to this factor, details on the object boundaries
and thin structures are lost and cannot be recovered even using deconvolutional layers
that learn the up-sampling [24]. In order to alleviate this problem, we reduce the number
of downsampling operations in the encoder section of our network and incorporate our
proposed multiscale residual units that introduce atrous convolutions [67] in parallel to the
standard convolutions to extract denser feature maps. This enables our multiscale residual
units to enlarge the receptive field of the filters thereby encoding higher level semantics
without increasing the number of parameters or the computational operations.

The second challenge arises due to the presence of objects in different scales in the
real-world. Over the years, several techniques have been proposed to address this problem
including using multiple rescaled versions of the same image as input to the network [133,
134], using spatial pyramid pooling [135], exploiting features from each downsampling
stage in the encoder-decoder topology [136] and employing multiple encoder branches with
each taking a different resolution of the image as input [137]. Though these approaches
have been reasonably effective, they substantially increase the computational overhead and
memory requirement. Alternatively, as we employ atrous convolutions in our proposed
multiscale residual units, incorporating multiple such units into the architecture with
different dilation rates can enable effective multiscale feature learning throughout the
network. DeepLab [138] proposed a similar module called Atrous Spatial Pyramid Pooling



78 Chapter 4. Semantic Scene Segmentation

(ASPP) that concatenates feature maps from atrous convolutions with different dilation
rates to encode multiscale information. However, input images of large resolutions cannot
be employed in order for it be effective, as it requires correspondingly increasing the
dilation rate which causes atrous convolutions to become more ineffective due to image
boundary effects [132]. Moreover, ASPP consumes 15.53 M parameters and 34.58 B
floating point operations per second (FLOPS) which is prohibitively expensive to employ
in architectures that are used in robotics applications for which computational efficiency
is paramount. In addition, as ASPP uses a large number of high-dimensional and high-
resolution feature maps, it requires an enormous amount of GPU memory while training
which also restricts the incorporation of modules to address the other major challenges. As
a solution to this problem we propose an efficient variant of the ASPP termed eASPP that
employs both parallel and cascaded atrous convolutions in a bottleneck fashion to increase
the resolution of the effective receptive field while significantly reducing the number of
parameters it consumes.

Another challenge lies in the inherent invariance to spatial transformations in CNNs
that limits the spatial localization accuracy of the features. Moreover, atrous convolutions
coarsely sub-sample the features which leads to the loss of important details along object
boundaries. In order to generate high-resolution predictions in the decoder, networks often
utilize skip connections to leverage features from multiple intermediate network stages
that retain spatial information and describe mid-level representations of objects [24, 139].
These features are complementary to the high-level semantic information at the end of
the decoder that lack strong spatial information as well as to low-level features from early
network layers that represent edges and corners but also maintain the spatial information.
In our proposed architectures we employ such skip connections to leverage both low-level
and mid-level features to improve the resolution of the segmentation output to generate
sharp boundaries along the edges of objects. In addition, we also propose a multi-resolution
supervision strategy that introduces weighted auxiliary losses after each upsampling stage
in the decoder to deeply supervise the training and to further help in generating a high-
resolution segmentation output. This also enables faster convergence, in addition to
improving the performance of the model along the object boundaries.

State-of-the-art semantic segmentation architectures such as DeepLab v3 [132] and
PSPnet [135] employ the ResNet-101 [27] architecture which consumes 42.39 M parame-
ters and 113.96 B FLOPS, as the encoder backbone. Training such architectures requires
a large amount of memory and synchronized training across multiple GPUs. Moreover,
they have a slow runtime rendering them impractical for resource constrained applications
such as robotics and augmented reality. With the goal of achieving the right trade-off
between performance and computational complexity, we propose the AdapNet and Adap-
Net++ architectures for semantic segmentation. Our AdapNet architecture employs the
ResNet-50 [27] architecture that consumes 25.61 M parameters for the encoder backbone
and incorporates our proposed multiscale residual units to aggregate multiscale features
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throughout the network without increasing the number of parameters. The proposed units
are more effective in learning multiscale features than the commonly employed multigrid
approach introduced in DeepLab v3 [132]. AdapNet uses deconvolution layers and a
single stage skip refinement to yield a segmentation output with the same resolution as
the input image. In order to further improve the performance, we propose the AdapNet++
architecture that builds upon AdapNet but uses the full pre-activation ResNet-50 [72] archi-
tecture for the encoder backbone in order to reduce overfitting and improve convergence.
In addition, we incorporate our proposed eASPP at the end of the encoder to capture long
range context with a larger effective receptive field, while simultaneously reducing the
number of parameters by 87% in comparison to the originally proposed ASPP. We also
employ a new decoder that integrates low and mid-level features from the encoder using
multiple skip refinement stages and employs a multi-resolution supervision strategy for
high-resolution segmentation. Both our proposed architectures are compact and end-to-end
trainable with a large mini-batch size on a single consumer grade GPU.

Motivated by the recent success of compressing DCNNs by pruning unimportant neu-
rons [140, 141, 142], we explore pruning entire convolutional feature maps of our model
to further reduce the number of parameters. Network pruning approaches utilize a cost
function to first rank the importance of neurons, followed by removing the least important
neurons and fine-tuning the network to recover any loss in accuracy. Thus far, these
approaches have only been employed for pruning convolutional layers that do not have
an identity or a projection shortcut connection. Pruning residual feature maps (third con-
volutional layer of a residual unit) also necessitates pruning the projected feature maps
in the same configuration in order to maintain the shortcut connection. This leads to a
significant drop in accuracy, therefore current approaches omit pruning convolutional
filters with shortcut connections. As a solution to this problem, we propose a network-wide
holistic pruning approach that employs a simple and yet effective strategy for pruning
convolutional filters invariant to the presence of shortcut connections. This enables our
network to further reduce the number of parameters and computing operations, making
our model efficiently deployable even in resource constrained applications.

Most work in semantic segmentation thus far has been focused on indoor and outdoor ur-
ban environments where the scene is highly structured. However, there exists an increasing
number of applications where mobile robots are tasked to operate in unstructured outdoor
environments that have significantly more variation in semantic object classes and a sub-
stantial amount of perceptual disturbances due to changes in weather conditions. In order
to also evaluate the performance our proposed architectures in such scenarios, we introduce
a first-of-a-kind dataset collected in unstructured forested environments that we made
publicly available. We present extensive experimental evaluations of our architectures on
benchmark scene understanding datasets including Cityscapes [143], Synthia [144], SUN
RGB-D [145] and ScanNet [146] as well as on our Freiburg Forest [50] dataset. The results
demonstrate that our architectures set the new state-of-the-art on all these benchmarks
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while being computationally more efficient and with a faster inference time.

In summary, the following are the main contributions that we make in this chapter:

• The novel AdapNet architecture for semantic segmentation that incorporates our
multiscale residual units to effectively learn multiscale features throughout the
network and a decoder with skip refinement for high-resolution segmentation.
• The AdapNet++ architecture that further improves the performance by integrating

a new efficient ASPP (eASPP) to aggregate multiscale information, a new decoder
with multiple skip refinement stages and a multi-resolution supervision strategy for
finer segmentation along the object boundaries.
• The eASPP for efficiently aggregating multiscale features and capturing long range

context, while having a larger effective receptive field and over 10 times reduction in
parameters compared to the standard ASPP.
• A holistic network-wide pruning approach that enables pruning of convolutional

filters invariant to the presence of identity or projection shortcuts.
• A novel semantic segmentation dataset of unstructured forested environments con-

sisting of multiple modalities and spectra with semantically annotated pixel-level
groundtruth labels.
• Extensive benchmarking of existing approaches with the same input image size and

evaluation setting along with quantitative and qualitative evaluations of our proposed
architectures on five different benchmark datasets consisting of indoor environments,
outdoor driving scenarios and unstructured forested environments.
• Implementations of our proposed models are made publicly available at http:
//deepscene.cs.uni-freiburg.de.

The remainder of this chapter is organized as follows. In Section 4.2, we describe
our semantic segmentation architectures and our technique for pruning convolutional
filters. We then describe the methodology that we employed for collecting the Freiburg
Forest dataset in Section 4.3. In Section 4.4, we present extensive empirical evaluations,
detailed ablation studies on the design choices and model variants, followed by qualitative
evaluations on each of the datasets that we benchmark on. Finally, we discuss recent
related work on semantic segmentation in Section 4.5 and conclude with a discussion in
Section 4.6.

4.2 Technical Approach

In this section, we first describe the topology of our proposed AdapNet architecture
and then detail the structure of our AdapNet++ architecture as well as its constituting
components. Subsequently, we present our pruning strategy for network compression that
is invariant to the presence of identity or projection shortcuts in the residual units.

http://deepscene.cs.uni-freiburg.de
http://deepscene.cs.uni-freiburg.de
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4.2.1 AdapNet Architecture

Our architecture shown in Figure 4.2 follows the general fully convolutional encoder-
decoder design principle. The encoder has a topology similar to classification networks
and downsamples the input image, while the decoder upsamples the feature maps back to
the input image resolution. In the following sections, we describe the components of our
proposed AdapNet architecture.

4.2.1.1 AdapNet Encoder

Encoders are the foundation of FCN architectures. Therefore, it is essential to build upon a
good baseline that has a high representational ability conforming with the computational
budget. Our critical requirement is to achieve the right trade-off between the accuracy of
segmentation and inference time on a consumer grade GPU, while keeping the number
of parameters low. Therefore, in contrast to the previous approaches, we build upon
the ResNet-50 [27] architecture as it offers a good trade-off between learning highly
discriminative deep features and the computational complexity required. It includes batch
normalization and convolution layers with skip connections. This allows the design of
much deeper networks without facing degradation of the gradient and therefore leads to
very large receptive fields. The ResNet architecture has four computational blocks with
varying number of residual units. We use the bottleneck residual units in our encoder as
they are computationally more efficient than the baseline residual units and they enable us
to build more complex models that are easily trainable.

In the ResNet architecture, the resolution of the feature maps drops down to a fourth of
the input resolution after passing through the first 3 layers. On the one hand, this allows
for context aggregation and speed-up due to smaller feature maps, but on the other hand,
this restricts the learning of high-resolution features, which could potentially be useful in
the later stages. In our AdapNet architecture, we introduced an additional convolution with
a kernel size of 3× 3 before the first convolution layer in the ResNet-50 architecture. This
enables the network to learn more high-resolution features without significantly increasing
the inference time. The output of the last residual block of the ResNet-50 architecture is
32-times downsampled with respect to the input image resolution. In order to increase
the spatial density of the feature responses and to prevent signal decimation, we set the
stride of the convolution layer in the last block (Res4a) from two to one which makes the
resolution of the output feature maps 1/16-times the input image resolution. This enables
the network to retain the higher resolution details while aggregating the same amount of
context as before. We then replace the residual blocks that follow this last downsampling
stage with our proposed multiscale residual units.

Multiscale Residual Units: A naive approach to compute the feature responses at the
full image resolution would be to remove the downsampling and replace all the convolution
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layers with atrous convolutions having a dilation rate r ≥ 2 but this would be both
computationally and memory intensive. Therefore, we propose the novel multiscale
residual unit to efficiently enlarge the receptive field and aggregate multiscale features
without increasing the number of parameters and the computational burden. Specifically,
we replace the 3× 3 convolution in the standard residual unit with two parallel 3× 3 atrous
convolutions with different dilation rates and half the number of feature maps each. We
then concatenate their outputs before the following 1× 1 convolution. By concatenating
their outputs, the network additionally learns to combine the feature maps of different
scales. Now, by setting the dilation rate in one of the 3× 3 convolutional layers to r = 1
and another to a rate r ≥ 2, we can preserve the original scale of the features within the
block and simultaneously add larger context. While, by varying the dilation rates in each
of the parallel 3×3 convolutions, we can enable the network to effectively learn multiscale
representations at different stages of the network. The topology of the proposed multiscale
residual units and the corresponding original residual units are shown in the legend in
Figure 4.2. The lower left two units show the original configuration, while the lower right
two units show the proposed configuration.

We incorporate the first multiscale residual unit with r1 = 1 and r2 = 2 before the third
block at Res3d (unit before the block where we remove the downsampling as mentioned
earlier). Subsequently, we replace the units Res4c, Res4d, Res4e, and Res4f with our
proposed multiscale units with rates r1 = 1 in all the units and r2 = 2, 4, 8, 16 corre-
spondingly. In addition, we replace the last three units of block four Res5a, Res5b, and
Res5c with the multiscale units with increasing rates in both the 3 × 3 convolutions, as
(r1 = 2, r2 = 4), (r1 = 2, r2 = 8), and (r1 = 2, r2 = 16) correspondingly. We evaluate our
proposed configuration in comparison to the multigrid method of DeepLab v3 [132] in the
ablation study presented in Section 4.4.6.1.

4.2.1.2 AdapNet Decoder

The output of the encoder is 16-times downsampled with respect to the input image and it
contains 2, 048 feature channels. In order to obtain the segmented image, we first employ a
1× 1 convolution layer to reduce the number of feature channels to the number of semantic
object categories in the dataset. We then upsample feature maps by two times using a
deconvolution layer and perform refinement by fusing mid-level features from Res3d of
the encoder. Subsequently, we employ a second deconvolution layer to upsample the
predictions by eight times to yield an output with the same dimensions as the input image.
In comparison to the initial FCN architecture [24], our proposed AdapNet architecture has
a significantly lesser number of parameters and a substantially faster inference time, which
are both critical requirements for models to be employed in real-world robotic perception
applications. Moreover, the network converges in 12 hours while training on an NVIDIA
Titan X GPU, whereas FCNs take about three days for the model to converge.
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4.2.2 AdapNet++ Architecture

In an effort to further improve the segmentation performance, we propose the AdapNet++
architecture that builds upon AdapNet. We first briefly describe the overall topology
and our main contributions motivated by our design criteria. We then detail each of
the constituting architectural components. Similar to AdapNet, our network follows the
general fully convolutional encoder-decoder design principle as shown in Figure 4.3. The
encoder (depicted in blue) is based on the full pre-activation ResNet-50 [72] model as it
has been demonstrated to reduce overfitting and improve the convergence while compared
to the standard ResNet architecture. We incorporate our multiscale residual units at varying
dilation rates in the last two blocks of the encoder to effectively compute high-resolution
feature responses at different spatial densities. Figure 4.4 shows the topology of the
encoder in more detail. In addition, to enable our model to capture long-range context
and to further learn multiscale representations, we propose an efficient variant of the
atrous spatial pyramid pooling module known as eASPP which has a larger effective
receptive field and reduces the number of parameters required by over 87% compared to
the originally proposed ASPP in DeepLab v3 [132]. We append the proposed eASPP after
the last residual block of the encoder, shown as green blocks in Figure 4.3.

In order to recover the segmentation details from the low spatial resolution output of
the encoder section, we propose a new deep decoder consisting of multiple deconvolution
and convolution layers. Additionally, we employ multiple skip refinement stages that fuse
low and mid-level features from the encoder with the upsampled decoder feature maps
for object boundary refinement. Furthermore, we add two auxiliary supervision branches
after each upsampling stage to accelerate training and improve the gradient propagation
in the network. We depict the decoder as orange blocks and the skip refinement stages as
gray blocks in the network architecture shown in Figure 4.3. In the following sections,
we discuss each of the aforementioned network components in detail and elaborate on the
design choices.

4.2.2.1 Efficient Atrous Spatial Pyramid Pooling

In this section, we first describe the topology of the Atrous Spatial Pyramid Pooling
(ASPP) module, followed by the structure of our proposed efficient Atrous Spatial Pyramid
Pooling (eASPP). ASPP has become prevalent in most state-of-the-art architectures due to
its ability to capture long range context and multiscale information. Inspired by spatial
pyramid pooling [147], the initially proposed ASPP in DeepLab v2 [148] employs four
parallel atrous convolutions with different dilation rates. Concatenating the outputs of
multiple parallel atrous convolutions aggregates multiscale context with different receptive
field resolutions. However, as illustrated in the subsequent DeepLab v3 [132], applying
extremely large dilation rates inhibits capturing long range context due to image boundary
effects. Therefore, an improved version of ASPP was proposed [132] to add global context



4.2. Technical Approach 85

2
5

6
x

2
4

x4
8

2
5

6
x

2
4

x4
8

2
5

6
x

2
4

x4
8

2
5

6
x

2
4

x4
8

P
re

-a
ct

iv
a
ti

o
n
 R

e
sN

e
t

w
it

h
 M

u
lt

is
ca

le
 B

lo
ck

s
e
A

S
P
P

D
e
e
p

 D
e
co

d
e
r 

w
it

h
 

S
ki

p
 C

o
n
n

e
ct

io
n
s

In
p

u
t

Im
a
g

e
S

e
g

m
e
n
te

d
P
re

d
ic

ti
o
n

S
ki

p
1

S
ki

p
2

Fi
gu

re
4.

3:
O

ve
rv

ie
w

of
ou

r
pr

op
os

ed
A

da
pn

et
++

ar
ch

ite
ct

ur
e.

G
iv

en
an

in
pu

ti
m

ag
e,

w
e

us
e

th
e

fu
ll

pr
e-

ac
tiv

at
io

n
R

es
N

et
-5

0
ar

ch
ite

ct
ur

e
au

gm
en

te
d

w
ith

ou
rp

ro
po

se
d

m
ul

tis
ca

le
re

si
du

al
bl

oc
ks

to
yi

el
d

a
fe

at
ur

e
m

ap
16

-t
im

es
do

w
ns

am
pl

ed
w

ith
re

sp
ec

tt
o

th
e

in
pu

ti
m

ag
e

re
so

lu
tio

n,
th

en
ou

rp
ro

po
se

d
ef

fic
ie

nt
A

tr
ou

s
Sp

at
ia

lP
yr

am
id

Po
ol

in
g

(e
A

SP
P)

m
od

ul
e

is
em

pl
oy

ed
to

fu
rt

he
rl

ea
rn

m
ul

tis
ca

le
fe

at
ur

es
an

d
to

ca
pt

ur
e

lo
ng

ra
ng

e
co

nt
ex

t.
Fi

na
lly

,t
he

ou
tp

ut
of

th
e

eA
SP

P
is

fe
d

in
to

ou
r

pr
op

os
ed

de
ep

de
co

de
r

w
ith

sk
ip

co
nn

ec
tio

ns
fo

r
up

sa
m

pl
in

g
an

d
re

fin
in

g
th

e
se

m
an

tic
pi

xe
l-

le
ve

lp
re

di
ct

io
n.



86 Chapter 4. Semantic Scene Segmentation

11
13

11

d
1

d
2

d
1

d
2

d
1

d
2

11
11

3
11

3
x
3

8
4

x
7

6
8

in
p
u
t

11
s3

11s1

6
4

x
1

9
2

x
3

8
4

27

6
4

x
9

6
x
1

9
2

6
4

2
5

6

6
4

2
5

6

6
4

2
5

6

1
2

8

5
1

2

1
2

8

5
1

2
2

5
6

x
9

6
x
1

9
2

2
5

6
x

9
6

x
1

9
2

5
1

2
x

4
8

x
9

6
5

1
2

x
4

8
x
9

6
5

1
2

x
4

8
x
9

6
2

5
6

x
9

6
x
1

9
2

1
2

8

5
1

2
5

1
2

x
4

8
x
9

6

1
2

8
       1

         6
4

5
1

2

2
5

6

1
0

2
4

1
0

2
4

x
2

4
x
4

8

2
5

6

1
0

2
4

2
5

6
       1

           2
5

6

1
0

2
4

2
5

6
       1

           2
5

6

1
0

2
4

2
5

6
       1

           2
5

6

1
0

2
4

2
0

4
8

x
2

4
x
4

8

11
11

3

n
x
n
 co

n
v
o
lu

tio
n

2
x
2

 m
a
x
 p

o
o
lin

g

B
a
tch

 n
o
rm

d
1

d
2

d
3

d
3

d
1

d
1

d
2

d
1

d
1

d
2d
2

d
1

d
2

d
3d
3

d
1

d
2

d
3d
3

d
2

strid
e
 s

n s

n
x
n
 co

n
v
o
lu

tio
n

d
ila

tio
n
 d

, strid
e
 =

1
n d

r2
r2

r2
r2

2

2
5

6
       1

 
           2

5
6

1
0

2
4 2

4
8

1
6

s

2

2

3 r1
3 r1

r1
r1

22

22

11

2
4

x
4

8
x
9

6

5
1

2
       2

           5
1

2

2
0

4
8 1

6

5
1

2
       2

           5
1

2

2
0

4
8 8

5
1

2
       2

           5
1

2

2
0

4
8 4

2
4

x
9

6
x
1

9
2

11

To
 e

A
S
P
P

To
 d

e
co

d
e
r

skip
2

To
 d

e
co

d
e
r

skip
1

d
1

d
2

11
13

1111

d
1

d
1

d
2d
2

R
e
LU

Figure
4.4:The

proposed
encoderis

builtupon
the

fullpre-activation
R

esN
et-50

architecture.Specifically,w
e

rem
ove

the
lastdow

nsam
pling

stage
in

R
esN

et-50
by

setting
the

stride
from

tw
o

to
one,therefore

the
finaloutputofthe

encoderis
16-tim

es
dow

nsam
pled

w
ith

respectto
the

input.W
e

then
replace

the
residualunits

thatfollow
the

lastdow
nsam

pling
stage

w
ith

ourproposed
m

ultiscale
residualunits.The

legend
enclosed

in
red

lines
show

the
originalpre-activation

residualunits
in

the
bottom

left(yellow
,lightgreen

and
dark

green),w
hile

ourproposed
m

ultiscale
residualunits

are
show

n
in

the
bottom

right(cyan
and

purple).



4.2. Technical Approach 87

information by incorporating image-level features.
The resulting ASPP shown in Figure 4.5 (a) consists of five parallel branches: one

1× 1 convolution and three 3× 3 convolutions with different dilation rates. Additionally,
image-level features are introduced by applying global average pooling on the input feature
map, followed by a 1× 1 convolution and bilinear upsampling to yield an output with the
same dimensions as the input feature map. All the convolutions have 256 filters and batch
normalization layers to improve training. Finally, the resulting feature maps from each of
the parallel branches are concatenated and passed through another 1× 1 convolution with
batch normalization to yield 256 output filters. The ASPP module is appended after the
last residual block of the encoder where the feature maps are of dimensions 65 × 65 in
the DeepLab v3 architecture [132], therefore dilation rates of 6, 12 and 18 were used in
the parallel 3 × 3 atrous convolution layers. However, as we use a smaller input image,
the dimensions of the input feature map to the ASPP is 24× 48, therefore, we reduce the
dilation rates to 3, 6 and 12 in the 3× 3 atrous convolution layers respectively.

The biggest caveat of employing the ASPP is the extremely large amount of parameters
and FLOPS that it consumes. Each of the 3× 3 convolutions have 256 filters, which in
total for the entire ASPP amounts to 15.53 M parameters and 34.58 B FLOPS which is
prohibitively expensive. To address this problem, we propose an equivalent structure called
eASPP that substantially reduces the computational complexity. Our proposed topology
is based on two principles: cascading atrous convolutions and the bottleneck structure.
Cascading atrous convolutions effectively enlarges the receptive field as the latter atrous
convolution takes the output of the former atrous convolution. The receptive field size F of
an atrous convolution can be computed as

F = (r – 1) · (N – 1) + N, (4.1)

where r is the dilation rate of the atrous convolution and N is the filter size. When two
atrous convolutions with the receptive field sizes as F1 and F2 are cascaded, the effective
receptive field size is computed as

Feff = F1 + F2 – 1. (4.2)

For example, if two atrous convolutions with filter size F = 3 and dilation r = 3
are cascaded, then each of the convolutions individually has a receptive field size of 7,
while the effective receptive field size of the second atrous convolution is 13. Moreover,
cascading atrous convolutions enable denser sampling of pixels in comparison to parallel
atrous convolutions. We illustrate this phenomenon in Figure 4.6. Atrous convolutions
increase the size of the receptive field by inserting holes between consecutive filter values,
but the number of pixels that are sampled for the computation is still sparse. This factor
becomes worse in the case of two-dimensional convolutions when large dilation rates are
used. However, by concatenating atrous convolutions, the convolution in the upper layer
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Figure 4.5: Depiction of the ASPP module from DeepLab v3 and our proposed efficient eASPP
module. eASPP reduces the number of parameters by 87.87% and the number of FLOPS by 89.88%,
while simultaneously achieving an improved performance. Note that all the convolution layers
have batch normalization and we change the corresponding dilation rates in the 3× 3 convolutions
in ASPP to 3,6,12 as the input feature map to the ASPP is of dimensions 48× 23 in our network
architecture.
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r=3

r=3

r=3

(a) Standard convolution (b) Atrous convolution (c) Stacking atrous convs

Figure 4.6: Illustration of pixel sampling in different 1-D convolutions. Stacking atrous convolu-
tions yields a denser sampling rate with a very large receptive field. r denotes the dilation rate of
the atrous convolution layer and red pixels denote the information captured by the convolution.

can utilize features from the lower layer and hence sample the pixels in a much denser
fashion. Therefore, by using both parallel and cascaded atrous convolutions in the ASPP,
we can efficiently aggregate dense multiscale features with very large receptive fields.

In order to reduce the number of parameters in the ASPP topology, we employ a
bottleneck structure in the cascaded atrous convolution branches. The topology of our
proposed eASPP shown in Figure 4.5 (b) consists of five parallel branches similar to
ASPP but the branches with the 3× 3 atrous convolutions are replaced with our cascaded
bottleneck branches. If c is the number of channels in the 3× 3 atrous convolution, we
add a 1 × 1 convolution with c/4 filters before the atrous convolution to squeeze only
the most relevant information through the bottleneck. We then replace the 3 × 3 atrous
convolution with two cascaded 3 × 3 atrous convolutions with c/4 filters, followed by
another 1 × 1 convolution to restore the number of filters to c. The proposed eASPP
only has 2.04 M parameters and consumes 3.5 B FLOPS which accounts to a reduction of
87.87% of parameters and 89.88% of FLOPS in comparison to the ASPP. We evaluate our
proposed eASPP in comparison to ASPP in the ablation study presented in Section 4.4.6.2
and show that it achieves improved performance while being more than 10 times efficient
in the number of parameters.

4.2.2.2 AdapNet++ Decoder

The output of the eASPP in our network is 16-times downsampled with respect to the input
image and therefore it has to be upsampled back to the full input resolution. As described
in Section 4.2.1.2, AdapNet employs a simple decoder with two deconvolution layers and
one skip refinement connection. Although the decoder is more effective in recovering
the segmentation details in comparison to direct bilinear upsampling, it often produces
disconnected segments while recovering the structure of thin objects such as poles and
fences. In order to overcome this impediment, we propose a more effective decoder that
we integrate into the AdapNet++ architecture.

The decoder shown in Figure 4.7 consists of three stages. In the first stage, the output of
the eASPP is upsampled by a factor of two using a deconvolution layer to obtain a coarse
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segmentation mask. The upsampled coarse mask is then passed through the second stage,
where the feature maps are concatenated with the first skip refinement from Res3d. The
skip refinement consists of a 1× 1 convolution layer to reduce the feature depth in order to
not outweigh the encoder features. We experiment with varying number of feature channels
in the skip refinement in the ablation study presented in Section 4.4.6.3. The concatenated
feature maps are then passed through two 3× 3 convolutions to improve the resolution of
the refinement, followed by a deconvolution layer that again upsamples the feature maps
by a factor of two. This upsampled output is fed to the last decoder stage which resembles
the previous stage consisting of concatenation with the feature maps from the second skip
refinement from Res2c, followed by two 3× 3 convolution layers. All the convolutional
and deconvolutional layers until this stage have 256 feature channels, therefore the output
from the two 3 × 3 convolutions in the last stage is fed to a 1 × 1 convolution layer to
reduce the number of feature channels to the number of object categories C. This output is
finally fed to the last deconvolution layer which upsamples the feature maps by a factor of
four to recover the original input resolution.

4.2.2.3 Multiresolution Supervision

Deep networks often have difficulty in training due to the intrinsic instability associated
with learning using gradient descent which leads to exploding or vanishing gradient
problems. As our encoder is based on the residual learning framework, shortcut connections
in each unit help propagating the gradient more effectively. Another technique that can be
used to mitigate this problem to a certain extent is by initializing the layers with pretrained
weights, however our proposed eASPP and decoder layers still have to be trained from
scratch which could lead to optimization difficulties. Recent deep architectures have
proposed employing an auxiliary loss in the middle of encoder network [135, 149], in
addition to the main loss towards the end of the network. However, as shown in the ablation
study presented in Section 4.4.6.1 this does not improve the performance of our network
although it helps the optimization to converge faster.

Unlike previous approaches, we propose a multi-resolution supervision strategy to both
accelerate the training and improve the resolution of the segmentation. As described in the
previous section, our decoder consists of three upsampling stages. We add two auxiliary
loss branches at the end of the first and second stage after the deconvolution layer in
addition to the main softmax loss Lmain at the end of the decoder as shown in Figure 4.8.
Each auxiliary loss branch decreases the feature channels to the number of category labels
C using a 1×1 convolution with batch normalization and upsamples the feature maps to the
input resolution using bilinear upsampling. We only use simple bilinear upsampling which
does not contain any weights instead of a deconvolution layer in the auxiliary loss branches
as our aim is to force the main decoder stream to improve its discriminativeness at each
upsampling resolution so that it embeds multi-resolution information while learning to
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upsample. We weigh the two auxiliary losses Laux1 and Laux2 to balance the gradient flow
through all the previous layers. While testing, the auxiliary loss branches are discarded
and only the main decoder stream is used. We experiment with different loss weightings in
the ablation study presented in Section 4.4.6.3, and we show that each of the auxiliary loss
branches improves the segmentation performance in addition to speeding-up the training
in Section 4.4.6.1.

4.2.3 Network Compression

As we strive to design an efficient and compact semantic segmentation architecture that can
be employed in resource constrained applications, we must ensure that the utilization of
convolutional filters in our network is thoroughly optimized. Often, even the most compact
networks have abundant neurons in deeper layers that do not significantly contribute to
the overall performance of the model. Excessive convolutional filters not only increase
the model size but also the inference time and the number of computing operations.
These factors critically hinder the deployment of models in resource constrained real-
world applications. Pruning of neural networks can be traced back to the 80s when
LeCun et al. [150] introduced a technique called Optimal Brain Damage for selectively
pruning weights with a theoretically justified measure. Recently, several new techniques
have been proposed for pruning weight matrices [141, 142, 151, 152] of convolutional
layers as most of the computation during inference is consumed by them.

These approaches rank neurons based on their contribution and remove the low ranking
neurons from the network, followed by fine-tuning of the pruned network. While the
simplest neuron ranking method computes the `1-norm of each convolutional filter [152],
more sophisticated techniques have recently been proposed [140, 141, 142]. Some of these
approaches are based on sparsity based regularization of network parameters which addi-
tionally increases the computational overhead during training [141, 151]. Techniques [142]
have also been proposed for structured pruning of entire kernels with strided sparsity that
demonstrate impressive results for pruning small networks. However, their applicability to
complex networks that are to be evaluated on large validation sets has not been explored
due its heavy computational processing. Moreover, until a year ago these techniques were
only applied to simpler architectures such as VGG [153] and AlexNet [22], as pruning
complex deep architectures such as ResNets requires a holistic approach. Thus far, pruning
of residual units has only been performed on convolutional layers that do not have an
identity or shortcut connection as pruning them additionally requires pruning the added
residual maps in the exact same configuration. Attempts to prune them in the same config-
uration have resulted in a significant drop in performance [152]. Therefore, often only the
first and the second convolutional layers of a residual unit are pruned.

Our proposed architectures have shortcut and skip connections both in the encoder as
well the decoder. Therefore, in order to efficiently maximize the pruning of our network,
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we propose a holistic network-wide pruning technique that is invariant to the presence
of skip or shortcut connections. Our proposed technique first involves pruning all the
convolutional layers of a residual unit, followed by masking out the pruned indices of the
last convolutional layer of a residual unit with zeros before the addition of the residual maps
from the shortcut connection. As masking is performed after the pruning, we efficiently
reduce the parameters and computing operations in a holistic fashion, while optimally
pruning all the convolutional layers and preserving the shortcut or skip connections. After
each pruning iteration, we fine-tune the network to recover any loss in accuracy. We
illustrate this strategy adopting a recently proposed greedy criteria-based oracle pruning
technique that incorporates a novel ranking method based on a first order Taylor expansion
of the network cost function [140]. The pruning problem is framed as a combinatorial
optimization problem such that when the weights B of the network are pruned, the change
in cost value will be minimal.

min
W ′
|C(T |W ′) – C(T |W)| s.t. ‖W ′‖0 ≤ B, (4.3)

where T is the training set, W is the network parameters and C(·) is the negative log-
likelihood function. Based on Taylor expansion, the change in the loss function from
removing a specific parameter can be approximated. Let hi be the output feature maps
produced by parameter i and hi = {z1

0, z2
0, · · · , zCl

L }. The output hi can be pruned by setting
it to zero and the ranking can be given by

|∆C(hi)| = |C(T , hi = 0) – C(T , hi)|, (4.4)

Approximating with Taylor expansion, we can write

ΘTE(hi) = |∆C(hi)| = |C(T , hi) –
δC
δhi

hi – C(T , hi)|

=
∣∣∣∣ δCδhi

hi

∣∣∣∣ , (4.5)

ΘTE(z(k)
l ) =

∣∣∣∣∣ 1
M

∑
m

δC
δz(k)

l,m

z(k)
l,m

∣∣∣∣∣ , (4.6)

where M is the length of the vectorized feature map. This ranking can be easily computed
using the standard back-propagation computation as it requires the gradient of the cost
function with respect to the activation and the product of the activation. Furthermore, in
order to achieve adequate rescaling across layers, a layer-wise `2-norm of the rankings is
computed as

Θ̂(z(k)
l ) =

Θ(z(k)
l )√∑

j Θ2(z(j)
l )

. (4.7)
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Figure 4.9: The Viona robot platform that we used for data collection equipped with a Bumblebee2
stereo vision camera and a self-made NIR camera. Both the cameras were time synchronized and
the images were captured at 20 Hz.

The entire pruning procedure can be summarized as follows: first the network is trained
until convergence using the training protocol described in Section 4.4.3. Then the im-
portance of the feature maps is evaluated using the aforementioned ranking method and
subsequently the unimportant feature maps are removed. The pruned convolution layers
that have shortcut connections are then masked at the indices where the unimportant feature
maps are removed to maintain the shortcut connections. The network is then fine-tuned
and the pruning process is reiterated until the desired trade-off between accuracy and the
number of parameters has been achieved. We present results from pruning our AdapNet++
architecture in Section 4.4.5, where we perform pruning of both the convolutional and
deconvolutional layers of our network in five stages by varying the threshold for the rank-
ings. For each of these stages, we quantitatively evaluate the performance versus number
of parameters trade-off obtained using our proposed pruning strategy in comparison to the
standard approach.

4.3 Freiburg Forest Dataset

We introduce the Freiburg Multispectral Segmentation benchmark, which is a first-of-
a-kind semantic segmentation dataset of unstructured forested environments. Unlike
urban and indoor scenes which are highly structured with rigid objects that have distinct
geometric properties, objects in unstructured forested environments are extremely diverse
and moreover, their appearance completely changes from month to month due to seasonal
variations. The primary motivation for the introduction of this dataset is to enable robots
to discern obstacles that can be driven over such as tall grass and bushes to obstacles
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(b) RGB (c) NIR (d) NDVI

(e) NRG (f) EVI (g) Depth

Figure 4.10: Example images from our Freiburg Forest dataset showing the various spectra and
modalities contained in our benchmark. NIR, NDVI, EVI and depth images are converted to a three
channel colorized image by normalizing and applying the standard jet color map. NIR = Near-
InfraRed. NDVI = Normalized Difference Vegetation Index. NRG = Near-InfraRed, Red-channel,
Green-channel. EVI = Enhanced Vegetation Index.

that should be avoided such as tall trees and boulders. Therefore, we propose to exploit
the presence of chlorophyll in these objects which can be detected in the Near-InfraRed
(NIR) wavelength. NIR images provide a high fidelity description on the presence of
vegetation in the scene and it enhances border accuracy for segmentation. In this chapter,
we only use the RGB images from this dataset for segmentation. We use the NIR images
for multimodal semantic segmentation presented in Chapter 5.

We collected the dataset over an extended period of time using our Viona autonomous
mobile robot platform shown in Figure 4.9. The robot was equipped with a Bumblebee2
stereo vision camera and a modified camera with the NIR-cut filter replaced with a Wratten
25A filter for capturing the NIR wavelength in the blue and green channels. Both cameras
are time synchronized and frames were captured at 20 Hz. In order to match the images
captured by both cameras, we first compute SIFT [154] correspondences between the
images using the Difference-of-Gaussian detector to provide similarity-invariance. We
then filter the detected keypoints with the nearest neighbors test, followed by requiring
consistency between the matches with respect to an affine transformation. The matches are
further filtered using Random Sample Consensus (RANSAC) [155] and the transformation
is estimated using the Moving Least Squares method by rendering through a mesh of
triangles. We then transform the RGB image with respect to the NIR image and crop to
the intersecting regions of interest. Although our implementation uses two cameras, it is
the most cost-effective solution compared to commercial integrated multispectral cameras.
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Figure 4.10 shows examples of each of the spectra and modalities that we captured.

We collected data on three different days to have enough variability in lighting conditions
as shadows and sun angles play a crucial role in the quality of acquired images. Our raw
dataset contains over 15, 000 images that were sub-sampled at 1 Hz, corresponding to
traversing over 4.7 km each day. Our benchmark contains 366 images with pixel-level
groundtruth annotations which were hand-annotated for six classes: sky, trail, grass,
vegetation, obstacle and void. As there is an abundant presence of vegetation in our
environment, we compute global-based vegetation indices such as Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to extract consistent spatial
and global vegetation information. NDVI is resistant to noise caused due to changing sun
angles, topography and shadows, but is susceptible to error due to variable atmospheric
and canopy background conditions [156]. EVI was proposed to compensate for these
defects with improved sensitivity to high biomass regions and improved detection though
decoupling of canopy background signal and reduction in atmospheric influences. For all
the images in our dataset, we calculate NDVI and EVI using the following equations.

NDVI =
ρnir – ρred

ρnir + ρred
, (4.8)

where ρnir is the reflectance at the NIR wavelength (0.7 – 1.1µm) and ρred is the reflectance
at the red wavelength (0.6 – 0.7µm).

EVI = G× ρnir – ρred

ρnir + (C1 × ρred – C2 × ρblue) + L
, (4.9)

where ρblue is the reflectance at the blue wavelength (0.45 – 0.52µm), G is the gain factor, L
is a soil adjustment factor, C1 and C2 are coefficients used to correct for aerosol scattering
in the red band by the use of the blue band.

Although our dataset contains images from the Bumblebee stereo camera, the processed
disparity images were substantially noisy due to several factors including rectification
artifacts and motion blur. We compared the results from semi-global matching [157] with
the depth map obtained from a CNN-based depth prediction network and found that for an
unstructured forested environment, the CNN-based approach provides denser and more
reliable estimates. In this work, we use the approach from Liu et al. [158] that employs
a deep convolutional neural field model for depth estimation by constructing unary and
pairwise potentials of conditional random fields. We convert the depth, NIR, NDVI and
EVI images to a three-channel colorized image by normalizing and applying the standard
jet color map. We made the raw dataset and the semantic annotations publicly available at
http://deepscene.cs.uni-freiburg.de/#datasets.

http://deepscene.cs.uni-freiburg.de/#datasets
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4.4 Experimental Evaluation

In this section, we first describe the datasets that we benchmark on, followed by compre-
hensive quantitative results for semantic segmentation using our proposed architectures
in Section 4.4.1 and the results for model compression in Section 4.4.5. We then present
detailed ablation studies that describe our architectural decisions in Section 4.4.6, followed
by the qualitative segmentation results in Section 4.4.7.

All our models were implemented using the TensorFlow [159] deep learning library
and the experiments were carried out on a system with an Intel Xeon E5, 2.4 GHz and an
NVIDIA TITAN X GPU. We primarily use the standard Jaccard Index, also known as
the intersection-over-union (IoU) metric to quantify the performance. It can be computed
for each object class as IoU = TP/(TP + FP + FN), where TP, FP and FN correspond to
true positives, false positives and false negatives respectively. We also report the mean
intersection-over-union (mIoU) metric for all the models and also the pixel-wise accuracy
(Acc), average precision (AP), global intersection-over-union (gIoU) metric, false positive
rate (FPR), false negative rate (FNR) in the detailed analysis.

4.4.1 Benchmark Datasets

We evaluate our proposed AdapNet and AdapNet++ architectures on five publicly available
diverse scene understanding benchmarks ranging from urban driving scenarios to unstruc-
tured forested scenes and cluttered indoor environments. The datasets were particularly
chosen based on the criteria of containing scenes with challenging perceptual conditions
including rain, snow, fog, night-time, glare, motion blur and other seasonal appearance
changes. Each of the datasets contain multiple modalities. For the experiments presented in
this chapter, we only use the visual RGB images from these datasets. The other modalities
and spectra are used for benchmarking the multimodal semantic segmentation presented
in Chapter 5. In addition to our Freiburg Forest dataset, we benchmark on the following
standard semantic scene segmentation datasets described in this section.

Cityscapes: The Cityscapes dataset [143] is one of the largest labeled RGB-D dataset for
urban scene understanding. Being one of the standard benchmarks, it is highly challenging
as it contains images of complex urban scenes, collected from over 50 cities during varying
seasons, lighting and weather conditions. The images were captured using a automotive-
grade 22 cm baseline stereo camera at a resolution of 2048 × 1024 pixels. The dataset
contains 5,000 finely annotated images with 30 categories, of which 2,875 are provided for
training, 500 are provided for validation and 1,525 are used for testing. Additionally 20,000
coarse annotations are provided. The testing images are not publicly released, they are
used by the evaluation server for benchmarking, excluding the rarely appearing categories.
In order to facilitate comparison with previous approaches, we benchmark on the label set
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(a) RGB (b) HHA

(c) Depth (d) Depth Filled

Figure 4.11: Example image from the Cityscapes dataset showing a complex urban scene with
many dynamic objects and the corresponding depth map representations.

consisting of: sky, building, road, sidewalk, fence, vegetation, pole, car/truck/bus, traffic
sign, person, rider/bicycle/motorbike and background.

We convert the stereo disparity map to a three-channel colorized depth image by normal-
izing and applying the standard jet color map. Figures 4.11 (a) and (c) show an example
image and the corresponding colorized depth map from the dataset. However, as seen in the
figure, the depth maps have considerable amount of noise and missing depth values due to
occlusion, which are undesirable especially when utilizing depth maps as an input modality
for pixel-wise segmentation. Therefore, we employ a recently proposed state-of-the-art
fast depth completion technique [160] to fill any holes that may be present. The resulting
filled depth map is shown in Figure 4.11 (d). The depth completion algorithm can easily
be incorporated into our pipeline as a preprocessing step as it only requires 11 ms while
running on the CPU and it can be further parallelized using a GPU implementation.

Additionally, Gupta et al. [161] proposed an alternate representation of the depth map
known as the HHA encoding to enable DCNNs to learn more effectively. The authors
demonstrate that the HHA representation encodes properties of geocentric pose that
emphasizes on complementary discontinuities in the image which are extremely hard for
the network to learn, especially from limited training data. This representation also yields
a three-channel image consisting of: horizontal disparity, height above ground, and the
angle between the local surface normal of a pixel and the inferred gravity direction. The
resulting channels are then linearly scaled and mapped to the 0 to 255 range. However, it
is still unclear if this representation enables the network to learn features complementary
to that learned from visual RGB images as different works show contradicting results
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(a) RGB (b) Depth (c) HHA

Figure 4.12: Example image from the Synthia dataset showing an outdoor urban scene and the
corresponding depth map representations.

(a) RGB (b) Depth (c) HHA

Figure 4.13: Example image from the SUN RGB-D dataset showing an indoor scene and the
corresponding depth map representations.

[161, 162, 163]. In Chapter 5, we perform in-depth experiments with both the jet colorized
and the HHA encoded depth map on a larger and more challenging dataset than previous
works to investigate the utility of these encodings.

Synthia: The Synthia dataset [144] is a large-scale urban outdoor dataset that contains
photo realistic images and depth data rendered from a virtual city built using the Unity
engine. It consists of several annotated label sets. We use the Synthia-Rand-Cityscapes and
the video sequences which have images of resolution 1280× 760 with a 100◦ horizontal
field of view. This dataset is of particular interest for benchmarking multimodal semantic
segmentation as it contains diverse traffic situations under different weather conditions.
Synthia-Rand-Cityscapes consists of 9,000 images and the sequences contain 8000 images
with groundtruth labels for 12 classes. The categories of object labels are the same as the
aforementioned Cityscapes label set.

SUN RGB-D: The SUN RGB-D dataset [145] is one of the most challenging indoor
scene understanding benchmarks to date. It contains 10,335 RGB-D images that were
captured with four different types of RGB-D cameras (Kinect V1, Kinect V2, Xtion and
RealSense) with different resolutions and fields of view. This benchmark also combines
several other datasets including 1,449 images from the NYU Depth v2 [164], 554 images
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(a) RGB (b) HHA

(c) Depth (c) Depth Filled

Figure 4.14: Example image from the ScanNet dataset showing a complex indoor scene and the
corresponding depth map representations.

from the Berkeley B3DO [165] and 3,389 images from the SUN3D [166]. We use the
original train-val split consisting of 5,285 images for training and 5,050 images for testing.
We use the refined in-painted depth images from the dataset that were processed using
a multi-view fusion technique. However, some refined depth images still have missing
depth values at distances larger than a few meters. Therefore, as mentioned in previous
works [162], we exclude the 587 training images that were captured using the RealSense
RGB-D camera as they contain a significant amount of invalid depth measurements that
are further intensified due to the in-painting process.

This dataset provides pixel-level semantic annotations for 37 categories, namely: wall,
floor, cabinet, bed, chair, sofa, table, door, window, bookshelf, picture, counter, blinds, desk,
shelves, curtain, dresser, pillow, mirror, floor mat, clothes, ceiling, books, fridge, tv, paper,
towel, shower curtain, box, whiteboard, person, night stand, toilet, sink, lamp, bathtub
and bag. Although we benchmark on all the object categories, 16 out of the 37 classes are
rarely present in the images and about 0.25% of the pixels are not assigned to any of the
classes, making it extremely unbalanced. Moreover, as each scene contains many different
types of objects, they are often partially occluded and may appear completely different in
the test images.

ScanNet: The ScanNet RGB-D video dataset [146] is a recently introduced large-scale
indoor scene understanding benchmark. It contains 2.5 M RGB-D images accounting to
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(a) Original (b) Rotation (c) Skewing

(d) Scaling (e) Vignetting (f) Cropping

(g) Brightness (h) Contrast (i) Flipping

(j) Color (k) Translate

Figure 4.15: Example data augmentation strategies that we employ on the images randomly while
training to increase the amount of training data and to improve the robustness of the network to
overfitting.

1512 scans acquired in 707 distinct spaces. The data was collected using an iPad Air2
mounted with a depth camera similar to the Microsoft Kinect v1. Both the iPad camera
and the depth camera were hardware synchronized and frames were captured at 30 Hz.
The RGB images were captured at a resolution of 1296× 968 pixels and the depth frames
were captured at 640× 480 pixels. The semantic segmentation benchmark contains 16,506
labelled training images and 2537 testing images. From the example depth image shown
in Figure 4.14 (b), we can see that there are a number of missing depth values at the object
boundaries and at large distances. Therefore, similar to the preprocessing that we perform
on the cityscapes dataset, we use a fast depth completion technique [160] to fill the holes.
The corresponding filled depth image is shown in Figure 4.14 (c). We also compute the
HHA encoding for all the depth maps as shown in Figure 4.14 (b).

The dataset provides pixel-level semantic annotations for 21 object categories, namely:
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wall, floor, chair, table, desk, bed, bookshelf, sofa, sink, bathtub, toilet, curtain, counter,
door, window, shower curtain, refrigerator, picture, cabinet, other furniture and void.
Similar to the SUN RGB-D dataset, many object classes are rarely present making the
dataset unbalanced. Moreover, the annotations at the object boundaries are often irregular
and parts of objects at large distances are unlabelled. These factors make the task even
more challenging on this dataset.

4.4.2 Data Augmentation

Training of deep networks can be significantly improved by expanding the dataset to
introduce more variability in the captured scene. The core idea is to apply a set of data
augmentations on the training data, where the applied transformations define the invariance
properties that are to be learned by the network. This enables the network to substantially
improve its robustness to overfitting and also its generalization ability to different real-
world scenarios. In order to achieve this, we apply a series of augmentation strategies
randomly on the input data while training. The augmentations [6] that we apply include
rotation (–13◦ to 13◦), skewing (0.05 to 0.10), scaling (0.5 to 2.0), vignetting (210 to 300),
cropping (0.8 to 0.9), brightness modulation (–40 to 40), contrast modulation (0.5 to 1.5)
and left-right flipping.

4.4.3 Network Training

We represent the training set for semantic segmentation as T = {(In, Mn) | n = 1, . . . , N},
where In = {ur | r = 1, . . . , ρ} denotes the input image and the corresponding ground
truth label mask Mn = {mn

r | r = 1, . . . , ρ}, where mn
r ∈ {1, . . . , C} is the set of semantic

classes. We define θ as the network parameters consisting of weights and biases, and
sj(ur, θ) as the score assigned for labeling pixel ur with label j. We obtain the probabilities
P = (p1, . . . , pC) for all the semantic classes using the softmax function σ(.) as

pj(ur, θ | In) = σ
(
sj (ur, θ)

)
=

exp
(
sj (ur, θ)

)∑C
k exp (sk (ur, θ))

. (4.10)

The optimal network parameters are then estimated by minimizing the cross-entropy
loss function as

Lseg(T , θ) = –
N∑

n=1

ρ∑
r=1

C∑
j=1

δmn
r ,j log pj(ur, θ | In), (4.11)

for (In, Mn) ∈ T , where δmn
r ,j is the Kronecker delta.

We train our network with an input image of resolution 768× 384 pixels, therefore, we
use bilinear interpolation for resizing the RGB images and the nearest-neighbor interpo-
lation for resizing the groundtruth labels. We initialize the encoder of the network with
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weights pre-trained on the ImageNet dataset [167], while we use the He initialization [93]
scheme for the other convolutional and deconvolutional layers. We use the Adam solver for
optimization with β1 = 0.9, β2 = 0.999 and ε = 10–10. We train our model for a maximum
of 150,000 iterations using an initial learning rate of λ0 = 10–3 with a mini-batch size of 8
and a dropout probability of 0.5. We set the weights λ1 = 0.6 and λ2 = 0.5 to balance the
auxiliary losses. The final loss function is computed as L = Lmain + λ1Laux1 + λ2Laux2.

4.4.4 Comparison with the State-of-the-Art

In this section, we report results comparing the performance of our proposed AdapNet
and AdapNet++ architectures for a input image of resolution 768× 384 pixels. We bench-
mark against several well adopted state-of-the-art models including DeepLab v3 [132],
ParseNet [168], FCN-8s [24], SegNet [136], FastNet [48], DeepLab v2 [138] and Decon-
vNet [169]. For each of the datasets, we report the mIoU score, as well as the per-class
IoU score. Note that we report the performance of each model for the same input image
resolution of 768 × 384 pixels and using the same evaluation setting in order to have a
fair comparison. We do not apply multiscale inputs or left-right flips during testing as
these techniques require each crop of each image to be evaluated several times which
significantly increases the computational complexity and runtime (Note: We do not use
crops for testing, we evaluate on the full image in a single forward-pass). Moreover,
these techniques do not improve the performance of the model in real-time applications.
However, we show the potential gains that can be obtained in the evaluation metric utilizing
these techniques and with a higher resolution input image in the ablation study presented
in Section 4.4.6.5.

Table 4.1 shows the comparison on the 11 class Cityscapes validation set. Both AdapNet
and AdapNet++ outperform all the baselines in each individual object category as well in
the mIoU score. AdapNet and AdapNet++ outperform the highest baseline by a margin
of 2.35% and 5.59% respectively. Analyzing the individual class IoU scores, we can see
that AdapNet++ yields the highest improvement over AdapNet in object categories that
contain thin structures such as poles for which it gives a large improvement of 5.42%, a
similar improvement of 5.05% for fences and the highest improvement for 7.29% for signs.
Most architectures struggle to recover the structure of thin objects due to downsampling
by pooling and striding in the network which causes such information to be lost. However,
these results show that AdapNet++ efficiently recovers the structure of such objects by
learning multiscale features at several stages of the encoder using the proposed multiscale
residual units and the eASPP. We further show the improvement in performance due to the
incorporation of the multiscale residual units and the eASPP in the ablation study presented
in Section 4.4.6.1. In driving scenarios, information of objects such as pedestrians and
cyclists can also be lost when they appear at far away distances. A large improvement can
also be seen in categories such as person in which AdapNet++ achieves an improvement
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Table 4.3: Benchmarking results on the Cityscapes dataset with full resolution evaluation on 19
semantic class labels. Only the eight top performing published models in the leaderboard are listed
in this table. The inference time is reported for an input image resolution of 768× 384 pixels and it
was computed on an NVIDIA TITAN X (PASCAL) GPU using the official implementation of each
method. SSMA refers to our multimodal segmentation architecture that builds upon AdapNet++
and is detailed in Chapter 5.

Network Backbone mIoU (%) Parms. Time
val test (M) (ms)

PSPNet [135] ResNet-101 80.91 81.19 56.27 172.42
DeepLab v3 [132] ResNet-101 79.30 81.34 58.16 79.90
Mapillary [170] WideResNet-38 78.31 82.03 135.86 214.46
DeepLab v3+ [171] Modified Xception 79.55 82.14 43.48 127.97
DPC [172] Modified Xception 80.85 82.66 41.82 144.41
DRN [173] WideResNet-38 79.69 82.82 129.16 1259.67

AdapNet++ (Ours) ResNet50 81.24 81.34 30.20 72.92
SSMA (Ours) ResNet50 82.19 82.31 56.44 101.95

of 5.66%. The improvement in larger object categories such as cars and vegetation can be
attributed to the new decoder which improves the segmentation performance near object
boundaries. This is more evident in the qualitative results presented in Section 4.4.7. Note
that the colors shown below the object category names serve as a legend for the qualitative
results.

We also report results on the full 19 class Cityscapes validation and test sets in Table 4.3.
We compare against the top six published models on the leaderboard, namely, PSPNet [135],
DeepLab v3 [132], Mapilary [170], DeepLab v3+ [171], DPC [172], and DRN [173].
The results of the competing methods reported in this table are directly taken from the
benchmark leaderboard for the test set and from the corresponding manuscripts of the
methods for the validation set. We trained our models on 768× 768 crops from the full
image resolution for benchmarking on the leaderboard. Our AdapNet++ model with a much
smaller network backbone achieves a comparable performance as other top performing
models on the leaderboard. Moreover, our network is the most efficient architecture in
terms of both the number of parameters that it consumes as well as the inference time
compared to other networks on the entire first page of the Cityscapes leaderboard.

We benchmark on the Synthia dataset largely due to the variety of seasons and adverse
perceptual conditions which make the task of semantic segmentation extremely challenging.
From the results shown in Table 4.2, it can be seen that both AdapNet and AdapNet++
outperform all the baselines in the overall mIoU score as well as in the score of the
individual object categories. AdapNet and AdapNet++ achieve an overall substantial
improvement of 5.45% and 9.32% respectively. A similar observation can be made in the
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improvement of scores for thin structures, reinforcing the utility of our proposed multiscale
feature learning configuration. AdapNet++ improves over AdapNet by 13.14% for the sign
class, followed by an improvement of 7.8% for the pole class. In addition a significant
improvement of 5.42% can also be seen for the cyclist class.

Compared to outdoor driving datasets, indoor benchmarks such as SUN RGB-D and
ScanNet pose a different challenge. Indoor datasets have vast amounts of object categories
in various different configurations and images captured from many different view points
compared to driving scenarios where the camera is always parallel to the ground with
similar viewpoints from the perspective of the vehicle driving on the road. Moreover,
indoor scenes are often extremely cluttered which causes occlusions, in addition to the
irregular frequency distribution of the object classes that make the problem even harder.
Due to these factors SUN RGB-D is considered one of the hardest datasets to benchmark
on. Despite these factors, as shown in Table 4.4, AdapNet++ outperforms all the baseline
networks overall by a margin of 2.66% compared to the highest performing DeepLab v3
baseline which took 30,000 iterations more to reach this score. Unlike the performance
in the Cityscapes and Synthia datasets where our AdapNet architecture yields the second
highest performance, AdapNet is outperformed by DeepLab v3 in the SUN RGB-D
dataset. AdapNet++ on the other hand, outperforms the baselines in most categories
by a large margin, while it is outperformed in 13 of the 37 classes by small margin.
It can also be observed that the classes in which AdapNet++ get outperformed are the
most infrequent classes. This can be alleviated by adding supplementary training images
containing the low-frequency classes from other datasets or by employing class balancing
techniques. However, our initial experiments employing techniques such as median
frequency class balancing, inverse median frequency class balancing, normalized inverse
frequency balancing, severely affected the performance of our model.

We also show results on the validation set of the recently introduced ScanNet dataset in
Table 4.5, which is currently the largest labeled indoor RGB-D dataset till date. AdapNet++
outperforms the state-of-the-art overall by a margin of 2.61%. The large improvement can
be attributed to the proposed eASPP which efficiently captures long range context. Context
aggregation plays an important role in such cluttered indoor datasets as different parts
of an object are occluded from different viewpoints and across scenes. As objects such
as the legs of a chair have thin structures, multiscale learning contributes to recovering
such structures. We see a similar trend in the performance as in the SUN RGB-D dataset,
where our network outperforms the baselines in most of the object categories (11 of the 20
classes) significantly, while yielding a comparable performance for the other categories.
The largest improvement of 11.62% is obtained for the counter class, followed by an
improvement of 8.69% for the curtain class which appears as many different variations in
the dataset. An interesting observation that can be made is that the highest parametrized
network DeconvNet which has 252 M parameters has the lowest performance in both SUN
RGB-D and ScanNet datasets, while AdapNet++ which has about 1/9th of the parameters,
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Table 4.7: Bechmarking results on the ScanNet test set with full resolution evaluation. SSMA
refers to our multimodal segmentation architecture that builds upon AdapNet++ and is detailed in
Chapter 5.

Network Multimodal mIoU
(%)

Enet [174] - 37.6
PSPNet [135] - 47.5
3DMV (2d proj) [175] X 49.8
FuseNet [162] X 52.1

AdapNet++ (Ours) - 50.3
SSMA (Ours) X 57.7

outperforms it by more than twice the margin. However, this is only observed in the
indoor datasets, while in the outdoor datasets DeconvNet performs comparable to the other
networks. This is primarily due to the fact that indoor datasets have more number of small
classes and the predictions of DeconvNet do not retain them.

Table 4.7 shows the results on the ScanNet test set. We compare against the top
performing models on the leaderboard, namely, FuseNet [162], 3DMV (2d proj) [175],
PSPNet [135], and Enet [174]. Note that 3DMV and FuseNet are multimodal fusion
methods. Our proposed AdapNet++ model outperforms all the unimodal networks and
achieves state-of-the-art performance for unimodal semantic segmentation on the ScanNet
benchmark.

Finally, we also benchmark on our proposed Freiburg Forest dataset as it is the largest
dataset to provide semantically labeled training data of unstructured forested environments.
We show the results on the Freiburg Forest dataset in Table 4.6, where our proposed
AdapNet++ outperforms the state-of-the-art by 0.82%. Note that this dataset contains
large objects such trees and it does not contain thin structures or objects in multiple scales.
Therefore, the improvement produced by AdapNet++ is mostly due to the proposed decoder
which yields an improved resolution of segmentation along the object boundaries. The
actual utility of this dataset is seen in the qualitative multimodal semantic segmentation
results presented in Chapter 5, where the fusion helps to improve the segmentation in
the presence of disturbances such as glare on the optics and snow. Nevertheless, we see
the highest improvement of 3.52% in the obstacle class, which is the hardest to segment
in this dataset as it contains many different types of objects in one category and it has
comparatively fewer examples in the dataset

Moreover, we also compare the number of parameters and the inference time with the
baseline networks in Table 4.6. Our proposed AdapNet and AdapNet++ architectures
perform inference in 61.81 ms and 72.77 ms respectively on an NVIDIA TITAN X GPU
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Table 4.8: Comparison of network compression approaches on our AdapNet++ model trained on
the Cityscapes dataset.

Technique mIoU Param FLOPS Reduction % of

(%) (M) (B) Param FLOPS

Original 80.77 30.20 138.47 – –

Baseline 80.67 28.57 136.05 -5.40 -1.75

Oracle

80.80 28.34 135.64 -6.15 -2.04

80.56 23.67 125.33 -21.62 -9.49

80.18 21.66 83.84 -28.28 -39.45

79.65 19.91 81.72 -34.07 -40.98

77.95 17.79 79.84 -41.09 -42.34

80.80 28.14 135.17 -6.82 -2.38

Oracle with
80.58 23.16 124.14 -23.31 -10.34

skip (Ours)
80.21 21.11 83.01 -30.10 -40.05

79.68 19.75 81.53 -34.60 -41.12

78.05 17.63 79.48 -41.62 -42.60

which is substantially faster than the top performing architectures in all the benchmarks.
Most of them consume more than twice the amount of time and the number of parameters
making them unsuitable for real-world resource constrained applications. Our critical
design choices enable AdapNet++ to consume only 10.98 ms more than AdapNet, while
exceeding its performance in each of the benchmarks by a large margin. This shows that
AdapNet++ achieves the right performance vs. compactness trade-off which enables it to
be employed in not only resource critical applications, but also in applications that demand
efficiency and a fast inference time.

4.4.5 Evaluation of Model Compression

In this section, we present empirical evaluations of our proposed pruning strategy that is
invariant to shortcut connections. We experiment with pruning entire convolutional filters
which results in the removal of its corresponding feature map and the related kernels in the
following layer. Most existing approaches only prune the first and the second convolution
layer of each residual block, or in addition, equally prune the third convolution layer
similar to the shortcut connection. However, this equal pruning strategy always leads to
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in the number of parameters with the corresponding decrease in the mIoU score for various baseline
approaches versus our proposed technique. The results are shown for the AdapNet++ model trained
on the Cityscapes dataset.

a significant drop in the accuracy of the model that is not recoverable [152]. Therefore,
recent approaches have resorted to omitting pruning of these connections. Contrarily,
our proposed technique is invariant to the presence of identity or projection shortcut
connections, thereby making the pruning more effective and flexible. We employ a greedy
pruning approach but rather than pruning layer by layer and fine-tuning the model after
each step, we perform pruning of entire residual blocks at once and then perform the
fine-tuning. As our network has a total of 75 convolutional and deconvolutional layers,
pruning and fine-tuning each layer will be extremely cumbersome. Nevertheless, we expect
a higher performance employing a fully greedy approach.

We compare our strategy with a baseline approach [152] that uses the `1-norm of the
convolutional filters to compute their importance as well as the approach that we build upon
that uses the Taylor expansion criteria [140] for the ranking as described in Section 4.2.3.
We denote the approach of [140] as Oracle in our results. In the first stage, we start
by pruning only the Res5 block of our model as it contains the most number of filters,
therefore, a substantial amount of parameters can be reduced without any loss in accuracy.
As shown in Table 4.8, our approach enables a reduction of 6.82% of the parameters
and 3.3 B FLOPS with a slight increase in the mIoU metric. Similar to our approach the
original Oracle approach does not cause a drop in the mIoU metric but achieves a lower
reduction in parameters. Whereas, the baseline approach achieves a smaller reduction in
the parameters and simultaneously causes a drop in the mIoU score.
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Our aim for pruning in the first stage was to compress the model without causing a drop
in the segmentation performance, while in the following stages, we aggressively prune the
model to achieve the best parameter to performance ratio. Results from this experiment
are shown as the percentage in reduction of parameters in comparison to the change in
mIoU in Figure 4.16. In the second stage, we prune the convolutional feature maps of
Res2, Res3, Res4 and Res5 layers. Using our proposed method, we achieve a reduction of
23.31% of parameters with minor drop of 0.19% in the mIoU score. Whereas, the Oracle
approach yields a lower reduction in parameters as well as a larger drop in performance. A
similar trend can also be seen for the other pruning stages where our proposed approach
yields a higher reduction in parameters and FLOPS with a minor reduction in the mIoU
score. This shows that pruning convolutional feature maps with regularity leads to a better
compression ratio than selectively pruning layers at different stages of the network. In the
third stage, we perform pruning of the deconvolutional feature maps, while in the fourth
and fifth stages we further prune all the layers of the network by varying the threshold for
the rankings. In the final stage we obtain a reduction of 41.62% of the parameters and
42.60% of FLOPS with a drop of 2.72% in the mIoU score. Considering the compression
that can be achieved, this minor drop in the mIoU score is acceptable to enable efficient
deployment in resource constrained applications.

4.4.6 Ablation Study

In order to evaluate the various components of our AdapNet and AdapNet++ architectures,
we performed several experiments in different settings. In this section, we study the
improvement obtained due to the proposed encoder with the multiscale residual units, a
detailed analysis of the proposed eASPP, comparisons with different base encoder network
topologies, the improvement that can be obtained by using higher resolution images as
input and using multiscale testing. For each of these components, we also study the effect
of different parameter configurations. All the ablation studies presented in this section
were performed using models trained on the Cityscapes dataset.

4.4.6.1 Detailed Study on the Architectural Components

We first study the major contributions made to the encoder as well as the decoder in our
proposed architectures. Table 4.9 shows results from this experiment and subsequent
improvement due to each of the configurations. The simple base model M1 consisting of
the standard ResNet-50 architecture for the encoder and a single deconvolution layer for
upsampling achieves a mIoU of 75.22%. The model M2 that incorporates our multiscale
residual units achieves an improvement of 1.7% without any increase in the memory
consumption. Whereas, the multigrid approach from DeepLab v3 [132] in the same
configuration achieves only 0.38% of improvement in the mIoU score. This shows the
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novelty in employing our multiscale residual units for efficiently learning multiscale
features throughout the network. In the M3 model, we study the effect of incorporating
skip connections for refinement. Skip connections that were initially introduced in the
FCN architecture are still widely used for improving the resolution of the segmentation by
incorporating low or mid-level features from the encoder into the decoder while upsampling.
The ResNet-50 architecture contains the most discriminative features in the middle of the
network. In our M3 model, we first upsample the encoder output by a factor two, followed
by fusing the features from Res3d block of the encoder to refinement and subsequently
using another deconvolutional layer to upsample back to input resolution. This model
which resembles the topology of the AdapNet architecture achieves a further improvement
of 0.86%.

In the M4 model, we replace the standard residual units with the full pre-activation
residual units which yields an improvement of 0.66%. As mentioned in the work by
He et al. [72], the results corroborate that pre-activation residual units yields a lower
error than standard residual units due to the ease of training and improved generalization
capability. Aggregating multiscale context using ASPP has become standard practice
in most classification and segmentation networks. In the M5 model, we add the ASPP
module to the end of the encoder segment. This model demonstrates an improved mIoU of
78.93% due to the ability of the ASPP to capture long range context. In the subsequent
M6 model, we study if adding another skip refinement connection from the encoder yields
a better performance. This was challenging as most combinations along with the Res3d
skip connection did not demonstrate any improvement. However, adding a skip connection
from Res2c showed a slight improvement.

In all the models upto this stage, we fused the low and mid-level encoder features into the
decoder using element-wise addition. In order to make the decoder stronger, we experiment
with improving the learned decoder representations with additional convolutions after
concatenation of the mid-level features. Specifically, the M7 model has three upsampling
stages, the first two stages consist of a deconvolution layer that upsamples by a factor of two,
followed by concatenation of the mid-level features and two following 3× 3 convolutions
that learn highly discriminative fused features. This model shows an improvement of
0.63% which is primarily due to the improved segmentation along the object boundaries
as demonstrated in the qualitative results in Section 4.4.7. Our M7 model contains a
total of 75 convolutional and deconvolutional layers, making the optimization challenging.
In order to accelerate the training and to further improve the segmentation along object
boundaries, we propose a multi-resolution supervision scheme in which we add a weighted
auxiliary loss to each of the first two upsampling stages. This model denoted as M8
achieves an improved mIoU of 80.34%. In comparison to aforementioned scheme, we also
experimented with adding a weighted auxiliary loss at the end of the encoder of the M7
model, however it did not improve the performance, although it accelerated the training.
Finally we also experimented with initializing the layers with the He initialization [93]
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Table 4.10: Evaluation of various atrous spatial pyramid pooling configurations. The performance
is shown for the models trained on the Cityscapes dataset. The symbol ↑k

f denotes a deconvolution
layer and ck

f refers to a convolution layer with f number of filters and k× k kernel size. The weights
for the two auxilary losses were set to L1 = 0.5 and L2 = 0.6 for this experiment.

Model ASPP Conv. Decoder Conv. mIoU Param FLOPS

(%) (M) (B)

M91 [c3
256] [c1

256] 80.06 41.3 115.99

M92 [c3
256] [c3

256] 80.27 42.5 142.42

M93 [c3
256] [c3

256]× 2 80.67 43.7 169.62

M94 [c1
64 c3

64 c1
256] [c3

256]× 2 80.42 30.1 138.21

M95 [c1
64 c3

64 c3
64 c1

256] [c3
256]× 2 80.77 30.2 138.47

scheme (also known as MSRA) in the M9 model which further boosts the mIoU to 80.67%.
The following section further builds upon the M9 model to yield the topology of our
proposed AdapNet++ architecture.

4.4.6.2 Detailed study on the eASPP

In this section, we quantitatively and qualitatively evaluate the performance of our proposed
eASPP configuration and the new decoder topology. We perform all the experiments in
this section using the best performing M9 model described in Section 4.4.6.1. In the
first configuration of the M91 model, we employ a single 3× 3 atrous convolution in the
ASPP, similar the configuration proposed in DeepLab v3 [132] and use a single 1 × 1
convolution in the place of the two 3×3 convolutions in the decoder of the M9 model. This
model achieves an mIoU score of 80.06% with 41.3 M parameters and consumes 115.99 B
FLOPS. In order to better fuse the concatenated mid-level features with the decoder and to
improve its discriminability, we replace the 1×1 convolution layer with a 3×3 convolution
in the M92 model and with two 3× 3 convolutions in the M93 model. Both these models
demonstrate an increase in performance corroborating that a simple 1× 1 convolution is
insufficient for object boundary refinement using fusion of mid-level encoder features.

In an effort to reduce the number of parameters, we employ a bottleneck architecture in
the ASPP of the M94 model by replacing the 3 × 3 atrous convolution with a structure
consisting of a 1 × 1 convolution with half the number of filters, followed by a 3 × 3
atrous convolution with half the number of filters and another 1 × 1 convolution with
the original amount of filters. This model achieves an mIoU score of 80.42% which
accounts to a reduction of 0.25% in comparison to the M93 model, however, it reduces
computational requirement by 13.6 M parameters and 31.41 B FLOPS which makes the
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model very efficient. Nevertheless, this drop in performance is not ideal. Therefore, in
order to compensate for this drop, we leverage the idea of cascading atrous convolutions
that enables an increase in the size of the effective receptive field and the density of the
pixel sampling. Specifically, in the M95 model, we add a cascaded 3×3 atrous convolution
in place of the single 3 × 3 atrous convolution in the M94 model. This model achieves
a mIoU score of 80.77% which is an increase of 0.35% in the mIoU with only a minor
increase of 0.1 M parameters in comparison to our M94 model. The originally proposed
ASPP module consumes 15.53 M parameters and 34.58 B FLOPS, where the cascaded
bottleneck structure in the M95 model only consumes 2.04 M parameters and 3.5 B FLOPS
which is over 10 times more computationally efficient. We denote this cascaded bottleneck
structure as eASPP.

In order to illustrate the phenomenon caused by cascading atrous convolutions, we
visualize the empirical receptive field using the approach proposed by Zhou et al. [176].
First, for each feature vector representing an image patch, we use a 8× 8 mean image to
occlude the patch at different locations using a sliding window. We then record the change
in the activation by measuring the Euclidean distances as a heat map which indicates which
regions are sensitive to the feature vector. Although the size of the empirical receptive fields
is smaller than theoretical receptive fields, they are better localized and more representative
of the information they capture [176]. In Figure 4.17, we show visualizations of the
empirical receptive field size of the convolution layer of the ASPP that has one 3 × 3
atrous convolution in each branch in comparison to our M95 model that has cascaded 3× 3
atrous convolutions. Figures 4.17 (b) and (d) show the receptive field at the annotated
yellow dot for the atrous convolution with the largest dilation rate in ASPP and in our
eASPP correspondingly. It can be seen that our eASPP has a much larger receptive field
that enables capturing large contexts. Moreover, it can be seen that the pixels are sampled
much denser in our eASPP in comparison to the ASPP. In Figures 4.17 (f) and (h), we show
the aggregated receptive fields of the entire module in which it can be observed that our
eASPP has much lesser isolated points of focus and a cleaner sensitive area than the ASPP.
We evaluated the generalization of our proposed eASPP by incorporating the module into
our AdapNet++ architecture and benchmarking its performance in comparison to DeepLab
which incorporates the ASPP. The results presented in Section 4.4.1 demonstrate that our
eASPP effectively generalizes to a wide range of datasets containing diverse environments.

4.4.6.3 Improving the Granularity of Segmentation

In our AdapNet++ architecture, we propose two strategies to improve the segmentation
along object boundaries in addition to the new decoder architecture. The first being the
two skip refinement stages that fuse low and mid-level encoder features from Res3d and
Res2c into the decoder for object boundary refinement. However, as the low and mid-level
features have a large number of filters (512 in Res3d and 256 in Res2c) in comparison to
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Figure 4.17: Comparison of the receptive field of ASPP and our proposed eASPP. The receptive
field is visualized for the annotated yellow dot shown in Figures b, d, f, and h. Our proposed eASPP
has larger receptive field size and denser pixel sampling in comparison to the ASPP.



118 Chapter 4. Semantic Scene Segmentation

Table 4.11: Effect on varying the number of filters in the skip refinement connections in the M95
model. The performance is shown for the models trained on the Cityscapes dataset.

Skip Channels 12 24 36 48 60

mIoU (%) 80.50 80.77 80.67 80.59 80.56

Table 4.12: Effect on varying the weighting factor of the auxiliary losses in the M95 model. The
performance is shown for the models trained on the Cityscapes dataset.

Aux 1 Weight 0.4 0.4 0.5 0.5 0.6 0.6
Aux 2 Weight 0.2 0.3 0.4 0.6 0.4 0.5

mIoU (%) 80.55 80.68 80.60 80.55 80.53 80.77

the decoder filters that only have 256 feature channels, they will outweigh the high-level
features and decrease the performance. Therefore, we employ a 1 × 1 convolution to
reduce the number of feature channels in the low and mid-level representations before
fusing them into the decoder. In Table 4.11, we show results varying the number of feature
channels in the 1× 1 skip refinement convolutions in the M95 model from Section 4.4.6.2.
We obtain the best results by reducing the number of low and mid-level encoder feature
channels to 24 using the 1× 1 convolution layer.

The second strategy that we employ for improving the segmentation along object
boundaries is using our proposed multi-resolution supervision scheme. As described in
Section 4.2.2.3, we employ auxiliary loss branches after each of the first two upsampling
stages in the decoder to improve the resolution of the segmentation and to accelerate
training. Weighing the two auxiliary losses is critical to balance the gradient flow through
all the previous layers of the network. We experiment with different loss weightings and
report results for the same M95 model in Table 4.12. The network achieves the highest
performance for auxiliary loss weightings λ1 = 0.6 and λ2 = 0.5 for Laux1 and Laux2

respectively.
In order to quantify the improvement specifically along the object boundaries, we

evaluate the performance of our architecture using the trimap experiment [177]. The
mIoU score for the pixels that are within the trimap band of the void class labels (255)
are computed by applying the morphological dilation on the void labels. Results from
this experiment shown in Figure 4.18 demonstrates that our new decoder in AdapNet++
improves the performance along object boundaries compared to the decoder in AdapNet,
while the M7 model with the new decoder and the skip refinement further improves the
performance. Finally, the M8 model consisting of our new decoder with the skip refinement
stages and our multi-resolution supervision scheme for training significantly improves the
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Figure 4.18: Influence of the proposed decoder, skip refinement and multi-resolution supervision
in AdapNet++ on the segmentation along objects boundaries using the trimap experiment. The plot
shows the mIoU score as a function of the trimap band width along the object boundaries.

Table 4.13: Effect on varying the number of filters in the skip refinement connection in the M95
model. The performance is shown for the models trained on the Cityscapes dataset.

Encoder ResNet PA ResNet ResNeXt SEnet Xception

mIoU (%) 79.32 80.77 80.30 78.31 78.70
Param (M) 30.2 30.2 29.7 32.7 27.5
FLOPS (B) 135.28 138.47 145.81 145.34 137.06

segmentation along the boundaries which is more evident when the trimap band is narrow.

4.4.6.4 Encoder Topology

In recent years, several efficient network architectures have been proposed for image
classification that are computationally inexpensive and have fast inference times. In order
to study the trade-off between accuracy and computational requirements, we performed ex-
periments using five widely employed architectures as the encoder backbone. Specifically,
we evaluate the performance using ResNet-50 [27], full pre-activation ResNet-50 [72],
ResNeXt [178], SEnet [179] and Xception [180] architectures for the encoder topology
and augmented them with our proposed modules, similar to the M95 model described in
Section 4.4.6.2.

Results from this experiment are shown are Table 4.13. Note that in the comparisons
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presented in this section, no model compression has been performed. It can be seen that
the full pre-activation ResNet-50 model achieves the highest mIoU score, closely followed
by the ResNeXt model. However the ResNeXt model has an additional 7.34 M parameters
with a slightly lesser number of FLOPS. While, the standard ResNet-50 architecture
that we employ in AdapNet has 3.19 M parameters lesser than the full pre-activation
ResNet-50 model, it achieves a lower mIoU score of 79.32%. Therefore, we choose the
full pre-activation ResNet-50 architecture as the encoder backbone in our AdapNet++
architecture.

4.4.6.5 Image Resolution and Testing Strategies

We further performed experiments using input images with larger resolutions as well as
with left-right flipped inputs and multiscale inputs while testing. In all our benchmarking
experiments, we use an input image with a resolution of 768 × 384 pixels in order to
enable fast inference on a consumer grade GPU. State-of-the-art semantic segmentation
architectures often use the full resolution of the image in the datasets as input which could
be upto 2048× 1024 pixels. Using the full resolution image as input yields a downsampled
output with a larger resolution at the end of the encoder, thereby leading to a lesser loss
of information due to downsampling and more boundary delineation. Employing a larger
resolution image as input also enables better segmentation of small objects that are at far
away distances, especially in urban driving datasets such as Cityscapes. However, the
caveat being that it requires multi-GPU training with synchronized batch normalization in
order to utilize a large enough mini-batch size, which makes the training more cumbersome.
Moreover, using a larger input image quickly increases the inference time of the model.

Nevertheless, we present experimental results using AdapNet++ with input images
of resolution 896 × 448 pixels and 1024 × 512 pixels, in addition to the resolution of
768 × 384 pixels that we use for the benchmarking experiments. Note that our model
is compact enough to train on images with these resolutions in a single consumer grade
GPU with 12 GB of memory. In addition to the varying input resolutions, we also test with
left-right flips and multiscale inputs. However, although this increases the mIoU score it
substantially increases the computation complexity and runtime, therefore rendering it not
useful to improve the performance in real-world applications. A summary of the results
from this experiment are shown in Table 4.14.

It can be seen that with each higher resolution image, the model yields an increased
mIoU score and simultaneously consumes a larger inference time. Similarly, left-right
flips and multiscale inputs also yield an improvement in the mIoU score. For the input
image resolution of 768 × 384 pixels, left-right flips yields an increase of 0.58% in the
mIoU, while multiscale inputs in addition, yields a further improvement of 0.9%. The
corresponding pixel accuracy and and average precision also shows an improvement. The
model with an input image of resolution 1024× 512 pixels demonstrates an improvement
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Table 4.14: Effect on using a higher resolution input image and employing left-right flip as well as
multiscale inputs during testing. The performance is shown for AdapNet++ models trained on the
Cityscapes dataset.

Image Size Flip MS mIoU Acc. AP Time

(pixels) (%) (%) (%) (ms)

768× 384 - - 80.77 96.04 90.97 72.77

768× 384 X - 81.35 96.18 90.76 148.93

768× 384 X X 82.25 96.36 91.86 1775.96

896× 448 - - 81.69 96.06 89.96 88.89

896× 448 X - 82.28 96.21 90.53 183.57

896× 448 X X 83.19 96.48 91.52 2342.31

1024× 512 - - 82.47 96.13 90.63 105.94

1024× 512 X - 83.07 96.28 91.17 219.28

1024× 512 X X 84.27 96.66 92.36 3061.11

of 1.7% in the mIoU in comparison to the model with a lower resolution image that we
use for benchmarking. Furthermore, using left-right flips and multiscale inputs yields
an overall improvement of 3.7% in the mIoU and additional improvements in the other
metrics in comparison to the benchmarking model.

4.4.7 Qualitative Comparison

In this section, we qualitatively evaluate the semantic segmentation performance of our
AdapNet and AdapNet++ architectures in comparison to the best performing state-of-the-
art model for each dataset according to the quantitative results presented in Section 4.4.1.
We utilize this best performing model as a baseline for the qualitative comparisons pre-
sented in this section and show two examples for each dataset that we benchmark on. The
colors for the segmented labels shown correspond to the colors and the object categories
mentioned in the benchmarking tables shown in Section 4.4.1.

Figures 4.19 (a) and (b) show examples from the Cityscapes dataset in which the
improvement over the baseline output (AdapNet) can be seen in the better differentiation
between inconspicuous classes such as sidewalk and road as well as pole and sign. This
can be primarily attributed to the eASPP which has a large receptive field and thus captures
larger object context which helps to discern the differences between the inconspicuous
classes. The improvement due to better boundary segmentation of thin object classes such



122 Chapter 4. Semantic Scene Segmentation
InputIm

age
B

aseline
O

utput
A

dapN
et++

O
utput

Im
provem

ent/E
rrorM

ap

(a) Cityscapes(b) Cityscapes(c) Synthia(d) Synthia

Figure
4.19:Q

ualitative
segm

entation
results

ofourA
dapN

et++
architecture

in
com

parison
to

the
bestperform

ing
state-of-the-artm

odel(A
dapN

et)
on

C
ityscapes

and
Synthia

datasets.
In

addition
to

the
segm

entation
output,w

e
also

show
the

im
provem

ent
/

error
m

ap
w

hich
indicates

the
m

isclassified
pixels

in
red

and
the

pixels
thatare

m
isclassified

by
the

bestperform
ing

state-of-the-artm
odelbutcorrectly

predicted
by

A
dapN

et++
in

green.T
he

colorlegend
forthe

segm
entation

labels
correspond

to
those

show
n

in
the

benchm
arking

tables
in

Section
4.4.1.



4.4. Experimental Evaluation 123

as poles can be seen in the images.
Figures 4.19 (c) and (d) show examples from the Synthia dataset, where objects such

as bicycles, cars and people are better segmented. The baseline output (AdapNet) shows
several missing cars, people and bicycles, whereas the AdapNet++ output accurately
captures these objects. Moreover, it can also be seen that the pole-like structures and trees
are often discontinuous in the baseline output, while they are more well defined in the
AdapNet++ output. In Figure 4.19 (d), an interesting observation is made where an entire
fence is segmented in the baseline output but is absent in the scene. This is due to the fact
that the intersection of the sidewalk and the road gives an appearance of a fence which is
then misclassified. In the same image, it can also be observed that a small building-like
structure on the right is not captured, whereas our AdapNet++ model accurately segments
the structure.

Figures 4.20 (a) and (b) show examples from the indoor SUN RGB-D dataset. Examples
from this dataset show significant misclassification due to inconspicuous objects. Often
scenes in indoor datasets have large objects that require the network to have very large
receptive fields to be able to accurately distinguish between them. Figure 4.20 (a) shows a
scene in which parts of the chair and the table are incorrectly classified as a desk in the
output of the baseline model (DeepLab v3). These two classes have very similar structure
and appearance which makes distinguishing between them extremely challenging. In
Figure 4.20 (b), we can see parts of the sofa incorrectly classified in the baseline model
output, whereas the entire object is accurately predicted in the AdapNet++ output. In the
baseline output, misclassification can also be seen for the picture on the wall which is
precisely segmented in the AdapNet++ output.

In Figures 4.20 (c) and (d), we show examples from the indoor ScanNet dataset. Fig-
ure 4.20 (c) shows misclassification in the output of the baseline model (DeepLab v3) in
the boundary where the wall meets the floor and for parts of the desk that is misclassified
as other furniture. Figure 4.20 (d) shows a significant improvement in the segmentation
of AdapNet++ in comparison to the baseline model. The cabinet and counter are entirely
misclassified as a desk and other furniture correspondingly in the output of the baseline
model, whereas they are accurately predicted by our AdapNet++ mode.

Figures 4.21 (a) and (b) show examples from the unstructured Freiburg Forest dataset
where the improvement can largely be seen in discerning the object boundaries of classes
such as grass and vegetation, as well as trail and grass. By observing these images, we
can see that even for us humans it is difficult to estimate the boundaries between these
classes. Our AdapNet++ architecture predicts the boundaries comparatively better than the
baseline model (DeepLab v3). The improvement in the segmentation can also been seen in
the finer segmentation of the vegetation and the trail path in the AdapNet++ output.

Furthermore, Figure 4.21 (c) shows a failure mode where the image is underexposed due
to direct sunlight on the optics which causes the obstacle in the left of the image indicated in
black to be not fully captured in the segmentation. This could lead to unforeseen situations



124 Chapter 4. Semantic Scene Segmentation
InputIm

age
B

aseline
O

utput
A

dapN
et++

O
utput

Im
provem

ent/E
rrorM

ap

(a) SUN RGB-D(b) SUN RGB-D(c) ScanNet(d) ScanNet

Figure
4.20:

Q
ualitative

segm
entation

results
of

our
A

dapN
et++

architecture
in

com
parison

to
the

best
perform

ing
state-of-the-art

m
odel

(D
eepL

ab
v3)on

SU
N

R
G

B
-D

and
ScanN

etdatasets.In
addition

to
the

segm
entation

output,w
e

also
show

the
im

provem
ent/errorm

ap
w

hich
indicates

the
m

isclassified
pixels

in
red

and
the

pixels
thatare

m
isclassified

by
the

bestperform
ing

state-of-the-artm
odelbutcorrectly

predicted
by

A
dapN

et++
in

green.T
he

colorlegend
forthe

segm
entation

labels
correspond

to
those

show
n

in
the

benchm
arking

tables
in

Section
4.4.1.



4.4. Experimental Evaluation 125

In
pu

tI
m

ag
e

B
as

el
in

e
O

ut
pu

t
A

da
pN

et
++

O
ut

pu
t

Im
pr

ov
em

en
t/

E
rr

or
M

ap

(a)Forest (b)Forest

In
pu

tI
m

ag
e

G
ro

un
dt

ru
th

L
ab

el
A

da
pN

et
++

O
ut

pu
t

E
rr

or
M

ap

(c)Forest

Fi
gu

re
4.

21
:

Q
ua

lit
at

iv
e

se
gm

en
ta

tio
n

re
su

lts
of

ou
r

A
da

pN
et

++
ar

ch
ite

ct
ur

e
in

co
m

pa
ri

so
n

to
th

e
be

st
pe

rf
or

m
in

g
st

at
e-

of
-t

he
-a

rt
m

od
el

(D
ee

pL
ab

v3
)o

n
th

e
Fr

ei
bu

rg
Fo

re
st

da
ta

se
t.

T
he

la
st

ro
w

sh
ow

s
a

fa
ilu

re
m

od
e

w
he

re
th

e
ob

st
ac

le
in

th
e

le
ft

of
th

e
im

ag
e

de
pi

ct
ed

in
bl

ac
k

is
no

t
fu

lly
ca

pt
ur

ed
in

th
e

se
gm

en
ta

tio
n

ou
tp

ut
du

e
to

un
de

re
xp

os
ur

e
of

th
e

im
ag

e
ca

us
ed

by
th

e
gl

ar
in

g
su

n
on

th
e

op
tic

s.
In

ad
di

tio
n

to
th

e
se

gm
en

ta
tio

n
ou

tp
ut

,w
e

al
so

sh
ow

th
e

im
pr

ov
em

en
t/

er
ro

rm
ap

w
hi

ch
in

di
ca

te
s

th
e

m
is

cl
as

si
fie

d
pi

xe
ls

in
re

d
an

d
in

(a
,b

)t
he

pi
xe

ls
th

at
ar

e
m

is
cl

as
si

fie
d

by
th

e
be

st
pe

rf
or

m
in

g
st

at
e-

of
-t

he
-a

rt
m

od
el

bu
tc

or
re

ct
ly

pr
ed

ic
te

d
by

A
da

pN
et

++
in

gr
ee

n,
w

hi
le

in
(c

)t
he

pi
xe

ls
th

at
ar

e
co

rr
ec

tly
cl

as
si

fie
d

by
A

da
pN

et
in

gr
ee

n.
T

he
co

lo
rl

eg
en

d
fo

rt
he

se
gm

en
ta

tio
n

la
be

ls
co

rr
es

po
nd

to
th

os
e

sh
ow

n
in

th
e

be
nc

hm
ar

ki
ng

ta
bl

es
in

Se
ct

io
n

4.
4.

1.



126 Chapter 4. Semantic Scene Segmentation
InputIm

age
G

roundtruth
L

abel
A

dapN
et++

O
utput

E
rrorM

ap

(a) Cityscapes(b) Synthia(c) SUN RGB-D(d) ScanNet

Figure
4.22:Exam

ple
failure

m
odes

ofourA
dapN

et++
m

odelthatare
prim

arily
caused

due
to:(a)obstacles

in
the

field
ofview

,(b)poorvisibility
due

to
w

eathercondition
such

as
rainfall,(c)inconsistentlabels

in
the

datasets
and

(d)change
in

appearance
due

to
m

ultiple
objects

being
stacked

together.In
addition

to
the

segm
entation

outputand
the

groundtruth
label,w

e
also

show
the

errorm
ap

w
hich

indicates
the

m
isclassified

pixels
in

red
and

correctly
predicted

pixels
in

green.T
he

colorlegend
forthe

segm
entation

labels
correspond

to
those

show
n

in
the

benchm
arking

tables
in

Section
4.4.1.



4.4. Experimental Evaluation 127

if the robot drives over the area and misses detecting the obstacle. Figure 4.22 shows more
failure modes from the other datasets that we benchmark on. In Figure 4.22 (a), the cyclist
behind the two people in the center of the image is misclassified as a person as most of the
bicycle is covered by the two people in front of the cyclist. Figure 4.22 (b) shows a dark
scene with rainfall which causes a significant amount of poles and persons that are at far
away distances to be not captured in the segmentation due to bad visibility. Figure 4.22 (c)
shows an example from the SUN RGB-D dataset where a sofa is misclassified as a chair.
This is caused by the inconsistency in the labels in this dataset. As the SUN RGB-D dataset
is a mixture of three different datasets, some instances have the single-person sofa labeled
as a chair, while the others have it labeled as the sofa class which causes confusion among
these object classes. In another example, Figure 4.22 (d) shows a scene where the chairs
are folded and stacked with each other which gives a completely different appearance than
the examples of the chair class in the training set. In the next chapter, we demonstrate how
leveraging complementary modalities such as depth and near-infrared can enable robust
semantic segmentation in most of these situations.

4.4.8 Generalization Analysis

In this section, we qualitatively evaluate the generalization performance of our AdapNet
and AdapNet++ architectures on data collected by our autonomous car setup in Freiburg.
The data was collected over three days in different driving scenarios including both in the
inner-city and highways. We use our models trained on the Cityscapes dataset and only test
on the images captured in Freiburg. Figure 4.23 shows four examples from this experiment
in which we can observe that the structure of these scenes are substantially different than
the images in the Cityscapes dataset and a significant amount of illumination changes can
be seen. The colors for the segmented labels shown correspond to the colors and the object
categories mentioned in the Cityscapes benchmarking results shown in Table 4.1.

The AdapNet++ model in general, demonstrates more accurate semantic segmentation
than the AdapNet model in these environments. In Figure 4.23 (a), we see that the
AdapNet++ model precisely captures the fences in the scene along the right side of the
sidewalk as well as traffic signs that are at far away distances. While in Figure 4.23 (b),
we observe that the AdapNet++ model shows a greater granularity in the segmentation of
vegetation and it more accurately captures the dividers in the middle of the road as well as
sidewalks. This can be attributed to the new decoder in AdapNet++ which enables accurate
segmentation of thin structures and improves the granularity of the segmentation along
the object boundaries. Figure 4.23 (c) shows a hard example where the middle island on
the road is at the same level as the road, as opposed to being raised similar to sidewalks.
Even in this scenario, the AdapNet++ model reasonable segments the middle island due
to its eASPP which enables it to capture long-range context with a large receptive field
resolution, whereas AdapNet produces misclassifications in this region. It can also be
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observed that in some instances, AdapNet segments the shadows made by cars as the car
class and does not capture all the traffic sings in the scene, while the AdapNet++ output
accurately captures these objects due to the multiscale context aggregation in the encoder.
Finally, in Figure 4.23 (d), we can see a more precise segmentation in the AdapNet++
output compared to AdapNet for object classes such as sidewalks, person, vegetation,
fences and cars. Nevertheless, these results demonstrate that our models reliably segments
the scene and generalizes effectively to scenes from previously unseen cities that were not
present in the training data.

4.5 Related Work

In this chapter, we addressed the problem of efficient semantic segmentation using convo-
lutional neural networks. There is a significant amount of prior work in this fundamental
perception problem. However, in the last decade, there has been a sharp transition from
employing hand engineered features with flat classifiers such as Support Vector Ma-
chines [181], Boosting [182] or Random Forests [183, 184], to end-to-end DCNN-based
approaches [24, 136]. In order to highlight our contributions, we present a through review
in this section by first briefly discussing some of the classical methods before delving into
the state-of-the-art techniques.

Semantic segmentation is one of the fundamental problems in computer vision. Some
of the earlier approaches for semantic segmentation use small patches to classify the
center pixel using flat classifiers [182, 183] followed by smoothing the predictions using
Conditional Random Fields (CRFs) [182]. Rather than only relying on appearance based
features, structure from motion features have also been used with randomized decision
forests [182, 184]. View independent 3D features from dense depth maps have been
shown to outperform appearance based features, that also enabled classification of all the
pixels in an image, as opposed to only the center pixel of a patch [185]. Plath et al. [186]
propose an approach to combine local and global features using a CRF and an image
classification method. However, the performance of these approaches is largely bounded
by the expressiveness of handcrafted features which is highly scenario-specific.

The remarkable performance achieved by CNNs in classification tasks led to their
application for dense prediction problems such as semantic segmentation, depth estimation
and optical flow prediction. Initial approaches that employed neural networks for semantic
segmentation still relied on patch-wise training [187, 188, 189]. Pinheiro et al. [189]
use a recurrent CNN to aggregate several low-resolution predictions for scene labeling.
Clement et al. [188] transforms the input image through a Laplacian pyramid followed by
feeding each scale to a CNN for hierarchical feature extraction and classification. Although
these approaches demonstrated improved performance over handcrafted features, they
often yield a grid-like output that does not capture the true object boundaries. One of the
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first end-to-end approaches that learns to directly map the low-resolution representations
from a classification network to a dense prediction output was the Fully Convolutional
Network (FCN) model [24]. FCN proposed an encoder-decoder architecture in which the
encoder is built upon the VGG-16 [153] architecture with the inner-product layers replaced
with convolutional layers. While, the decoder consists of successive deconvolution and
convolution layers that upsample and refine the low-resolution feature maps by combining
them with the encoder feature maps. The last decoder then yields a segmented output with
the same resolution as the input image.

DeconvNet [169] propose an improved architecture containing stacked deconvolution
and unpooling layers that perform non-linear upsampling and outperforms FCNs but at
the cost of a more complex training procedure. The SegNet [136] architecture eliminates
the need for learning to upsample by reusing pooling indices from the encoder layers to
perform upsampling. U-Net [122] adds skip connections from the encoder to each corre-
sponding decoder section for biomedical image segmentation. Similarly, RefineNet [190]
proposed a network to exploit features along the down-sampling process to enable high-
resolution segmentation. Oliveira et al. [48] propose an architecture that builds upon FCNs
and introduces more refinement stages and incorporates spatial dropout to prevent over
fitting. The ParseNet [168] architecture models global context directly instead of only
relying on the largest receptive field of the network. Several recent approaches employ
Conditional Random Fields (CRFs) in cascade with CNNs to encode long-range context
and to improve object boundary segmentation [138, 191]. Some approaches jointly train
CNN and CRF components [192, 193], while others employ several convolutional layers
on top of the belief maps to capture context information [194]. Vemulapalli et al. [195]
propose an approach that combines Gaussian Conditional Random Fields with CNNs and
outperforms other approaches that combine CNNs with discrete CRF models. However,
these techniques are not feed-forward in test time as they require MAP inference over a
CRF or other aids such as region proposals.

Recently, there has been more focus on learning multiscale features, which was initially
achieved by providing the network with multiple rescaled versions of the image [188] or by
fusing features from multiple parallel branches that take different image resolutions [24].
The general goal of these approaches is to provide the network with both local and global
context [196] by using features extracted at multiple scales and incorporating feature maps
from early network layers for improving prediction along object boundaries as they retain
more high frequency details. Most of these networks are difficult to train due to the number
of parameters they consume [197], therefore, multi-stage training procedures are often
employed. In addition, they have slow runtimes due to multiple convolutional pathways
for feature extraction.

In order to alleviate this problem, Yu et al. [67] propose dilated convolutions that allows
for exponential increase in the receptive field without decrease in resolution or increase in
parameters. Since then several approaches have explored the use of dilated convolutions
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for semantic segmentation. Wu et al. [198] study the effect of atrous convolutions with
different dilation rates for capturing long-range information. Wang et al. [199] employ
hybrid atrous rates in a residual network architecture. Dai et al. [200] proposes deformable
convolutions that generalize dilated convolutions by sampling the input features with a
learned offset. DeepLab [132, 138] build upon the aforementioned idea and uses dilated
convolutions of different atrous rates to aggregate multiscale global context. Subsequently,
Zhao et al. introduce the PSPNet [135] architecture that employs spatial pooling at different
grid scales to capture multiscale information. However, a major drawback in employing
these approaches is the computational complexity and the substantially large inference time
even using modern GPUs that hinder them from being deployed in robots that often have
limited resources. Conversely, in this chapter we presented several new contributions for
learning multiscale features, capturing long range context and improving the upsampling
in the decoder, while simultaneously reducing the number of parameters and maintaining a
fast inference time. Our proposed architectures that incorporate these techniques achieve
a good trade-off between performance and computational complexity of the model for
enabling efficient deployment in real-world robotic perception applications.

4.6 Conclusions

In this chapter, we presented the novel AdapNet and AdapNet++ architectures for efficient
semantic scene segmentation. Our AdapNet architecture follows the encoder-decoder
topology and incorporates our multiscale residual units with atrous convolutions that
have gradually increasing dilation rates to encode multiscale information throughout the
network without increasing the number of parameters. The proposed multiscale residual
units are more effective at learning multiscale features and outperform the commonly
employed multigrid method. Furthermore, our proposed AdapNet++ architecture builds
upon AdapNet and additionally incorporates several new network modules for improving
the performance, including the Efficient Atrous Spatial Pyramid Pooling (eASPP), a new
strong decoder and the multi-resolution supervision strategy. Our eASPP employs both
parallel and cascaded atrous convolutions with different dilation rates in a bottleneck
fashion to efficiently capture long range context and probe the features with filters at
multiple sampling rates and field of views. The eASPP has a larger effective receptive field
and achieves 10 times reduction in the number of parameters with a simultaneous increase
in performance compared to the standard ASPP. Our new decoder with skip refinement
stages fuses low and mid-level features from the encoder for object boundary refinement.
Finally, the proposed multi-resolution supervision scheme accelerates the training and
further improves the performance along object boundaries. Additionally, we presented
a holistic network-wide pruning approach that is invariant to shortcut connections, to
compress our model and to enable efficient deployment.
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We introduced a first-of-its-kind Freiburg Forest dataset that contains images of multiple
modalities and spectra with pixel-wise ground truth annotations of unstructured forested
environments. We presented an exhaustive theoretical analysis, visualizations, quantitative
and qualitative results on the Cityscapes, Synthia, SUN RGB-D, ScanNet and Freiburg
Forest datasets. The results demonstrate that our architectures achieve state-of-the-art
performance with a significantly lesser number of parameters and a substantially faster
inference time in comparison to several strong state-of-the-art models. Furthermore, we
presented qualitative evaluations on data collected by our autonomous car setup in Freiburg
that demonstrates the generalization ability of our model to previously unseen scenarios.



Chapter 5

Multimodal Semantic Segmentation

Learning to reliably perceive and understand the scene is an inte-
gral enabler for robots to operate in the real-world. This prob-
lem is inherently challenging due to the multitude of object types
as well as appearance changes caused by varying illumination and
weather conditions. Leveraging complementary modalities can en-
able learning of semantically richer representations that are re-
silient to such perturbations. Despite the tremendous progress in
recent years, most CNNs directly concatenate different modalities
from the outset, or concatenate learned features from modality-
specific streams, rendering the model incapable of focusing only on
the relevant complementary information. To address this limitation,
we propose two mutimodal semantic segmentation frameworks that
dynamically adapt the fusion of modality-specific features based
on the scene condition. Our first fusion scheme termed CMoDE
learns to probabilistically fuse features from modality-specific net-
work streams to exploit the most discriminative complementary
class-specific features. While our subsequently proposed SSMA fu-
sion scheme dynamically fuses intermediate representations from
modality-specific encoder streams into a single decoder, while being
sensitive to the object category, spatial location and scene context in
a self-supervised manner. Comprehensive empirical evaluations on
several benchmarks show that both our fusion techniques achieve
state-of-the-art performance, while demonstrating substantial ro-
bustness in adverse perceptual conditions.

5.1 Introduction

Robust scene understanding is a critical and essential task for autonomous navigation.
This problem is heavily characterized by changing environmental conditions that take
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Input Image Segmented Output

Figure 5.1: Example real-world scenarios where current state-of-the-art models demonstrate
misclassifications. The first row shows an issue of mismatched relationship as well as inconspicuous
classes where a decal on the train is falsely predicted as a person and the decal text is falsely
predicted as a traffic sign. While, the second row shows misclassifications caused by overexposure
of the camera due to the car exiting a tunnel and finally, the last row shows misclassifications due
to bad visibility caused by rain.

place throughout the day and across seasons. Robots should be equipped with models that
are impervious to these factors in order to be operable and more importantly to ensure
safety in the real-world. A robot with a perception system that is incapable of handling
such large visual appearance changes can quickly jeopardize its operation and cause
accidents that imperil the people around. As we demonstrated in the previous chapter, deep
Convolutional Neural Network (CNN) based approaches have achieved unprecedented
performance in semantic segmentation tasks [53, 59, 132, 135]. We presented two efficient
semantic segmentation architectures that incorporate several new techniques, including
for learning multiscale information, capturing long range context, aggregating multiscale
features, improving object boundary refinement and for compressing the model effectively
by pruning unimportant neurons. These techniques enable our models to achieve state-of-
the-art performance while being compact and having fast inference times.

Nevertheless, state-of-the-art semantic segmentation architectures still face several
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challenges while being employed in the real-world due to frequent visual appearance
changes caused by transitioning weather, illumination and seasons, in addition to the
diversity of complex scenes that cause mismatched relationship as well as inconspicuous
object classes. Figure 5.1 shows example scenes from real-world scenarios in which
misclassifications are produced due to the decal on the train which is falsely predicted as
a person and a traffic sign (first row), overexposure of the camera caused by the vehicle
exiting a tunnel (second row), and bad visibility conditions caused by rain and cloudy
weather (third row). In order to accurately predict the elements of the scene in these
situations, features from complementary modalities such as depth and infrared can be
leveraged to correspondingly exploit object properties such as geometry and reflectance.
Moreover, the network can exploit complex intra-modal dependencies more effectively by
directly learning to fuse visual appearance information from RGB images with learned
features from complementary modalities in an end-to-end fashion. This not only enables
the network to resolve inherent ambiguities and improve the reliability but also obtain a
more holistic scene segmentation.

While most existing work focuses on where to fuse modality-specific streams topolog-
ically [50, 162, 201] and what transformations can be applied on the depth modality to
enable better fusion with visual RGB features [161, 163], it still remains an open question
as to how to enable the network to dynamically adapt its fusion strategy based on the
nature of the scene such as the types of objects, their spatial location in the world and
the present scene context. This is a crucial requirement in applications such as robotics
and autonomous driving where these systems run in continually changing environmental
contexts. For example, an autonomous car navigating in ideal weather conditions can pri-
marily rely on visual information but when it enters a dark tunnel or exits an underpassage,
the cameras might experience under/over exposure, whereas the depth modality will be
more informative. Furthermore, the strategy to be employed for fusion also varies with
the types of objects in the scene, for instance, infrared might be more useful to detect
categories such as people, vehicles, vegetation and boundaries of structures but it does not
provide much information on object categories such as the sky. Additionally, the spatial
location of objects in the scene also has an influence, for example, the depth modality
provides rich information on objects that are at nearby distances but degrades very quickly
for objects that are several meters away. More importantly, the approach employed should
be robust to sensor failure and noise as constraining the network to always depend on
both modalities and use noisy information can worsen the actual performance and lead to
disastrous situations.

Due to these complex interdependencies, naively treating modalities as multi-channel
input data or concatenating independently learned modality-specific features does not
allow the network to adapt to the aforementioned situations dynamically. Moreover, due to
the nature of this dynamicity, the fusion mechanism has to be trained in a self-supervised
manner in order to make the adaptivity emergent and to generalize effectively to different
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real-world scenarios. As a solution to this problem, we present two novel multimodal
fusion mechanisms: the Convoluted Mixture of Deep Experts (CMoDE) and the Self-
Supervised Model Adaptation (SSMA) scheme. We build upon our AdapNet++ semantic
segmentation architecture presented in Chapter 4, and propose two multimodal variants
incorporating the CMoDE and SSMA fusion mechanisms respectively. The CMoDE
acts as a multiplexer and adaptively weighs class-specific features of individual modality-
specific network streams using learned probability distributions. The CMoDE module
consists of multiple Adaptive Gating Networks (AGN) that each take a two-dimensional
encoder feature channel corresponding to particular object class from each modality-
specific stream as input and uses them to map the decoder features to a probabilistically
fused representation. We employ the CMoDE to fuse the high-level semantically mature
features at the end of the modality-specific encoder-decoder streams and feed the output
to an additional convolution layer to further learn discriminative complementary fused
kernels. Although our CMoDE fusion mechanism exploits complementary features from
modality-specific network streams according to the different object classes in the scene,
it does not address the fact that the spatial location of the object in the environment also
influences the selection of modality-specific features. For example, modalities such as
depth are accurate at nearby distances but degrades quickly for objects that are at far away
distances, therefore, the alternate visual RGB features should be leveraged for segmenting
distant objects in this case.

In order to address this limitation, we present the SSMA fusion mechanism that adap-
tively recalibrates and fuses modality-specific feature maps based on the object class, its
spatial location and the scene context. The SSMA module takes intermediate encoder
representations of modality-specific streams as input and fuses them probabilistically based
on the activations of individual modality streams. As we model the SSMA module in a
fully convolutional fashion, it yields a probability for each activation in the feature maps
(as opposed to only a probability for each object class in the CMoDE approach) which
represents the optimal combination to exploit complementary properties. These probabil-
ities are then used to amplify or suppress the representations of the individual modality
streams, followed by the fusion. As we base the fusion on modality-specific activations, it
is intrinsically tolerant to sensor failure and noise such as missing depth values. We employ
the SSMA module to fuse representations at the end of the modality-specific encoder
streams as well as to fuse the mid-level encoder representations. The fused representations
from the SSMA modules are input to the decoder at different stages for upsampling and
refining the predictions.

We employ a combination of mid-level fusion and late-fusion as several experiments
have demonstrated that fusing semantically meaningful representations yields better perfor-
mance in comparison to early-fusion [50, 120, 162, 163]. Moreover, studies of the neural
dynamics of the human brain has also shown evidence of late-fusion of modalities for
recognition tasks [202]. However, intermediate network representations are not aligned
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across different modality-specific network streams. Hence, integrating fused multimodal
mid-level features into high-level features requires explicit prior alignment. Therefore, we
propose an attention mechanism that weighs the fused multimodal mid-level skip features
with spatially aggregated statistics of the high-level decoder features for better correlation,
followed by channel-wise concatenation.

Finally, we present extensive experimental evaluations of our proposed multimodal
semantic segmentation architectures on all the datasets that we benchmarked our uni-
modal AdapNet++ architecture on, in Chapter 4. Specifically, we benchmark on the
Cityscapes [143], Synthia [144], SUN RGB-D [145], ScanNet [146] and Freiburg For-
est [50] datasets. The results demonstrate that both our dynamically adapting multimodal
architectures achieve state-of-the-art performance while being exceptionally robust to
adverse perceptual conditions such as fog, snow, rain and night-time. Thus enabling them
to be effectively employed in perception critical applications such as robotics, where
not only accuracy but robustness of the model is equally important. To the best of our
knowledge, this is the first multimodal segmentation work to benchmark on these wide
range of datasets containing several modalities and diverse environments ranging from
urban city driving scenes to indoor environments and unstructured forested scenes.

In summary, the primary contributions that we make in this chapter are as follows:
• A novel multimodal semantic segmentation architecture incorporating our proposed

CMoDE fusion scheme that learns robust kernels from complementary modalities
and spectra according to the different object categories in the scene.
• A second novel multimodal fusion architecture incorporating our proposed SSMA

fusion modules that adapts the fusion of modality-specific features dynamically
according to the object category, its spatial location in the world as well as the scene
context and learns in a self-supervised manner.
• An attention mechanism for effectively correlating fused multimodal mid-level and

high-level features for better object boundary refinement.
• Extensive benchmarking of existing multimodal fusion approaches with quantitative

and qualitative evaluations on five different benchmark datasets consisting of multiple
modalities and spectra.
• Real-world results from field trials in which our robot autonomously navigated a

forested environment for 4.52 km using only the proposed multimodal semantic
segmentation for perception.
• Implementations of our proposed multimodal semantic segmentation architectures

are made publicly available at http://deepscene.cs.uni-freiburg.de.
The remainder of this chapter is organized as follows. In Section 5.2.1, we describe

the topology of our multimodal semantic segmentation architecture that incorporates our
proposed CMoDE fusion scheme, followed by the architecture that incorporates our SSMA
fusion module in Section 5.2.2 and finally, the topologies of baseline CNN fusion ap-
proaches in Section 5.2.3. In Section 5.3, we present extensive experimental evaluations,

http://deepscene.cs.uni-freiburg.de
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comprehensive ablation studies and detailed qualitative comparisons in different adverse
perceptual conditions. Subsequently, in Section 5.3.7, we present robustness and gener-
alization analysis using navigation experiments in a forested environment where we use
only the proposed multimodal segmentation for perception. Finally, we discuss the recent
related work on multimodal semantic segmentation in Section 5.4, before concluding the
chapter in Section 5.5.

5.2 Technical Approach

In this section, we first formulate the problem of multimodal semantic segmentation and
then detail the topology of our architecture that incorporates our proposed Convoluted
Mixture of Deep Experts (CMoDE) fusion scheme to probabilistically fuse high-level
class-specific decoder feature maps from multiple modality-specific network streams.
Subsequently, we describe the topology of our improved multimodal semantic segmentation
architecture that incorporates our proposed Self-Supervised Modal Adaptation (SSMA)
modules to adaptively fuse mid-level and high-level encoder features into the decoder
based to object types in the scene, its spatial locations and the scene context. We build upon
the AdapNet++ topology described in Chapter 4 for the base architecture and reconfigure
its structure for multimodal semantic segmentation.

For ease of notation, we formulate the multimodal semantic segmentation problem in
the context of learning from two different modalities. However, our framework is easily
adaptable to learn from arbitrary number of modalities. We represent the training set for
multimodal semantic segmentation as T = {(In, Kn, Mn) | n = 1, . . . , N}, where In = {ur |
r = 1, . . . , ρ} denotes the input frame from modality a, Kn = {kr | r = 1, . . . , ρ} denotes the
corresponding input frame from modality b, N denotes the number of training samples and
the groundtruth label is given by Mn = {mr | r = 1, . . . , ρ}, where mr ∈ {1, ..., C} is the set
of semantic classes. The image In is only shown to the modality-specific encoder Ea and
similarly, the corresponding image Kn from a complementary modality is only shown to the
modality-specific encoder Eb. This enables each modality-specific encoder to specialize
in a particular sub-space learning their own hierarchical representations individually. We
assume that the input images In and Kn, as well as the label Mn have the same dimensions
ρ = H × W. Let θ be the network parameters consisting of weights and biases, and
sj(ur, θ) as the score assigned for labeling pixel ur with label j. We obtain the probabilities
P = (p1, . . . , pC) for all the semantic classes using the softmax function as

pj(ur, θ | In, Kn) = σ
(
sj (ur, θ)

)
=

exp
(
sj (ur, θ)

)∑C
k exp (sk (ur, θ))

. (5.1)

The optimal network parameters are then estimated by minimizing the cross-entropy
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Figure 5.2: Topology of our proposed Convoluted Mixture of Deep Experts (CMoDE) fusion
module. The CMoDE takes mid-level intermediate network representations from modality-specific
network streams as input and outputs the class-wise probabilities representing the confidence in the
features learned by the modality-specific network stream for a particular object class of interest.

loss function as

Lseg(T , θ) = –
N∑

n=1

ρ∑
r=1

C∑
j=1

δmr ,j log pj(ur, θ | In, Kn), (5.2)

for (In, Kn, Mn) ∈ T , where δmr ,j is the Kronecker delta.

5.2.1 Convoluted Mixture of Deep Experts

The CMoDE framework consists of three components: modality-specific encoder-decoder
streams for which we use the AdapNet++ architecture, the CMoDE module for adaptively
fusing class-specific features and a post-fusion section for learning deeper discriminative
fused representations. In the following sections, we first describe the topology of the
CMoDE module, followed the structure of the entire multimodal semantic segmentation
architecture that incorporates the CMoDE module for fusion.

5.2.1.1 CMoDE Fusion Module

In order to fuse class-specific features of modality-specific network streams we propose the
CMoDE module depicted in Figure 5.2. The CMoDE module fuses the high-level features
based on the mid-level representations of the individual modality-specific network streams.
The mid-level representations are the most discriminative features in the network and
they still retain location information of the features as described in Chapter 4. Therefore,
we employ them as inputs to the CMoDE to compute the probabilities for the fusion of
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high-level decoder features. Let Xa = {xa
r | r = 1, . . . , C} and Xb = {xb

r | r = 1, . . . , C}
denote the mid-level modality-specific encoder feature maps from modality a and modality
b network streams respectively, where C is the number of object classes in the dataset and
xr has a spatial dimension of H ×W. The class-wise gating network takes Xa and Xb as
input and outputs the respective probabilities Pa and Pb for the fusion.

The class-wise gating CMoDE network consists of C number of adaptive gating sub-
networks (AGN). Each AGN takes the class-specific features xa

r and xb
r representing the

object class r and from the modality-specific network streams a and b as inputs. The
features are first concatenated to obtain xab

r , followed by applying a 3 × 3 convolution
conv1 with weightsW1 ∈ RC×H×W and a non-linearity function δ(·). We use ReLUs for
the non-linearity and add dropout on the convolution layer to prevent overfitting. The
convolved features are then passed through an inner-product layer ip1 having weights
W2 ∈ Rγ1×H×W to learn non-linear combinations of features, where γ1 is number of output
feature channels in ip1. We use γ1 = 128 as identified in the ablation study presented in
Section 5.3.4.1. Finally, the resulting feature maps are passed into another inner-product
layer ip2 with weightsW3 ∈ Rγ2×H×W , where γ2 = 2 in this case as we fuse features from
two modality-specific network streams. The feature maps from the last inner-product layer
ip2 can then be represented as

sab
r = Fcmode(xab

r ;W) =W3
(
W2δ

(
W1xab

r

))
. (5.3)

The feature maps sab
r are then passed through a softmax layer σ(·) and using the fusion

scores f , we obtain the probabilities pr for the fusion as

pr(sab
r , θ | In, Kn) = σ

(
f
(
sab

r , θ
))

=
exp
(
f
(
sab

r , θ
))∑E

k exp
(
fk
(
sab

r , θ
)) , (5.4)

where θ are the parameters of the AGN and E is the number of modality-specific network
streams. The resulting probabilities pr denote how much the gating network trusts the class-
specific kernels learned the modality-specific streams. This procedure is then employed in
C number of AGNs to compute the probabilities for fusion corresponding to each class in
the dataset. The resulting class-specific probabilities for the individual modality streams a
and b are then concatenated to yield Pa and Pb respectively. This class-specific probability
distribution learned by the gating network gives the model the ability to choose different
modalitites or spectra according to the object classes present in the scene.

5.2.1.2 CMoDE Fusion Architecture

We incorporate our CMoDE module in a late-fusion framework shown in Figure 5.3. The
framework is adaptable to fuse arbitrary number of modalities, for simplicity we consider
fusing two different modalities in our descriptions. Individual modality-specific network
streams specializing in a particular subspace, first map the representation of the input
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3x3

CMoDE

Modality 1

Figure 5.3: The late-fusion architecture incorporating the proposed CMoDE fusion module for
adaptive multimodal semantic segmentation. Any segmentation network can be employed for the
modality-specific network streams, we use our AdapNet++ architecture described in Chapter 4 for
this work.

to a corresponding segmentation mask. The CMoDE acts as a multiplexer, which maps
outputs of the modality-specific streams to a probabilistically fused representation. We
employ our AdapNet++ network architecture for the individual modality-specific network
streams. In Chapter 4, we demonstrated that the representations from Res3d are the most
discriminative in the AdapNet++ architecture. Therefore, we use the feature maps from
Res3d as the inputs to the CMoDE in this work. We train the CMoDE to learn a convex
combination of modality-specific features by back-propagating into the weights, thus
making them learnable parameters, similar to any other synapse weight or convolutional
kernel. We further describe the training procedure that we employ in Section 5.3.1.1.

We use output class-wise confidences from the CMoDE to weight the feature maps
at the end of the modality-specific encoder-decoder streams where the tensors are of
dimensions C × 384× 768 with C being the number of object classes in the dataset. The
weighed modality-specific feature maps are then added element-wise and passed through a
3× 3 convolutional layer to further learn complementary fused kernels. This enables our
multimodal semantic segmentation network to learn the most discriminative features for
each modality as well as exploit the complementary relationship between the modalities
with respect to the different objects in the scene.

5.2.2 Self-Supervised Modal Adaptation

In this section, we describe our approach to multimodal fusion using our proposed self-
supervised model adaptation (SSMA) framework. Our framework consists of three compo-
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nents: a modality-specific encoder for which we adopt the AdapNet++ encoder topology, a
decoder built upon the topology our AdapNet++ decoder and our proposed SSMA module
for adaptively recalibrating and fusing modality-specific feature maps. In the following
section, we first describe the structure of our proposed SSMA module, followed by the
entire topology of the multimodal semantic segmentation architecture that incorporates
our SMMA module for fusion.

5.2.2.1 SSMA Fusion Module

In order to adaptively recalibrate and fuse feature maps from modality-specific networks,
we propose a novel architectural unit called the SSMA module. The goal of the SSMA
module is to explicitly model the correlation between the two modality-specific feature
maps before fusion so that the network can exploit the complementary features by learning
to selectively emphasize more informative features from one modality, while suppressing
the less informative features from the other. We construct the topology of the SSMA
module in a fully-convolutional fashion which empowers the network with the ability to
emphasize features from a modality-specific network for only certain spatial locations or
object categories, while emphasizing features from the complementary modality for other
locations or object categories. Moreover, the SSMA module dynamically recalibrates the
feature maps based on the input scene context.

The structure of the SSMA module is shown in Figure 5.4. Let Xa ∈ RC×H×W and
Xb ∈ RC×H×W denote the modality-specific feature maps from modality a and modality
b respectively, where C is the number of feature channels and H × W is the spatial
dimension. First, we concatenate the modality-specific feature maps Xa and Xb to yield
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Xab ∈ R2·C×H×W . We then employ a recalibration technique to adapt the concatenated
feature maps before fusion. In order to achieve this, we first pass the concatenated
feature map Xab through a bottleneck consisting of two 3 × 3 convolutional layers for
dimensionality reduction and to improve the representational capacity of the concatenated
features. The first convolution has weights W1 ∈ R

1
η
·C×H×W with a channel reduction

ratio η and a non-linearity function δ(·). We use ReLU for the non-linearity, similar to
the other activation functions in the encoder and experiment with different reductions
ratios in Section 5.3.4.2. Note that we omit the bias term to simplify the notation. The
subsequent convolutional layer with weightsW2 ∈ R2·C×H×W increases the dimensionality
of the feature channels back to concatenation dimension 2C and a sigmoid function σ(·)
scales the dynamic range of the activations to the [0, 1] interval. This can be represented as

s = Fssma(Xab;W) = σ
(
g
(
Xab;W

))
= σ

(
W2δ

(
W1Xab)) . (5.5)

The resulting output s is used to recalibrate or emphasize/de-emphasize regions in Xab

as

X̂ab = Fscale(Xab; s) = s ◦ Xab, (5.6)

where Fscale(Xab, s) denotes Hadamard product of the feature maps Xab and the matrix of
scalars s such that each element xc,i,j in Xab is multiplied with a corresponding activation
sc,i,j in s with c ∈ {1, 2, . . . , 2C}, i ∈ {1, 2, . . . , H} and j ∈ {1, 2, . . . , W}. The activations
s adapt to the concatenated input feature map Xab, enabling the network to weigh features
element-wise spatially and across the channel depth based on the multimodal inputs In and
Kn. With new multimodal inputs, the network dynamically weighs and reweighs the feature
maps in order to optimally combine complementary features. Finally, the recalibrated
feature maps X̂ab are passed through a 3× 3 convolution with weightsW3 ∈ RC×H×W and
a batch normalization layer to reduce the feature channel depth and yield the fused output
f as

f = Ffused(X̂ab;W) = g(X̂ab;W) =W3X̂ab. (5.7)

As described in the following section, we employ our proposed SSMA module to fuse
modality-specific feature maps both at intermediate stages of the network and towards the
end of the encoder. Although we utilize a bottleneck structure to conserve the number of
parameters consumed, further reduction in the parameters can be achieved by replacing the
3× 3 convolution layers with 1× 1 convolutions, which yields comparable performance.
We also remark that the SSMA modules can be used for multimodal fusion in other tasks
such as image classification or object detection, as well as for fusion of feature maps across
tasks in multitask learning.
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5.2.2.2 SSMA Fusion Architecture

We propose a framework for multimodal semantic segmentation by reconfiguring of our
AdapNet++ architecture and incorporating the proposed SSMA modules. For simplicity,
we consider the fusion of two modalities, but the framework can be easily extended to
arbitrary number of modalities. The encoder of our multimodal semantic segmentation
architecture shown in Figure 5.5 (a) contains two streams, where each stream is based
on the AdapNet++ encoder topology described in Chapter 4. Each encoder stream is
modality-specific and specializes in a particular sub-space. In order to fuse the feature
maps from both streams, we adopt a combination of mid-level and late-fusion strategy in
which we fuse the latent representations of both encoders using the SSMA module and
pass the fused feature map to the first decoder stage. We denote this as latent SSMA fusion
as it takes the output of the eASPP from each modality-specific encoder as input. We set
the reduction ratio η = 16 in the latent SSMA. As the AdapNet++ architecture contains
skip connections for high-resolution refinement, we employ an SSMA module at each
skip refinement stage after the 1× 1 convolution. As the 1× 1 convolutions reduce the
feature channel depth to 24, we only use a reduction ratio η = 6 in the two skip SSMAs as
identified from the ablation experiments presented in Section 5.3.4.2.

In order to upsample the fused predictions, we build upon the AdapNet++ decoder
described in Chapter 4. The main stream of our decoder resembles the topology of the
decoder in our AdapNet++ architecture consisting of three upsampling stages. The output
of the latent SSMA module is fed to the first upsampling stage of the decoder. Following the
AdapNet++ topology, the outputs of the skip SSMA modules would be concatenated into
the decoder at the second and third upsampling stages (skip1 after the first deconvolution
and skip2 after the second deconvolution). However, we find that concatenating the fused
mid-level features into the decoder does not substantially improve the resolution of the
segmentation, as much as in the unimodal AdapNet++ architecture. We hypothesise that
directly concatenating the fused mid-level features and fused high-level features causes a
feature localization mismatch as each SSMA module adaptively recalibrates at different
stages of the network where the resolution of the feature maps and channel depth differ by
one half. Moreover, training the fusion network end-to-end from scratch also contributes
to this problem as without initializing the encoders with modality-specific pre-trained
weights, concatenating the uninitialized mid-level fused encoder feature maps into the
decoder does not yield any performance gains, rather it hampers the convergence.

With the goal of mitigating this problem, we propose two strategies. In order to facilitate
better fusion, we adopt a multi-stage training protocol where we first initialize each encoder
in the fusion architecture with pre-trained weights from the unimodal AdapNet++ model.
We describe this procedure in Section 5.3.1.2. Secondly, we propose a mechanism to better
correlate the mid-level fused features with the high-level semantic features. We propose to
weigh the fused mid-level skip features with the spatially aggregated statistics of the high-
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level decoder features before the concatenation. Following the notation convention, we
define D ∈ RC×H×W as the high-level decoder feature map before the skip concatenation
stage. A feature statistic s ∈ RC is produced by projecting D along the spatial dimensions
H ×W using a global average pooling layer as

sc = Fshrink(dc) =
1

H ×W

H∑
i=1

W∑
j=1

dc(i, j), (5.8)

where sc represents a statistic or a local descriptor of the cth element of D. We then
reduce the number of feature channels in s using a 1× 1 convolution layer with weights
W4 ∈ RC×H×W , batch normalization and an ReLU activation function δ to match the
channels of the fused mid-level feature map f, where f is computed as shown in Eq. (5.7).
We can represent resulting output as

z = Freduce(s;W) = δ(W4s). (5.9)

Finally, we weigh the fused mid-level feature map f with the reduced aggregated
descriptors z using channel-wise multiplication as

f̂ = Floc(fc; zc) = (z1f1, z2f2, . . . , zcfc) . (5.10)

As shown in Figure 5.5 (b), we employ the aforementioned mechanism on the fused
feature maps from skip1 SSMA as well as skip2 SSMA and concatenate their outputs
with the decoder feature maps at the second and third upsampling stages respectively. We
find that this mechanism guides the fusion of mid-level skip refinement features with the
high-level decoder feature more effectively than direct concatenation and yields a notable
improvement in the resolution of the segmentation output.

5.2.3 Baseline Fusion Architectures

In addition to comparing against existing multimodal semantic segmentation architec-
tures, we also implement four different baseline fusion architectures. The first baseline
fusion strategy that we employ is the early-fusion approach as depicted in Figure 5.6 (a),
where the different modalities are first concatenated channel-wise to yield a four or a
six-channel image. Subsequently, the concatenated modalities are then used as input to
standard unimodal semantic segmentation architectures for end-to-end feature learning.
The early-fusion approach is the most widely employed fusion method as existing semantic
segmentation architectures can be leveraged for this purpose and its implementation is rel-
atively straightforward. Early-fusion aims to extract the joint representation directly from
the raw images. Fusing at an early stage amplifies the common discriminant information in
both modalities but also simultaneously accumulates the noise in both modalities. Learning
a good joint representation throughout the network using this configuration is difficult
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Figure 5.6: Depiction of the early and late-fusion approaches for multimodal semantic segmentation.
In early-fusion, the modalities are concatenated to obtain a four or a six-channel image and then fed
to the network as input for end-to-end semantic segmentation. While, in the late-fusion approach,
individual network streams that take different modalities as input are employed, followed by
combining the features towards the end of the network using a 1× 1 convolution and element-wise
addition.

due to significantly different data formats and distinct distributions between modalities.
Another disadvantage of this method is that pre-trained weights from networks trained
on large image segmentation datasets cannot be leveraged for initialization using transfer
learning.

We employ the late-fusion approach for the second baseline. The topology of the late-
fusion shown in Figure 5.6 (b) consists of individual modality-specific network streams that
are first trained end-to-end using their respective modalities. Followed by initializing the
joint model with pre-trained weights from the previous step and adding a 1× 1 convolution
layer at the end of the streams before the element-wise addition of feature maps from
both modality-specific streams for the fusion. While training the joint model, the weights
of the individual streams before the 1 × 1 convolution layer are often kept fixed. This
enables them to retain their modality-specific low and mid-level features while focusing
only on learning the fusion of the high-level semantically mature features. The 1 × 1
convolution layer is added so that the networks learn to adapt their individual high-level
representations before the fusion. The late-fusion approach is a popular fusion baseline as
it builds upon existing semantic segmentation architectures and therefore the model can be
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initialized with pre-trained weights from networks trained on large semantic segmentation
datasets. More importantly, this configuration enables the network to exploit the high-level
semantically rich information for the fusion, therefore complementary information can be
leveraged based on the features describing the semantic object classes in the dataset. The
performance of late-fusion approaches is largely dependent on the correlation mechanism
that is employed at the end of the individual modality-specific network streams for the
fusion.

For the third baseline, we employ the averaging technique in which individual semantic
segmentation architectures are first trained on a specific modality and then the prediction
probabilities of each of the networks are class-wise averaged before computing the argmax.
Averaging the class-wise probabilities gives us a measure of the consensus and certainty
among the modality-specific networks. For instance, if both networks are highly confident
in their predictions for a specific object class, then the consensus value is highest for this
particular class leading to its subsequent section by the argmax. On the other hand, if one
or both of the networks produce a low score for a particular object class, taking the average
of their probabilities smoothens the score to reflect the joint confidence. Similarly, for
the last fusion baseline, as opposed to computing the average of the class-wise prediction
probabilities, we compute the maximum of the class-wise prediction probabilities across
the different modality-specific networks before computing the argmax. This enables us to
select the most certain predictions across the modality-specific networks for a particular
object class.

5.3 Experimental Evaluation

In this section, we first describe the procedure that we employ for training our multimodal
semantic segmentation architectures that incorporate our proposed CMoDE and SSMA
fusion modules in Section 5.3.1, followed by detailed benchmarking results using the
various modalities and spectra contained in the datasets in Section 5.3.2 and comprehensive
ablation studies that describe the various architectural decisions that we made while
designing the fusion module topologies in Section 5.3.4. In Section 5.3.5, we present
extensive qualitative evaluations on all the datasets that we benchmark on and finally in
Section 5.3.7, we present the results from our autonomous navigation experiments using
only the multimodal semantic segmentation for perception.

For the experiments presented in this chapter, we benchmark on the five multimodal in-
door and outdoor datasets described in Chapter 4. Namely, Cityscapes [143], Synthia [144],
SUN RGB-D [145], ScanNet [146] and Freiburg Forest [50] datasets. We use the Tensor-
Flow [159] deep learning library for the implementations and all the experiments were
carried out on a system with an Intel Xeon E5, 2.4 GHz and an NVIDIA TITAN X GPU.
We primarily use the standard Jaccard Index, also known as the intersection-over-union
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(IoU) metric to quantify the performance. It can be computed for each object class as
IoU = TP/(TP + FP + FN), where TP, FP and FN correspond to true positives, false
positives and false negatives respectively. We also report the mean intersection-over-union
(mIoU) metric, pixel-wise accuracy (Acc) and average precision (AP) for all the models.
We made our models publicly available at http://deepscene.cs.uni-freiburg.de.

5.3.1 Network Training

We train our networks with an input image resolution of 768× 384 pixels, therefore we use
bilinear interpolation for resizing the RGB images and the nearest-neighbour interpolation
for resizing the other modalities as well as the groundtruth labels. We employ a multi-stage
training protocol to effectively train our multimodal semantic segmentation architectures.
We first train each modality-specific Adapnet++ model individually using the training
protocol described in Section 4.4.3 of Chapter 4. Subsequently, in the second stage, we
leverage transfer learning to train the joint fusion model in either the CMoDE or the
SSMA framework. We describe the procedure that we employ in the second stage and the
parameter settings for training the multimodal fusion in the following sections.

5.3.1.1 CMoDE Training

In the second stage, we initialize the modality-specific encoders and decoders using
weights from the previous stage, while we initialize the class-specific CMoDE and the
fused convolution layer using the He initialization [93] scheme. We keep the weights of
the modality-specific encoders and decoders fixed, which forces the CMoDE to use the
representations learned by the individual streams from the first stage, while exploiting
discriminative complementary features from different modalities at the high-level in the
second stage. We use the Adam solver for optimization with β1 = 0.9, β2 = 0.999 and
ε = 10–10. We train the second stage of the CMoDE model for a maximum of 50,000
iterations using an initial learning rate of λ0 = 10–5 with a mini-batch size of 8 and a
dropout probability of 0.5.

5.3.1.2 SSMA Training

In order to train the SSMA fusion model, we initialize only the modality-specific encoders
using weights from the previous stage and similar to the CMoDE, we use He initializa-
tion [93] scheme for the other layers. We then set the learning rate of the encoder layers to
λ0 = 10–4 and the decoder layers to λ0 = 10–3, and train the fusion model with a mini-batch
of 7 for a maximum of 100,000 iterations using the Adam solver with β1 = 0.9, β2 = 0.999
and ε = 10–10. This enables the SSMA modules to learn the optimal combination of
multimodal feature maps from the well trained encoders, while slowly adapting the en-
coder weights to improve the fusion. In the final stage, we fix the weights of the encoder

http://deepscene.cs.uni-freiburg.de
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layers while only training the decoder and the SSMA modules with a learning rate of
λ0 = 10–5 and a mini-batch size of 12 for 50,000 iterations. This enables us to train the
network with a larger batch size, while focusing more on the upsampling stages to yield
the high-resolution segmentation output.

5.3.2 Comparison with the State-of-the-Art

In this section, we present comprehensive results on the performance of our multimodal
fusion architectures that incorporate our proposed fusion modules. We compare the
performance with state-of-the-art multimodal fusion methods, namely, LFC [50] and
FuseNet [162], in addition to the four baseline fusion architectures that we described in
Section 5.2.3. Note that the FuseNet architecture was designed for RGB-D fusion and uses
one-channel depth images in the modality-specific encoder. Therefore, employing this
approach for RGB-HHA or RGB-EVI fusion is infeasible as the HHA and EVI modalities
are three-channel images. Furthermore, we compare the performance of multimodal
semantic segmentation against the unimodal AdapNet++ models trained individually
on the different modalities and spectra contained in the datasets. We also report the
performance of our multimodal SSMA model evaluated with left-right flips as well as
multiscale testing and denote the resulting model as SSMA_msf in our experiments.

In Table 5.1, we show the results on the Cityscapes validation set considering visual
RGB images, depth and the HHA encoding of the depth as modalities for the fusion.
As hypothesised, the visual RGB images perform the best among the other modalities
achieving a mIoU of 80.80%. This is especially observed in outdoor scene understanding
datasets containing stereo depth images that quickly degrade the information contained,
with increasing distances from the camera. Among the baseline fusion approaches, Stack-
ing achieves the highest performance for both RGB-D and RGB-HHA fusion. However,
the performance of Stacking is still lower than the unimodal visual RGB segmentation
model. This can be attributed to the fact that the baseline approaches are not able to exploit
the complementary features from the modalities due to the naive multimodal fusion. Our
proposed CMoDE fusion with RGB-HHA outperforms all the state-of-the-art approaches
as well as the baselines, further surpassing the performance of the unimodal segmentation
models. While, our proposed SSMA fusion model for RGB-HHA fusion achieves a mIoU
of 82.64% outperforming all the other approaches and setting the new state-of-the-art
on this benchmark. The SSMA_msf model using RGB-HHA fusion further improves
upon the performance of the SMMA model by 1.3%. As the Cityscapes dataset does not
contain harsh environments, the improvement that can be achieved using fusion is limited
to scenes that contain inconspicuous object classes or mismatched relationship. However,
the additional robustness that it demonstrates due to multimodal fusion is still notable as
shown in the qualitative results in Section 5.3.5. We refer the reader to Appendix A.1
for the detailed comparisons of the individual class IoU scores for the Cityscapes dataset.
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Table 5.1: Comparison of multimodal fusion approaches on the Cityscapes dataset.

Network Approach mIoU Acc. AP
(%) (%) (%)

RGB Unimodal 80.80 96.04 90.97
Depth Unimodal 66.36 91.21 80.23
HHA Unimodal 67.66 91.66 81.81

RGB-D

Average 78.84 95.58 90.49
Maximum 78.81 95.58 90.37
Stacking 80.21 95.96 90.05
Late Fusion 78.75 95.57 90.48
LFC [50] 81.04 96.11 91.10
FuseNet [162] 78.20 95.31 90.18

CMoDE (Ours) 81.33 96.12 90.29
SSMA (Ours) 82.29 96.36 90.77
SSMA_msf (Ours) 83.44 96.59 92.21

RGB-HHA

Average 79.44 95.56 90.27
Maximum 79.40 95.55 90.09
Stacking 80.62 96.01 90.09
Late Fusion 79.01 95.49 90.25
LFC [50] 81.13 96.14 91.32

CMoDE (Ours) 81.42 96.12 90.29
SSMA (Ours) 82.64 96.41 90.65
SSMA_msf (Ours) 83.94 96.68 91.99

Additionally, the benchmarking results on the Cityscapes test set is shown in Table 4.3.
The results demonstrate that our SSMA fusion architecture with the AdapNet++ network
backbone achieves a comparable performance as the top performing DPC [172], and
DRN [173] architectures, while outperforming the other networks on the leaderboard.

We benchmark on the Synthia dataset to demonstrate the utility of fusion when both
modalities contain rich information. It consists of scenes with adverse perceptual conditions
including rain, snow, fog and night, therefore the benefit of multimodal fusion for outdoor
environments is most evident on this dataset. As the Synthia dataset does not provide
camera calibration parameters, it is infeasible to compute the HHA encoding, therefore
we benchmark using visual RGB and depth images. Results from benchmarking on this
dataset are shown in Table 5.2. Due to the high-resolution depth information, the unimodal
depth model achieves a mIoU of 87.87%, outperforming segmentation using visual RGB
images by 1.17%. This demonstrates that accurate segmentation can be obtained using only
depth images as input, provided that the depth sensor gives accurate long range information.
Our proposed CMoDE fusion approach using RGB-D images outperforms the baseline
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Table 5.2: Comparison of multimodal fusion approaches on the Synthia dataset.

Network Approach mIoU Acc. AP
(%) (%) (%)

RGB Unimodal 86.70 97.18 93.17
Depth Unimodal 87.87 97.78 94.23

RGB-D

Average 89.22 98.03 95.04
Maximum 89.13 98.01 94.97
Stacking 88.95 98.03 94.41
Late Fusion 89.13 98.01 94.66
LFC [50] 89.48 98.09 94.96
FuseNet [162] 86.10 97.09 93.08

CMoDE (Ours) 89.57 98.13 94.58
SSMA (Ours) 91.25 98.48 95.68
SSMA_msf (Ours) 92.10 98.64 96.37

fusion approaches and the state-of-the-art techniques achieving a mIoU of 89.57%, while
exceeding the performance of the unimodal depth model by 1.7%. On the other hand,
our proposed SSMA fusion architecture demonstrates the state-of-the-art performance
of 91.25% and further improves the mIoU to 92.10% using the SSMA_msf model. This
amounts to a large improvement of 5.4% over the best performing unimodal segmentation
model. It can also be observed that the other metrics such as the pixel accuracy and average
precision show similar improvement. We refer the reader to Appendix A.2 for the detailed
comparisons of the individual class IoU scores for the Synthia dataset.

One of the main motivations to benchmark on this dataset is to evaluate our fusion
model in diverse scenes with adverse perpetual conditions. For this experiment, we trained
our state-of-the-art SSMA fusion model on the Synthia-Rand-Cityscapes training set and
evaluated the performance on each of the conditions contained in the Synthia-Sequences
dataset. The Synthia-Sequences dataset contains individual video sequences in different
conditions such as Summer, Fall, Winter, Spring, Dawn, Sunset, Night, Rain, Soft Rain, Fog,
Night Rain and Winter Night. Results from this experiment are shown in Figure 5.7. The
unimodal visual RGB model achieves an overall mIoU score of 49.27%± 4.22% across
the 12 sequences. While, the model trained on the depth maps achieves a mIoU score of
67.07%± 1.16%, thereby substantially outperforming the model trained using visual RGB
images.

As Synthia is a synthetic dataset captured in a hyperrealistic simulation environment, the
depth maps provided are accurate and dense even for structures that are several hundreds
of meters away from the camera. Therefore, this enables the unimodal depth model to
learn representations that accurately encode the structure of the scene and these structural
representations are proven to be invariant to the changes in perceptual conditions. It
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Figure 5.7: Evaluation of our proposed SMMA fusion technique on the Synthia-Sequences dataset
containing a variety of seasons and weather conditions. We use the models trained on the Synthia-
Rand-Cityscapes dataset and only test on the individual conditions in the Synthia-Sequences dataset
to quantify its robustness. Our model that performs RGB-D fusion consistently outperforms the
unimodal models which can be more prominently seen qualitatively in Figure 5.14.

can also be observed that the unimodal depth model performs consistently well in all
the conditions with a variance of 1.36%, demonstrating its generalization to different
weather and seasonal changes. However, the visual RGB model with a variance of 17.79%
performs inconsistently across different conditions. Nevertheless, we observe that our
RGB-D SSMA fusion model outperforms the unimodal visual RGB model by achieving
a mIoU score of 76.51% ± 0.53% across the 12 conditions, accounting to a significant
improvement of 27.24%. Moreover, the SSMA fusion model has a variance of 0.28%,
demonstrating better generalization abilities across varying adverse perceptual conditions.

We benchmark on the indoor SUN RGB-D dataset which demonstrates a different set
of challenges than the outdoor datasets. The improvement due to the multimodal fusion
is more evident in indoor scenes as the images are often captured in smaller confined
spaces with several cluttered objects and the depth modality provides valuable structural
information that can be exploited. Results from multimodal RGB-D and RGB-HHA fusion
is shown in Table 5.3. Among the unimodal models, semantic segmentation using visual
RGB images yields the highest mIoU of 38.40%. The model trained on depth images
performs 4.13% lower than the visual RGB model. This can be attributed to the fact that the
depth images are extremely noisy with numerous missing depth values in the SUN RGB-D
dataset. Nevertheless, our CMoDE approach outperforms the state-of-the-art fusion models
as well the unimodal segmentation models. The CMoDE model using RGB-HHA fusion
achieves a mIoU of 42.55% which is an improvement of 4.15% over the unimodal visual
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Table 5.3: Comparison of multimodal fusion approaches on the SUN RGB-D dataset.

Network Approach mIoU Acc. AP
(%) (%) (%)

RGB Unimodal 38.40 76.90 62.78
Depth Unimodal 34.27 73.83 74.39
HHA Unimodal 34.59 74.39 57.18

RGB-D

Average 40.70 78.58 64.54
Maximum 40.58 78.50 64.04
Stacking 36.48 76.68 57.92
Late Fusion 41.68 79.27 66.63
LFC [50] 41.82 79.36 66.75
FuseNet [162] 37.41 76.37 61.58

CMoDE (Ours) 41.87 79.84 66.81
SSMA (Ours) 43.90 80.16 66.11
SSMA_msf (Ours) 44.52 80.67 67.92

RGB-HHA

Average 41.01 78.54 64.93
Maximum 40.91 78.49 64.78
Stacking 37.49 76.42 57.88
Late Fusion 41.91 79.49 67.31
LFC [50] 42.42 79.55 67.41

CMoDE (Ours) 42.55 79.94 65.38
SSMA (Ours) 44.43 80.21 64.94
SSMA_msf (Ours) 45.73 80.97 67.82

RGB model. Furthermore, our proposed SSMA approach using multimodal RGB-HHA
fusion achieves the state-of-the-art performance with a mIoU of 44.43%, constituting to a
substantial improvement of 6.03% over the unimodal visual RGB model. Moreover, our
SSMA_msf model further improves upon the mIoU by 1.3%. Similar to the performance
observed in other datasets, the fusion of RGB-HHA yields a higher mIoU than the RGB-D
fusion, corroborating the fact that CNNs learn more effectively from the HHA encoding
but with a small additional preprocessing time. Additionally, for the detailed comparisons
of the individual class IoU scores for the SUN RGB-D dataset, we refer the reader to
Appendices A.3 and A.4 for the RGB-D and RGB-HHA fusion correspondingly.

We present results on the ScanNet validation set in Table 5.4. ScanNet is the largest
indoor RGB-D dataset to date with over 1513 different scenes and 2.5 M views. Unlike
the SUN RGB-D dataset, ScanNet contains depth maps of better quality and with lesser
number of missing depth values. The unimodal visual RGB model achieves a mIoU of
52.68% with an accuracy of 78.64%, while the unimodal depth model achieves an mIoU
of 54.00% with an accuracy of 79.67%. For multimodal fusion, our proposed CMoDE
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Table 5.4: Comparison of multimodal fusion approaches on the ScanNet dataset.

Network Approach mIoU Acc. AP
(%) (%) (%)

RGB Unimodal 52.68 78.64 76.18
Depth Unimodal 54.00 79.67 66.22
HHA Unimodal 53.07 79.44 77.38

RGB-D

Average 57.15 81.59 79.93
Maximum 56.90 81.47 79.56
Stacking 52.77 78.95 74.66
Late Fusion 58.18 81.93 81.38
LFC [50] 60.50 83.08 78.84
FuseNet [162] 49.08 76.98 75.17

CMoDE (Ours) 61.74 83.83 79.91
SSMA (Ours) 64.19 85.68 79.71
SSMA_msf (Ours) 65.67 85.91 80.23

RGB-HHA

Average 56.35 81.01 80.63
Maximum 56.21 80.97 80.28
Stacking 53.51 79.20 75.36
Late Fusion 58.25 81.91 80.93
LFC [50] 60.11 82.88 79.03

CMoDE (Ours) 62.28 83.44 79.65
SSMA (Ours) 64.54 86.10 81.95
SSMA_msf (Ours) 65.90 86.48 82.28

model using RGB-HHA outperforms all the state-of-the-art architectures as well as the
fusion baselines, achieving a mIoU of 62.28%. While our proposed SSMA model using
RGB-HHA fusion achieves a mIoU of 64.54% and sets the new state-of-the-art on this
benchmark. This accounts to a significant improvement of 11.86% over the unimodal visual
RGB model. Moreover the SSMA_msf model additionally improves the performance to
65.90%, which is an improvement of 13.22% over the visual RGB model. To the best of
our knowledge, this is the largest improvement due to multimodal fusion that has been
reported thus far. We refer the reader to Appendix A.5 for the detailed comparisons of
the individual class IoU scores for the ScanNet dataset. An interesting observation that
can be made from the results on the SUN RGB-D and ScanNet datasets is that the lowest
multimodal fusion performance is obtained using the Stacking approach, reaffirming our
hypothesis that fusing semantically more mature features enables the model to exploit
complementary relationship from different modalities more effectively. We also benchmark
on the ScanNet test set and report the results in Table 4.7. Our proposed SSMA fusion
architecture with the AdapNet++ network backbone sets the new state-of-the-art on the
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Table 5.5: Comparison of multimodal fusion approaches on the Freiburg Forest dataset.

Network Approach mIoU Acc. AP
(%) (%) (%)

RGB Unimodal 83.09 95.15 89.83
Depth Unimodal 73.93 91.42 85.36
EVI Unimodal 80.96 94.20 88.88

RGB-D

Average 79.51 92.87 90.99
Maximum 81.62 93.93 90.87
Stacking 83.13 95.19 89.95
Late Fusion 82.11 93.95 90.85
LFC [50] 82.53 94.99 90.96
FuseNet [162] 81.84 93.97 90.93

CMoDE (Ours) 83.21 95.19 90.19
SSMA (Ours) 83.81 95.62 92.78
SSMA_msf (Ours) 83.99 95.70 93.08

RGB-EVI

Average 83.00 95.10 90.19
Maximum 83.00 95.10 90.17
Stacking 83.18 95.21 90.11
Late Fusion 82.80 95.01 90.07
LFC [50] 83.00 95.13 90.28

CMoDE (Ours) 83.31 95.22 90.19
SSMA (Ours) 83.90 95.56 92.28
SSMA_msf (Ours) 84.18 95.64 92.60

ScanNet benchmark.

Finally, we present benchmarking results on the Freiburg Forest dataset that contains
three inherently different modalities including visual RGB images, Depth data and EVI.
EVI or Enhanced Vegetation Index was designed to enhance the vegetation signal in
high biomass regions and it is computed from the information contained in three bands,
namely, Near-InfraRed, Red and Blue channels [203]. As this dataset contains scenes in
unstructured forested environments, EVI provides valuable information to discern between
inconspicuous classes such as vegetation and grass. Table 5.5 shows the results on this
dataset for multimodal fusion of RGB-D and RGB-EVI. For unimodal segmentation, the
RGB model yields the highest performance, closely followed by the model trained on EVI
images. For multimodal semantic segmentation, our proposed CMoDE fusion approach
outperforms the other state-of-the-art fusion techniques achieving a mIoU of 83.31%
for RGB-EVI fusion. While, our SSMA fusion model trained on RGB-EVI yields the
highest mIoU of 83.90% setting the new state-of-the-art on this benchmark. Moreover,
our SMMA_msf model further improves upon the performance and achieves a mIoU of
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84.18%. Additionally, we refer the reader to Appendix A.6 for the detailed comparisons of
the individual class IoU scores for the Freiburg Forest dataset..

5.3.3 Multimodal Fusion Discussion

To summarize, the models trained on visual RGB images perform the best in comparison
to unimodal segmentation with other modalities and spectra. However, when the depth
data is less noisy and the environment is confined to an indoor space, the model trained on
depth or HHA-encoded depth outperforms visual RGB models. Among the multimodal
fusion baselines, Late Fusion and Stacking, each perform well in different environments.
Stacking performs better in outdoor environments in the absence of challenging perceptual
conditions, while late-fusion performs better in indoor environments and outdoors when
the noise in the modalities is uncorrelated. This can be attributed to the fact that the
late-fusion method fuses semantically mature representations and effectively exploits
complementary features. Therefore, in indoor environments, modalities such as depth
maps from stereo cameras are less noisy than in outdoors and as the environment is confined,
all the objects in the scene are well represented with dense depth values. This enables the
late-fusion architecture to leverage semantically rich complementary representations for
fusion. However in outdoor environments, depth values are very noisy and no information
is present for objects at far away distances. Therefore, the semantic representations from
the depth stream are considerably less informative for certain parts of the scene which
does not allow the late-fusion network to fully exploit the complementary features and
hence it does not provide significant gains. On the other hand, in indoor environments or
in synthetic scenes outdoors where the depth modality is dense and rich with information,
late-fusion significantly outperforms the stacking approach.

Our proposed CMoDE fusion approach outperforms existing state-of-the-art multimodal
semantic segmentation networks in each of the diverse environments. To recapitulate,
CMoDE employs a class-wise probabilistic late-fusion technique that adaptively weighs the
modality-specific decoder features based on the scene condition. Moreover, our proposed
SSMA fusion technique further outperforms CMoDE in all the datasets and sets the new
state-of-the-art in multimodal semantic segmentation. This demonstrates that fusion of
modalities is an inherently complex problem that depends on several factors such as
the object class, the spatial location of the object and the environmental scene context.
Our proposed SSMA fusion approach dynamically adapts the fusion of both mid-level
and high-level semantically mature representations based on the aforementioned factors,
thereby enabling our model to effectively exploit the complementary relationship between
the modalities. Moreover, as the dynamicity is learned in a self-supervised fashion, it
efficiently generalizes to different diverse environments, perceptual conditions and types
of modalities employed for fusion.
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Table 5.6: Effect on varying the number of output units γ1 in the inner-product layer ip1 of
the Adaptive Gating Network (AGN). The performance is shown on the Cityscapes dataset for
multimodal RGB-HHA fusion.

No. of units γ1 64 128 256 384 512

mIoU (%) 80.94 81.42 81.41 81.17 81.04

5.3.4 Ablation Study

In this section, we study the influence of the various contributions that we make in
our proposed CMoDE and SSMA techniques, for more effective multimodal fusion.
Specifically, we study the influence of the number of output units in the inner-product layer
of the AGN in CMoDE module, followed by evaluations of the SSMA fusion configuration
by comparing the performance of fusion at different intermediate network stages. We then
evaluate the utility of our proposed channel attention scheme for better correlation of mid-
level encoder and high-level decoder features in the SSMA architecture. Subsequently, we
experiment with different SSMA bottleneck downsampling rates and qualitatively analyze
the convolution activation maps of our SSMA fusion model at various intermediate network
stages to study the effect of multimodal fusion on the learned network representations.

5.3.4.1 Influence of Inner-product Output Units in AGN of CMoDE

Our proposed CMoDE fusion module contains an Adaptive Gating Network (AGN) for
each object class present in the dataset. Each AGN has two inner-product layers, ip1 for
learning non-linear combinations of features from the convolution layer conv1 and ip2 to
reduce the dimensionality to the number modality-specific streams. The number of output
units γ1 in ip1 plays an important role in performance of the CMoDE fusion as well as
the scalability of the CMoDE to the number of object categories being classified. If the
number of output units in ip1 increases by u, then the number of parameters in the CMoDE
increases by C × u, which can quickly explode while training on datasets with a large
number of object classes. Therefore, we experiment with varying the number of output
units in ip1 and present the results for RGB-HHA fusion on the Cityscapes dataset in
Table 5.6. The network achieves the highest performance with γ1 = 128. Although we also
observe that setting γ1 = 256 yields a comparable performance, it substantially increases
the number of parameters in the CMoDE module. Therefore, for all the experiments, we
set the number of output units γ1 = 128 in the inner-product layer ip1 of the AGN.
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Table 5.7: Effect of the various contributions that we proposed for multimodal fusion in the SMMA
architecture. The performance is shown for RGB-HHA fusion on the Cityscapes dataset.

Model SSMA Fusion mIoU Acc. AP

ASPP Skip Ch. Agg. (%) (%) (%)

F0 - - - 80.77 96.04 90.97

F1 X - - 81.55 96.19 91.15

F2 X X - 81.75 96.25 91.09

F3 X X X 82.64 96.41 90.65

Table 5.8: Effect of varying the SSMA bottleneck downsampling rate η on the RGB-HHA fusion
performance for the Cityscapes dataset.

Encoder Skip mIoU Acc. AP

SSMA SSMA (%) (%) (%)

ηenc = 2 ηskip = 2 82.15 96.32 91.17

ηenc = 4 ηskip = 4 82.11 96.27 91.34

ηenc = 8 ηskip = 4 82.21 96.32 91.61

ηenc = 16 ηskip = 4 82.25 96.31 91.12

ηenc = 16 ηskip = 6 82.64 96.41 90.65

5.3.4.2 Detailed Study on the SSMA Fusion Architecture

In our proposed multimodal SSMA fusion architecture, we employ a combination of both
mid-level fusion and late-fusion. In order to evaluate the influence of fusion at each of
these network stages, we present experimental comparisons in Table 5.7. We denote the
unimodal model without the SSMA fusion as F0. First, we employ the main SSMA fusion
module at the end of the two modality-specific encoders, after the eASPPs and we denote
this model as F1. The F1 model achieves a mIoU of 81.55%, which constitutes to an
improvement of 0.78% over the unimodal F0 model. We then employ an SSMA module at
each skip refinement stage to fuse the mid-level skip features from each modality-specific
encoder stream. The fused skip features are then integrated into the decoder for refinement
of high-level decoder features. The F2 model that performs multimodal fusion at both
stages, yields a mIoU of 81.75%, which is not a significant improvement while compared
to the improvement that we achieve in fusion of the mid-level features into the decoder in
our unimodal AdapNet++ architecture. As described in Section 5.2.2.2, we hypothesize
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that this occurs due to the fact that the mid-level representations learned by the network do
not align across different modality-specific encoder streams. Therefore, we employ our
proposed channel attention mechanism to better correlate these features using the spatially
aggregated statistics of the high-level decoder features. The model that incorporates this
proposed attention mechanism achieves a mIoU of 82.64%, which is an improvement of
1.09%, while only an improvement of 0.2% was achieved without the channel attention
mechanism. Note that the increase in quantitative performance due to multimodal fusion
is more apparent in the indoor or synthetic datasets where the depth modality is more
informative as shown in Section 5.3.2.

The proposed SSMA fusion module has a bottleneck structure in which the middle
convolution layer downsamples the number of feature channels according to a rate η as
described in Section 5.2.2.1. As we perform multimodal fusion both at the mid-level and
at the end of the encoder section, we have to estimate the downsampling rates individually
for each of the SSMA modules. We start by using values from a geometric sequence for
the main encoder SSMA downsampling rate ηenc and correspondingly vary the values for
the skip SSMA downsampling rates ηskip. Results from this experiment shown in Table 5.8
demonstrates that the best performance is obtained for ηenc = 16 and ηskip = 6 which also
increases the parameter efficiency compared to lower downsampling rates.

5.3.4.3 Influence of Multimodal SSMA Fusion on Activation Maps

In an effort to present visual explanations for the improvement in performance due to
multimodal fusion, we study the activation maps at various intermediate network stages
before and after the multimodal fusion using the GradCam++ technique [204]. The
approach introduces pixel-wise weighting of the gradients of the output with respect to a
particular spatial location in the convolutional feature map to generate a score. The score
provides a measure of the importance of each location in feature map towards the overall
prediction of the network. We apply a colormap over the obtained scores to generate
a heat map as shown in Figure 5.8. We visualize the activation maps at five different
stages of the network. Firstly, at the output of each modality-specific encoder Xa and Xb

which is the input to the SSMA fusion module. Secondly, after recalibrating the individual
modality-specific feature maps inside the SSMA module X̂a and X̂b, and finally after the
fusion with the 3× 3 convolution inside the SSMA module f . Figures 5.8, 5.9 and 5.10
illustrates one example for each dataset that we benchmark on, with the activation maps,
the input modalities and the corresponding segmentation output for the particular object
category.

For the Cityscapes dataset, we show the activation maps for the person category in
Figure 5.8 (a). It can be seen that the activation map Xa from the visual RGB stream is well
defined for the person class but it does not show high activations centered on the objects,
whereas the activation map from the depth stream Xb is more noisy but high activations are
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(i) Input Modality 1 (ii) Input Modality 2 (iii) Predicted Out

(iv) Input Xa (v) Input Xb

(vi) Recalibrated X̂a (vii) Recalibrated X̂b (viii) Fused f

Figure 5.10: Visualization of activation maps with respect to the Trail class at various stages of the
network before and after multimodal fusion on an example from the Freiburg Forest dataset. Xa

and Xb are at the outputs of the modality-specific encoder which is input to the SSMA, X̂a and X̂b

are the feature maps after recalibration inside the SSMA module, and f is after the fusion of both
modalities.

shown on the objects. For the locations in the input depth map that show noisy depth data,
the activation map correspondingly shows prominent activations in these regions. After
the recalibration of the feature maps, both X̂a and X̂b are less noisy while maintaining the
structures with high activations. Furthermore, the activation map of the fused convolution
f shows very well defined high activations that almost correspond to the segmentation
output.

Figure 5.8 (b) shows the activations for the pole class in the Synthia dataset. As the scene
was captured during rainfall, the objects in the visual RGB image are indistinguishable.
However, the depth map still maintains some structure of the scene. Studying both the
modality-specific activation maps at the input to the SSMA module shows substantial
amount of noisy activations spread over the scene. Therefore, the unimodal visual RGB
model only achieves an IoU of 74.94% for the pole class. Whereas, after the recalibration
of the feature maps, the activation maps show significantly reduced noise. It can be seen the
recalibrated activation map X̂b of the depth stream shows more defined high activations on
the pole, whereas X̂a of the visual RGB stream shows less amount of activations indicating
that the network suppresses the noisy RGB activations in order to better leverage the
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well defined features from the depth stream. Activations of the final fused convolution
layer show higher activations on the pole than either of the recalibrated activation maps
demonstrating the utility of multimodal fusion. This enables the fusion model to achieve
an improvement of 8.4% for the pole class.

While, for the indoor SUN RGB-D dataset, Figure 5.9 (a) shows the activation maps for
the table class. Interestingly, both the modality-specific activation maps at the input show
high activations at different locations indicating the complementary nature of the features
in this particular scene. However, the activation map Xb from the HHA stream also shows
high activations on the couch in the background which would cause misclassifications.
After the recalibration of the HHA feature maps, the activation map X̂b no longer has
high activations on the couch but it retains the high activations on the table. While,
the recalibrated activation map X̂a of the visual RGB stream shows significantly lesser
noisy activations. The activation map of the fused convolution f shows well defined high
activations on the table, more than the modality-specific input activation maps. This
enables the SSMA fusion model to achieve an improvement of 4.32% in the IoU for the
table category.

For the ScanNet dataset, we show the activation maps for the bathtub category in
Figure 5.9 (b). It can be seen that the modality specific activation maps at the input of
the SSMA module shows high activations at complementary locations, corroborating the
utility of exploiting features from both modalities. Moreover, the activation map Xb from
the HHA stream shows significantly higher activations on the object of interest than the
RGB stream. This also aligns with the quantitative results, where the unimodal HHA
model outperforms the model trained on visual RGB images. After the recalibration of the
feature maps inside the SSMA module, the activation maps show considerably lesser noise
while maintaining the high activations at complementary locations. The activation map
of the fused convolution f shows only high activations on the bathtub and resembles the
actual structure of the segmented output.

Finally, Figure 5.10 (a) shows the activation maps for the trail category in the Freiburg
Forest dataset. Here we show the fusion with visual RGB and EVI modalities. The EVI
modality does not provide substantial complementary information for the trail class in
comparison to the RGB images. This is also evident in the visualization of the activations
at the input of the SSMA module. The activation maps of the EVI modality after the
recalibration show significantly lesser noise but also smaller number of regions with high
activation than the recalibrated activation maps of the visual RGB stream. Nevertheless,
the activation map after the fusion f shows more defined structure of the trail than either
of the modality-specific activation maps at the input to the SSMA module prior to the
recalibration.
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5.3.5 Qualitative Comparison

In this section, we present qualitative comparisons of multimodal semantic segmentation
using our SSMA fusion approach on each of the five benchmark datasets. We compare with
the output of unimodal AdapNet++ architecture and show the improvement / error map
which indicates the improvement over the unimodal AdapNet++ output in green and the
misclassifications by the multimodal model in red. Figures 5.11 (a) and (b) show interesting
examples from the Cityscapes dataset. In both these examples, we can see a significant
improvement in the segmentation of cyclists. As cyclists constitute to a person riding a
bike, often models assign a part of the pixels on the person riding a bike as the person
class, instead of the cyclist class.

Another common scenario is when there is a person standing a few meters behind a
parked bike, the model misclassifies the person as a cyclist but since he is not on the bike,
the right classification would be the person category. In these examples, we can see that by
leveraging the features from the depth modality our network makes accurate predictions
in these situations. In Figure 5.11 (a), we can also see that parts of the car that is several
meters away is not completely segmented in the unimodal segmentation output but it is
accurately captured in the multimodal segmentation output. Furthermore, in the unimodal
output of Figure 5.11 (b), we see parts of the sidewalk behind the people is misclassified
as road and parts of the fence that is several meters away is misclassified as a sidewalk. As
the distinction between these object categories can clearly be seen in the depth images, our
fusion model accurately identifies these boundaries.

Figures 5.11 (c) and (d) illustrate examples from the Synthia dataset. Here we show the
first scene during rainfall and the second scene during night-time. In the unimodal output
of first scene, we can see significant misclassifications in all the object classes, except
building and vegetation that are substantially large in size. Whereas, the multimodal SSMA
fusion model leverages the depth features to reliably identify the objects in the scene. In
Figure 5.11 (d), even for us humans it is impossible to detect the people on the road due to
the darkness in the scene. As predicted, the unimodal visual RGB model misclassifies the
entire road with people as a car, which could lead to disastrous situations if it occurred
in the real-world. Whereas, the multimodal SSMA fusion model accurately predicts the
scene even in such poor illumination conditions.

In Figures 5.12 (a) and (b), we show examples on the indoor SUN RGB-D dataset. Due
to the large number of object categories in this dataset, several inconspicuous classes often
exist in the scene. Leveraging structural properties of objects from the HHA-encoded
depth can enable better discrimination between them. Figure 5.12 (a) shows a scene where
the unimodal model misclassifies parts of the wooden bed as a chair and parts of the pillow
as the bed. We can see that the multimodal SSMA output significantly improves upon
the unimodal counterpart. Figure 5.12 (b) shows a complex indoor scene with substantial
clutter. The unimodal AdapNet++ model misclassifies the table as a desk and a hatch in the
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wall is misclassified as a door. Moreover, partly occluded chairs are not entirely segmented
in the unimodal output. Whereas, the HHA-encoded depth image shows the well defined
structure of these objects, which enables the SSMA fusion approach to precisely segment
the scene. Note that the window in the top left corner of Figure 5.12 (b) is mislabeled as a
desk in the groundtruth mask.

Figures 5.12 (c) and (d) show examples of indoor scenes from the ScanNet dataset. In
the unimodal output of Figure 5.12 (c), overexposure of the image near the windows causes
misclassification of parts of the window as a picture. While, the crumpled bedsheets as
well as the bookshelf are misclassified as a desk. On the other hand, the multimodal SSMA
segmentation output does not demonstrate these errors. Figure 5.12 (d) shows an image
with motion-blur due to camera motion. The motion-blur causes a significant percentage
of the image to be misclassified as the largest object in the scene, which is a bookshelf in
this scene. Analyzing the HHA-encoded depth map, we can see that it does not contain
overexposed sections or motion-blur, rather it strongly emphasizes the structure of the
objects in the scene. By leveraging features from the HHA-encoded depth stream, our
multimodal SSMA model robustly predicts the different object classes even in the presence
of these perceptual disturbances.

In Figures 5.13 (a) and (b), we show results on the unstructured Freiburg Forest dataset.
Figure 5.13 (a) shows an oversaturated image due to sunlight which causes the boulders on
the grass to be not captured in the unimodal segmentation output. Oversaturation causes
boulders to appear with a similar texture as the trail or the vegetation class. However,
the multimodal RGB-EVI model leverages the complementary EVI features to reliably
segment these structures. Figure 5.13 (b) shows an example scene with glare on the camera
optics and snow on the ground. In the unimodal semantic segmentation output, the presence
of these disturbances often causes localized misclassifications in the areas where they are
present. Whereas, the multimodal semantic segmentation model employing our SSMA
fusion compensates for these disturbances exploiting the complementary relationship
between the two modalities.

The last two rows of Figure 5.13 show interesting failure modes where the multimodal
SSMA fusion model demonstrates incorrect predictions. In Figure 5.13 (c), we show an
example from the Cityscapes dataset which contains an extremely thin fence connected
by wires along the median of the road. The thin wires are barely captured by the depth
modality and it is visually infeasible to detect the fence from the RGB image. Moreover,
due its thin structure, the vehicles on the opposite lane are clearly visible. This causes both
the unimodal and multimodal models to partially segment the vehicles behind the fence,
thereby causing incorrect predictions according to the groundtruth mask. However, we can
see that the multimodal SSMA fusion model still captures more of the fence structure than
the unimodal AdapNet++ model by leveraging the complementary depth information.

In Figure 5.13 (d), we show an example from the SUN RGB-D dataset in which
misclassifications are produced due to inconspicuous classes. The scene contains two
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object categories that have very similar appearance in some scenes, namely, chair and
sofa. The chair class is denoted in dark green, while the sofa class is denoted in light
green. As we see in this scene, a single-person sofa is considered to be a chair and only
the longer sofa in the middle of the image is considered to be in the sofa class according
to the groundtruth mask. In this scene, the single person sofa is adjacent to the longer
sofa which causes the both the unimodal AdapNet++ model and the multimodal SSMA
fusion model to predict the pixels on both these objects as the sofa class. However, we
still observe more pixels that are correctly classified as the chair class in the multimodal
SSMA output than in the unimodal AdapNet++ output.

5.3.6 Visualizations Across Seasons and Weather Conditions

In this section, we present qualitative results on the Synthia-Sequences dataset that contains
video sequences of 12 different seasons and weather conditions. We visualize the segmen-
tation output of the multimodal RGB-D SSMA fusion model and unimodal AdapNet++
model for which the quantitative results are shown in Figure 5.7. For this experiment,
the models were trained on the Synthia-Rand-Cityscapes dataset and only evaluated on
the Synthia-Sequences dataset. The Synthia-Sequences dataset contains a diverse set of
conditions such as summer, fall, winter, spring, dawn, sunset, night, rain, soft-rain, fog,
night-rain and winter-night. We show qualitative evaluations on each of these conditions
by comparing the multimodal segmentation performance using the SSMA fusion with the
output obtained from the unimodal visual RGB model. This aim of this experiment is
twofold: to study the robustness of the model to adverse perceptual conditions such as rain,
snow, fog and nightime; Secondly, to evaluate the generalization of the model to unseen
scenarios.

From the examples shown in Figures 5.14, 5.15 and 5.16, we can see the diverse nature of
these scenes containing environments such as highway driving, inner-city with skyscrapers
and small-sized cities. The RGB images show the visual appearance variations caused by
changing seasons and weather conditions. These appearance changes can be observed in
the color of the vegetation in Figure 5.14 (b), snow on the ground and leaf-less trees in
Figure 5.14 (c), glaring light due to sunrise in Figure 5.15 (a), orange hue due to sunset in
Figure 5.15 (b), dark scene with isolated lights in Figure 5.15 (c), adverse visibility due
to rain in Figure 5.15 (d) and blurred visibility due to fog in Figure 5.16 (b). Even for us
humans it is extremely hard to identify the different objects in some of these environments.
The third column shows the output obtained from the unimodal AdapNet++ model trained
on visual RGB images. The output shows significant misclassifications in scenes that
contain rain, fog, snow or nighttime. Whereas, the multimodal SSMA model using RGB-D
fusion precisely segments the scene by leveraging the more stable depth features.

From the improvement / error map shown in the last column, we can see a substantial
improvement (green pixels) over unimodal semantic segmentation and minimal error (red



5.3. Experimental Evaluation 171

In
pu

tM
od

al
ity

1
In

pu
tM

od
al

ity
2

U
ni

m
od

al
O

ut
pu

t
M

ul
tim

od
al

O
ut

pu
t

Im
pr

ov
em

en
t/

E
rr

or
M

ap
(a)Summer (b)Fall (c)Winter (d)Spring

Fi
gu

re
5.

14
:Q

ua
lit

at
iv

e
m

ul
tim

od
al

se
m

an
tic

se
gm

en
ta

tio
n

re
su

lts
in

co
m

pa
ris

on
to

th
e

ou
tp

ut
of

th
e

un
im

od
al

vi
su

al
R

G
B

m
od

el
fo

rs
ce

ne
s

fr
om

th
e

Sy
nt

hi
a-

Se
as

on
s

da
ta

se
td

ep
ic

tin
g

(a
)s

um
m

er
,(

b)
fa

ll,
(c

)w
in

te
r,

an
d

(d
)s

pr
in

g.
In

ad
di

tio
n

to
th

e
se

gm
en

ta
tio

n
ou

tp
ut

,w
e

al
so

sh
ow

th
e

im
pr

ov
em

en
t/

er
ro

rm
ap

w
hi

ch
in

di
ca

te
s

th
e

m
is

cl
as

si
fie

d
pi

xe
ls

in
re

d
an

d
th

e
pi

xe
ls

th
at

ar
e

m
is

cl
as

si
fie

d
by

th
e

be
st

pe
rf

or
m

in
g

st
at

e-
of

-t
he

-a
rt

m
od

el
bu

tc
or

re
ct

ly
pr

ed
ic

te
d

by
A

da
pN

et
++

in
gr

ee
n.

T
he

co
lo

r
le

ge
nd

fo
r

th
e

se
gm

en
ta

tio
n

la
be

ls
co

rr
es

po
nd

to
th

os
e

sh
ow

n
in

th
e

de
ta

ile
d

be
nc

hm
ar

ki
ng

re
su

lts
in

Ta
bl

e
A

.2
.T

he
re

gi
on

s
de

no
te

d
in

bl
ac

k
ar

e
th

e
ig

no
re

la
be

ls
in

th
e

da
ta

se
ts

.



172 Chapter 5. Multimodal Semantic Segmentation

InputM
odality

1
InputM

odality
2

U
nim

odalO
utput

M
ultim

odalO
utput

Im
provem

ent/E
rrorM

ap
(a) Dawn(b) Sunset(c) Night(d) Rain

Figure
5.15:

Q
ualitative

m
ultim

odalsem
antic

segm
entation

results
in

com
parison

to
the

outputof
the

unim
odalvisualR

G
B

m
odelfor

scenes
from

the
Synthia-Seasons

datasetdepicting
(a)daw

n,(b)sunset,(c)night,and
(d)rain.In

addition
to

the
segm

entation
output,w

e
also

show
the

im
provem

ent/errorm
ap

w
hich

indicates
the

m
isclassified

pixels
in

red
and

the
pixels

thatare
m

isclassified
by

the
bestperform

ing
state-of-the-art

m
odelbutcorrectly

predicted
by

A
dapN

et++
in

green.
T

he
color

legend
for

the
segm

entation
labels

correspond
to

those
show

n
in

the
detailed

benchm
arking

results
in

Table
A

.2.T
he

regions
denoted

in
black

are
the

ignore
labels

in
the

datasets.



5.3. Experimental Evaluation 173

In
pu

tM
od

al
ity

1
In

pu
tM

od
al

ity
2

U
ni

m
od

al
O

ut
pu

t
M

ul
tim

od
al

O
ut

pu
t

Im
pr

ov
em

en
t/

E
rr

or
M

ap
(a)SoftRain (b)Fog (c)NightRain (d)WinterNight

Fi
gu

re
5.

16
:Q

ua
lit

at
iv

e
m

ul
tim

od
al

se
m

an
tic

se
gm

en
ta

tio
n

re
su

lts
in

co
m

pa
ri

so
n

to
th

e
ou

tp
ut

of
th

e
un

im
od

al
vi

su
al

R
G

B
m

od
el

fo
r

sc
en

es
fr

om
th

e
Sy

nt
hi

a-
Se

as
on

s
da

ta
se

td
ep

ic
tin

g
(a

)s
of

t-
ra

in
,(

b)
fo

g,
(c

)n
ig

ht
-r

ai
n,

an
d

(d
)w

in
te

r-
ni

gh
t.

In
ad

di
tio

n
to

th
e

se
gm

en
ta

tio
n

ou
tp

ut
,w

e
al

so
sh

ow
th

e
im

pr
ov

em
en

t/
er

ro
rm

ap
w

hi
ch

in
di

ca
te

s
th

e
m

is
cl

as
si

fie
d

pi
xe

ls
in

re
d

an
d

th
e

pi
xe

ls
th

at
ar

e
m

is
cl

as
si

fie
d

by
th

e
be

st
pe

rf
or

m
in

g
st

at
e-

of
-t

he
-a

rt
m

od
el

bu
tc

or
re

ct
ly

pr
ed

ic
te

d
by

A
da

pN
et

++
in

gr
ee

n.
T

he
co

lo
rl

eg
en

d
fo

rt
he

se
gm

en
ta

tio
n

la
be

ls
co

rr
es

po
nd

to
th

os
e

sh
ow

n
in

th
e

de
ta

ile
d

be
nc

hm
ar

ki
ng

re
su

lts
in

Ta
bl

e
A

.2
.T

he
re

gi
on

s
de

no
te

d
in

bl
ac

k
ar

e
th

e
ig

no
re

la
be

ls
in

th
e

da
ta

se
ts

.



174 Chapter 5. Multimodal Semantic Segmentation

Figure 5.17: Our Viona robot autonomously navigating in a forested environment near Freiburg
using our multimodal semantic segmentation network for perception. The robot was equipped with
four Bumblebee2 stereo cameras mounted in perpendicular directions and an NVIDIA Jetson TX1
for the computation.

pixels) while employing the multimodal SSMA fusion. The error is noticeable only along
the boundaries of objects that are at far away distances, which can be remedied using a
higher resolution input image. Figure 5.15 (a) and Figure 5.16 (b) show partial failure
cases. In the first example in Figure 5.15 (a), the occluded bus on the left is misclassified
as a fence due to being parked on the sidewalk, where often fences appear in the same
configuration. While, in Figure 5.16 (b), a part of the vegetation several meters away is
misclassified as a building due to the haziness caused by the fog. Nevertheless, overall
the SSMA fusion approach effectively generalizes to unseen environments and visibility
conditions demonstrating the efficacy of our mutimodal semantic segmentation network.

5.3.7 Real-World Navigation Experiment

We performed real-world navigation experiments using our Viona robot that was equipped
with our multimodal semantic segmentation network for perception. The robot shown
in Figure 5.17 has four Bumblebee2 stereo vision cameras mounted at perpendicular
directions to obtain a 360 degree field of view of the environment. We used the NVIDIA
Jetson TX1 which has 256 CUDA cores for deploying our model. We implemented a
segmentation pipeline using ROS and the Caffe deep learning library for this experiment.
The robot first captured images of the scene using the stereo cameras and segments the
images with our multimodal fusion model trained on the Freiburg Forest dataset. Waypoints
for the robot to follow were then computed from the segmentation output with the aim
of keeping the robot on the navigable trail. The computed waypoints were subsequently
forwarded to the planner that executed the trajectory.

The robot autonomously navigated a total of 4.52 km with an average speed of 0.9 m s–1

in a challenging forested environment as shown in Figure 5.18. A forward-pass on
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(a) Trajectory that was driven by our robot during
the autonomous driving experiments.

(b) Planning interface showing waypoints, camera
images and the corresponding segmentation output.

Figure 5.18: Our robot autonomously traversed 4.52 km using only the semantic segmentation
from our multimodal network for perception. Waypoints were derived from the segmentation and
sent to the autonomy system on the robot for trajectory following.

the NVIDIA TX1 embedded GPU consumed 623 ms. During the entire experiment the
robot did not have any prior map of the environment, therefore it employed the semantic
segmentation on the fly to traverse the trail. The robot encountered several challenging
situations including low-lighting due to forest canopy, occasional glare from the sun,
shadows from trees and motion-blur. The perception system equipped with our multimodal
semantic segmentation model was robust to these disturbances and performed inference
online that enabled the successful autonomous navigation.

5.4 Related Work

The work presented in this chapter addresses the problem of multimodal semantic segmen-
tation using convolutional neural networks that incorporate adaptive fusion techniques to
exploit complementary features from multiple modalities based on the scene condition.
These techniques enable a robot to robustly perceive and understand scenes in the complex
real-world even in challenging environmental conditions such as snow, fog and rain. In
this section, we present a thorough review of the most related works in this context in order
to highlight our contributions.

The advent of low-cost perceptual sensors has enabled several novel approaches to
exploit features from alternate modalities in an effort to improve robustness as well as the
granularity of the segmentation. Silberman et al. [164] propose an approach based on SIFT
features and MRFs for indoor scene segmentation using RGB-D images. Subsequently,
Ren et al. [205] propose improvements to the feature set by using kernel descriptors and
by combining MRF with segmentation trees. Bo et al. [206] propose an approach that
learns dictionaries using K-SVDs from RGB, depth, gray-scale intensities and surface
normals. Subsequently, a Hierarchical Marching Pursuit (HMP) method [207] was intro-



176 Chapter 5. Multimodal Semantic Segmentation

duced to generate high-level representations from learned spare codes of local patches.
Munoz et al. [208] employ modality-specific classifier cascades that hierarchically propa-
gate information and do not require one-to-one correspondence between data across modal-
ities. In addition to incorporating features based on depth images, Hermans et al. [209]
propose an approach that performs joint 3D mapping and semantic segmentation using
Randomized Decision Forests. In most of these approaches, hand engineered or learned
features are extracted from individual modalities and combined together in a joint feature
set which is then used for classification. These features do not readily extend to different
modalities and datasets as they are tuned for specific scenarios. Moreover, these features
only capture a subset of cues that are useful for multimodal perception.

More recently, there has been a series of CNN-based techniques [163, 210, 211] that have
been proposed for end-to-end learning of fused representations from multiple modalities.
As opposed to visual RGB images which are three-channel images, alternate modalities
such as depth and infrared are one-channel images. Although, approaches have been
proposed that directly learn from one-channel depth images [197], encoding the depth
map into the HHA representation [24, 161] or converting it into a three-channel image
by applying a jet colormap [163] has been demonstrated to be more effective for feature
learning using CNNs. Techniques have also been proposed to augment the standard
convolution with a depth similarity term to force pixels with similar depths at the center
of the filter to contribute more to the output [212]. CNN-based multimodal learning
approaches can be categorized into early, hierarchical and late-fusion methods. An intuitive
early-fusion technique is to stack data from multiple modalities channel-wise and feed it to
the network as a four or six-channel input. Couprie et al. [213] propose a multiscale CNN
for scene labeling that takes a four-channel RGB-D image as input. However, experiments
have shown that this often does not enable the network to learn complementary features
and cross-modal interdependencies as they do not exploit the different characteristics of
the modalities [50, 162].

Hierarchical fusion approaches combine feature maps from multiple modality-specific
encoders at various levels (often at each downsampling stage) and upsample the fused
features using a single decoder [162, 210]. Jiang et al. [214] employ an hierarchical
fusion approach with individual RGB and depth streams that fuse features at different
encoder stages while additionally having skip connections to the decoder at the same
stages. Alternatively, Schneider et al. [201] propose a mid-level fusion approach in which
NiN layers [69] with depth as input are used to fuse feature maps into the RGB encoder
in the middle of the network. Eigen et al. [197] employ a global-to-local strategy that
extracts features using a CNN and combines different levels of predictions. Li et al. [211]
propose a Long-Short Term Memory (LSTM) context fusion model that captures and fuses
contextual information from multiple modalities accounting for the complex interdepen-
dencies between them. Lin et al. [215] employ an FCN-based approach that uses multiple
branches for different discrete depth values in order to provide a better control on the con-
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textual information of learned features. Qi et al. [216] propose an interesting approach that
employs 3D graph neural networks for RGB-D semantic segmentation that accounts for
both 2D appearance and 3D geometric relations, while capturing long range dependencies
within images. A major shortcoming of these approaches is that the complementary nature
of different modalities are not fully exploited due to the direct element-wise addition or
concatenation that is performed to fuse the features.

In the late-fusion approach, identical network streams are first trained individually on
a specific modality and the feature maps are fused towards the end of network using
concatenation [163] or element-wise summation [50], followed by learning deeper fused
representations. Lin et al. [217] propose an approach in which individual CNNs are
employed to extract features from RGB images and HHA-encoded maps individually,
followed by concatenating the resulting features and employing them as input to an
SVM for classification. Socher et al. [218] employ a single layer CNN to learn low-
level features which are then input to a Recurrent Neural Network (RNN) for high-level
feature learning. Features from RGB and depth modalities are learned separately and
then concatenated before the softmax layer. Although these techniques have demonstrated
improved performance over models that solely employ visual RGB images, they do not
enable the network to adapt the fusion to changing scene context, which is one of the main
focus of the approaches presented in this chapter.

Another approach to fusing multimodal features from multiple specialized networks
is related to the Mixture of Experts (MoE) technique. Hinton et al. [219] presented the
classical MoE model consisting of experts and a supporting gating network, where each
expert maps their respective inputs to a corresponding output and the gating network
produces a probability distribution over the experts. Eigen et al. [220] extend the concept
of MoEs by employing CNNs as experts to classify MNIST [221] and monophone speech
data. This paper highlights the fact that using a mixture with deep networks increases
the number of trainable parameters without significantly increasing the computational
burden. Cheng et al. [222] introduce a locality-sensitive CNN that performs gated fusion
by building a feature affinity matrix that enables weighted average pooling and unpooling.
Subsequently, Mees et al. [223] propose a MoE technique that uses inner-product layers to
learn modality-specific weightings which are then used to adaptively compute a weighted
average over the outputs of CNN streams that take different modalities as input. The
aforementioned techniques provide a framework for adaptively weighing the features of
different CNN streams. However, it is insufficient to solely adapt the features according to
different modalities as several other factors such the type of objects and its location in the
scene also influence the selection of modality-specific features.

In order to address this problem, in this chapter, we presented the CMoDE fusion
approach for learning the most discriminative features from each modality and probabilisti-
cally fusing the semantically high-level features according to the different object categories
in the scene which enables more flexibility in learning the optimal multimodal feature
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combination. Nevertheless, there are several real-world scenarios in which class-wise
fusion is insufficient, especially in outdoor scenes where different modalities perform well
in different conditions. Moreover, the CMoDE module employs multiple softmax loss
layers for each class to compute the probabilities for fusion which does not scale efficiently
when the number of object categories to be classified significantly increases. Motivated
by this observation, we also proposed a multimodal semantic segmentation architecture
incorporating our SSMA fusion module that dynamically adapts the fusion of intermediate
network representations from multiple modality-specific network streams according to
the object class, its spatial location and the scene context while learning the fusion in a
self-supervised fashion.

5.5 Conclusions

In this chapter, we presented two multimodal semantic segmentation architectures that
adaptively fuse features from multiple modalities and spectra, in order to exploit comple-
mentary information based on the scene condition. The first architecture incorporates our
proposed CMoDE fusion mechanism that probabilistically fuses high-level semantic fea-
tures from multiple modality-specific network streams to exploit complementary features
according to the different types of objects in the scene and further learns discriminative
fused representations. Our second architecture incorporates our proposed SSMA modules
dynamically adapt the fusion of features from modality-specific streams at various inter-
mediate network stages in order to optimally exploit complementary features. Our SSMA
fusion mechanism is simultaneously sensitive to critical factors that influence multimodal
fusion including the object category, its spatial location and the environmental scene
context, in order to fuse only the relevant complementary information. We also introduced
a channel attention mechanism for better correlating the fused mid-level modality-specific
encoder features with the high-level decoder features for object boundary refinement.
Moreover, as the fusion mechanism is self-supervised, we demonstrated that it effectively
generalizes to the fusion of different modalities, beyond the commonly employed RGB-D
data and across different environments ranging from urban driving scenarios to indoor
scenes and unstructured forested environments. Unlike most existing multimodal fusion
techniques, our proposed fusion mechanisms are independent of the base semantic seg-
mentation architecture and they can be easily employed in other segmentation frameworks,
as well for other multimodal perception tasks.

We presented comprehensive benchmarking results on five standard scene understanding
datasets including Cityscapes, Synthia, SUN RGB-D, ScanNet and Freiburg Forest. Both
our proposed multimodal fusion approaches outperform existing techniques and set the new
state-of-the-art on all the aforementioned benchmarks. We also presented thorough ablation
studies that give insight on our architectural decisions and provided distinctly interpretable
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visual explanations that demonstrate the internal functioning of our multimodal fusion
scheme. Furthermore, we presented extensive qualitative evaluations on each of the
benchmarked datasets and more importantly, results in adverse perceptual conditions that
demonstrate the exceptional robustness of our model to a variety of seasonal changes and
weather conditions.





Chapter 6

Joint Semantic Motion Segmentation

Understanding the dynamic characteristics of objects in the scene
is an essential prerequisite for autonomous robots that enable them
to reason and operate in complex real-world environments. Typ-
ically, motion segmentation of objects is achieved using dense op-
tical flow methods that make homogenous assumptions about the
spatial structure of the flow. However, different semantic objects
in the scene such as pedestrians and cars inherently move differ-
ently. Moreover, the problem becomes even more challenging in
the presence of fast and unstable ego-motion induced by the mov-
ing robot. In this chapter, we propose two novel convolutional neu-
ral network architectures that learn to predict both the semantic
object label and motion status of each pixel in an image. Our pro-
posed SMSnet architecture takes a pair of consecutive images as in-
put and first learns a coarse representation of the optical flow field
features, which are then augmented with learned semantic features
and subsequently refined to yield pixel-wise semantic motion labels
at the original high-resolution. We also propose the SMSnet++ ar-
chitecture, in which we strengthen the joint modeling of both se-
mantic and motion cues, while concurrently improving the tempo-
ral consistency of semantic segmentation using an edge-enhanced
flow transformation to warp intermediate network representations
across time. Extensive experiments demonstrate that our proposed
architectures achieve state-of-the-art performance on the challeng-
ing Cityscapes, KITTI and ApolloScape benchmark datasets.

6.1 Introduction

Recent advancement in robotic technology and machine learning has led to the successful
deployment of robots to accomplish tasks in various structured and semi-structured en-
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(a) Input frame 1 (b) Input frame 2

(c) Generated optical flow (d) Ego-motion suppressed flow

(e) Semantic motion segmentation (f) Overlay of static and moving cars

Figure 6.1: Illustration of semantic motion segmentation using our proposed SMSnet++ archi-
tecture trained on the Cityscapes dataset. Our network jointly predicts both the semantic object
category and the motion status of each pixel in the image. Static cars are shown in blue, while
moving cars are shown in orange.

vironments such as factory floors, domestic homes, warehouses and offices. This recent
success has now paved the way to tackle more complex tasks in challenging urban envi-
ronments that contain many dynamic objects such as cars, bicycles and pedestrians. Thus
inferring the state of motion of these objects plays a crucial role in ensuring the viability
and safe operation in such scenarios. Predicting motion patterns is a fundamental scene
understanding problem that has been addressed with various techniques that exploit motion
cues including optical-flow computation [224, 225], scene flow computation [226, 227],
motion estimation [228, 229] and video segmentation [230, 231]. Despite the progress
over the years, state-of-the-art methods are still challenged by factors such as fast motion
of objects, varying pixel displacements due to object motion with different velocities,
low-textured regions and occlusion boundaries around objects. Moreover, as the robot
equipped with the camera is itself moving, it additionally introduces challenges such as
ego-motion induced flow, lighting changes between consecutive frames and motion-blur.

Inspired by the progress in semantic segmentation of static scenes [59, 132, 135], recent
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work [232, 233] has explored the benefit of learning semantic cues and motion cues jointly
as both provide complementary information about the scene where features learned for
semantic labeling can help infer motion labels and vice versa. On one hand, the transition
in motion is most likely to occur at the dynamic object class boundaries, while on the other
hand, the semantic class of the object itself provides important cues for predicting motion
patterns. For example, in dynamic scenes, the probability of a car or person moving is
greater than the probability of a building or pole. Moreover, as different objects move
differently, it provides cues on the expectation of motion that varies between regions with
different object class labels. Finally, semantic cues also encourage temporal consistency of
the motion segmentation as the identities of the objects remain constant over time. From
the task perspective, the joint knowledge about the semantics and motion of objects gives
us a more holistic understanding of the scene that allows robotic systems to increase their
awareness, reason about behaviors and plan autonomous actions more effectively.

In Chapter 4, we introduced architectures for efficient semantic segmentation and
subsequently in Chapter 5, we presented methods that substantially improve the robustness
by exploiting complementary multimodal features. These networks enable a robot to
accurately segment the scene into different semantic object categories, even in challenging
perceptual conditions that robots encounter in the complex real-world. While in this
chapter, we build upon the techniques that we introduced thus far and propose a joint
learning framework to generate richer semantic descriptions by prefixing motion labels
to potentially dynamic semantic object classes such as a static car and a moving car to
enable a more comprehensive understanding of the scene. Deep Convolutional Neural
Network (CNN) based approaches have significantly improved the state-of-art in both
semantic segmentation [24] and motion estimation [225]. There are numerous approaches
that model the motion of objects separately [228, 230, 234, 235, 236] and the semantics of
the scene separately [53, 67, 135, 136, 138]. However, currently there are only a handful
of methods [232, 233, 237] that aim to capture both semantic and motion cues jointly
considering that they are both interrelated.

Reddy et al. [232] propose an approach that integrates semantic, geometric and optical
flow based constraints into a dense fully connected CRF model. They report improved
results in motion segmentation using the joint formulation compared to geometry-based
motion segmentation, and joint optimization with superpixel-based clique and motion
estimate. Fan et al. [233] propose an approach which combines semantic segmentation
obtained from a fully convolutional neural network (FCN) with stereo-vision based motion
segmentation using dense CRFs. Their semantic motion segmentation model outperforms
the approach of Reddy et al. [232] by incorporating better semantic feature learning.
Subsequently, Haque et al. [237] propose a three stage pipeline that integrates optical flow
as a constraint with semantic features into a dilated CNN for semantic motion segmentation.
Their approach achieves state-of-the-art results outperforming the other methods on the
KITTI dataset. However, the aforementioned techniques have long multistage pipelines
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that have slow run-times deeming them impractical for real-world applications. Moreover,
these approaches only exploit semantic features to improve motion segmentation, whereas
they do not consider the fact that the learned motion features can also be leveraged to enable
more accurate semantic segmentation. Another major hindrance is the lack of a large
enough dataset with groundtruth semantic motion annotations that enable training of CNNs
without overfitting and allow for credible quantitative evaluations as these approaches have
only been benchmarked on 200 images.

In order to address these problems, in this chapter, we propose two convolutional neural
network architectures that learn to predict both the semantic category and motion status
of each pixel from a pair of consecutive images. Our first architecture termed SMSnet
is composed of three components: a stream that learns coarse representations of the
optical flow field features, a parallel stream that generates discriminative semantic features,
and a fusion section that combines both motion and semantic features while refining the
predictions to generate a high-resolution pixel-wise semantic motion segmentation output.
We build the different streams of the SMSnet architecture based on the AdapNet topology
that we introduced in Chapter 4 and we embed the FlowNet2 [225] architecture to generate
the optical flow maps. Often, the movement of the robot in the scene causes discontinuities
in the optical flow magnitude. Nearby static objects may appear to have a larger optical
flow magnitudes although they are not moving. In order to alleviate this problem, we
employ a ego-flow suppression technique in which we compute the optical flow purely
caused by the ego-motion using IMU and odometry readings, and subtract it from the flow
magnitudes predicted by the embedded flow generation network.

Our proposed SMSnet model jointly learns to accurately predict both the semantic label
and motion status of each pixel in the image. Although it uses the semantic cues to improve
the motion segmentation performance, it does not exploit the learned motion cues to
improve the semantics learning. In order to address this factor as well as to further improve
the performance of both semantic and motion segmentation, we propose the SMSnet++
architecture. The topology of the architecture follows the similar three stream principle
as SMSnet. However, we build each of the streams based on our improved AdapNet++
architecture that includes our efficient atrous spatial pyramid pooling for multi-scale
context aggregation and a strong a decoder that significantly improves the performance
along the object boundaries. For generating optical flow maps in SMSnet++, we embed
the new FlowNet3 architecture [227] that introduces a technique to estimate occlusion
areas jointly along with the optical flow. We then employ our ego-flow suppression
technique to remove any flow magnitudes caused by the movement of the robot equipped
with the camera. Subsequently, we fuse the optical flow field features with the semantic
features using our proposed SSMA fusion scheme that we introduced in Chapter 5, rather
than the simple concatenation that we employ in SMSnet. The SSMA module learns
to adaptively fuse the motion and semantic features by enhancing the optical flow field
features at areas containing moving objects, while suppressing the activations due to
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noise at the static regions. Furthermore, in order to simultaneously improve the semantic
segmentation performance, we first transform the ego-flow suppressed optical flow to an
edge-enhanced representation using the NetWarp module [238] and subsequently utilize it
to warp intermediate semantic representations of the previous frame into the corresponding
representations of the current frame. We then fuse the warped feature maps and the feature
maps of the current frame using our SSMA module that we introduced in Chapter 5. This
representation warping method enables our network to achieve temporal consistency across
frames resulting in improved prediction accuracy.

Training our proposed networks requires datasets with consecutive image pairs and
pixel-level groundtruth labels with both semantic and motion annotations for the current
frame. Thus far, the only publicly available semantic motion segmentation dataset con-
tains 200 labeled images from the KITTI [239] benchmark, which is highly insufficient
for training deep networks. Therefore, in order to facilitate this work, we manually la-
beled the 3375 training and validation images of the Cityscapes semantic segmentation
dataset [143], with motion annotations. As existing techniques are benchmarked on the
KITTI dataset, we labeled 255 images with semantic and motion annotations that we em-
ploy for training, while using the existing 200 labeled images from Reddy et al. [239] for
testing. Additionally, we also labeled 40,960 training images and 8327 testing images from
the recently introduced ApolloScape semantic segmentation dataset [240], with motion
annotations. We benchmark our proposed architectures as well as existing semantic motion
segmentation techniques on our publicly released Cityscapes-Motion, KITTI-Motion and
ApolloScape-Motion datasets. Extensive empirical evaluations demonstrate that both our
architectures set the new state-of-the-art on these benchmarks, while being several times
faster than existing techniques. To the best of our knowledge our networks are the first
end-to-end learning techniques to address the problem of semantic motion segmentation,
in addition to being the first to simultaneously improve the performance of both these tasks
in a joint formulation.

Concretely, we make the following contributions in this chapter:
• A novel end-to-end convolutional neural network architecture that takes consecutive

images as input and jointly learns to predict both the semantic object category and
motion status of each pixel in an image.
• An refined architecture that adaptively fuses optical flow field features with semantic

features, while simultaneously exploiting the optical flow for learning temporally
consistent semantics.
• A representational warping scheme that improves the temporal consistency of se-

mantic segmentation using our ego-flow suppressed optical flow with the NetWarp
module [238] and subsequently fusing warped temporal features dynamically using
our adaptive SSMA fusion technique.
• We demonstrate how incorporating semantic cues into the motion segmentation net-

work and motion cues into the semantic segmentation network is mutually beneficial
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to both tasks.
• We extend the Cityscapes, KITTI and ApolloScape semantic segmentation datasets

with pixel-level motion annotations and make them publicly available. This amounts
to a total of 44,090 training images and 9027 testing images with both pixel-level
semantic and motion annotations.
• Extensive benchmarking of existing semantic motion segmentation techniques on all

the three aforementioned datasets with both quantitative and qualitative comparisons.
• Implementations of our proposed semantic motion segmentation architectures are

made publicly available at http://deepmotion.cs.uni-freiburg.de.

The remainder of this chapter is organized as follows. In Section 6.2.1, we detail the
topology of our SMSnet architecture for joint semantic motion segmentation, followed by
the architecture of our SMSnet++ model that aims to improve both tasks simultaneously
in Section 6.2.2. Subsequently, we describe the ego-flow suppression technique in Sec-
tion 6.2.3 and we describe the datasets that we introduce in Section 6.3. In Section 6.4,
we present comprehensive experimental evaluations, detailed ablation studies and quali-
tative comparisons on each of the datasets, followed by detailed generalization analysis
of our models in Chapter 6.4.6. Finally, we discuss the extensive related work on motion
segmentation and joint semantic motion segmentation in Section 6.5, before concluding
the chapter in Section 6.6.

6.2 Technical Approach

In this section, we first formulate the problem of semantic motion segmentation. We
then describe our proposed SMSnet architecture that jointly predicts both the semantic
object class and motion status of each pixel in the image. Subsequently, we detail our
improved SMSnet++ architecture that uses semantic cues to generate a more precise motion
segmentation and correspondingly uses motion cues to generate a more precise semantic
segmentation. Finally, we detail our ego-flow suppression technique that compensates for
the flow magnitudes induced due to the ego-motion of the robot.

We represent the training set for semantic motion segmentation as T = {(In–1, In, Mn) |
n = 1, . . . , N}, where In = {ur | r = 1, . . . , ρ} denotes the input frame, In–1 denotes the
preceding frame and the corresponding groundtruth label is given by Mn = {mr | r =
1, . . . , ρ}, where mr ∈ C ×M, where C = {1, ..., C} is the set of C semantic object classes
and each class can also take the label of static or movingM = {m1, m2} with m1 denoting
a static pixel and m2 denoting a moving pixel. We assume that the input images (In–1, In)
and the labels Mn have the same dimensions ρ = H ×W. Let θ be the network parameters
consisting of weights and biases, and sj(ur, θ) as the score assigned for labeling pixel ur

with label j. We obtain probabilities P = (p1, . . . , p2C) for all the semantic classes using the

http://deepmotion.cs.uni-freiburg.de
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softmax function as

pj (ur, θ | In–1, In) = σ
(
sj (ur, θ)

)
=

exp
(
sj (ur, θ)

)∑2C
k exp (sk (ur, θ))

. (6.1)

The optimal network parameters are then estimated by minimizing the cross-entropy
loss function as

Lseg(T , θ) = –
N∑

n=1

ρ∑
r=1

2C∑
j=1

δmr ,j log pj (ur, θ | In–1, In) , (6.2)

for (In–1, In, Mn) ∈ T , where δmr ,j is the Kronecker delta.

6.2.1 SMSnet Architecture

Our proposed SMSnet architecture shown in Figure 6.2 consists of three streams: Motion
Feature Learning, Semantic Feature Learning, and Semantic-Motion Feature Fusion. The
Motion Feature Learning stream shown as green blocks learns optical flow field features,
while the Semantic Feature Learning stream shown as gray blocks learns to segment the
scene into distinct semantic object categories at the pixel-level. The feature maps from
both streams are then concatenated in the Semantic-Motion Feature fusion stream indicated
as orange blocks and further discriminative motion representations are learned to generate
the pixel-wise semantic motion segmentation output. In the rest of this section, we describe
the topologies of each of these streams in detail.

Motion Feature Learning: This stream learns optical flow field features that represent
motion-specific information. Two consecutive input images are first passed through a
section of this stream that learns to generate high quality optical flow maps. We embed
the recently proposed FlowNet2 [225] architecture for end-to-end learning of optical
flow, however, any network that performs optical flow estimation can be employed in
place. FlowNet2 consists of multiple stacked subnetworks, where the subsequent networks
take the first image, the second image warped with the intermediate optical flow and the
intermediate optical flow itself as input, along with the brightness error. The brightness
error is the difference between the first and second image warped with the intermediate
flow. Moreover, it also includes a subnetwork that focuses on small subpixel motions. The
final optical flow is obtained using a small fusion network that combines both the small
and large displacement flows. We use the optical flow generated by this network in the x
and y direction, and in addition we also compute the magnitude of the flow. This yields a
three-channel image with the same dimensions as the input RGB images. Figure 6.1 (c)
shows an example of the generated optical flow image, while the consecutive input frames
are shown in Figures 6.1 (a) and (b).
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Moving objects appear as motion patterns that differ in scale, geometry and magnitude.
In order to enable the network to reason about object classes and its borders, we further
convolve and pool the optical flow features through multiple network blocks. We utilize the
residual blocks [27] from the ResNet-50 architecture for this purpose. The concatenated
optical flow and its magnitude is first passed through Res1 and Res2 blocks which contain
one and four residual units respectively. This downsamples the feature maps to 1/4-times
the input image resolution. We then subsequently feed these feature maps through two units
of Res3 and one unit of Res4 blocks to yield feature map tensors that are 1/16-times the
input image resolution. The resulting flow field features rich in motion specific information
are then passed as input to the Semantic-Motion Feature Fusion stream.

Semantic Feature Learning: In order to learn semantic representations, we embed
our AdapNet architecture that we introduced in Chapter 4. The architecture shown as
gray blocks in Figure 6.2, takes the current image It as input and learns to segment the
image into semantic object categories at the pixel-level. The architecture follows the
general encoder-decoder design principle, where the encoder learns discriminative deep
semantic representations, while decreasing the spatial resolution of the feature maps.
Subsequently, the decoder upsamples these feature maps back to the input image resolution
using deconvolution layers and skip refinement stages that fuse low-resolution encoder
features into the decoder for object boundary refinement. As the AdapNet architecture
incorporates multiscale residual units, it enables the network to learn scale invariant deep
features and captures multiscale context efficiently, without increasing the number of
parameters. With the aim of improving the performance of the motion segmentation using
the semantic cues learned by the network, we leverage the semantically rich low-resolution
features from the last convolution layer of the encoder and fuse them along with the
learned optical flow field features in the Semantic-Motion Feature Fusion stream that
follows. Simultaneously, the decoder upsamples the low-resolution encoder features to
yield the full semantic segmentation of the scene at the same resolution as the input image.

Semantic-Motion Feature Fusion: The final stream in the SMSnet architecture depicted
as orange blocks in Figure 6.2, first concatenates the learned optical flow field features
with the semantic features which are generated in the aforementioned network streams.
The concatenated feature maps are then passed through two residual blocks that resemble
the Res4 and Res5 blocks of the ResNet-50 architecture. This enables the network to
further learn discriminative motion features accounting for the diverse motion patterns in
the flow field using the incorporated semantic cues. We employ our multiscale residual
units in these blocks with varying dilation rates to increase the size of the receptive field
and aggregate information over different fields of view. The large receptive fields capture
both the moving object and the background so that the network has sufficient context
to discern which parts of the region belongs to the moving object. Note that we do not



190 Chapter 6. Joint Semantic Motion Segmentation

downsample the features further at this stage, therefore the feature maps are 1/16-times the
input image resolution. Finally, towards the end of this stream, we use a 1× 1 convolution
layer to reduce the number of feature channels to two in order to represent the static and
moving object classes. Subsequently, we upsample the coarse representations back to the
input image resolution using a deconvolution layer. The pixels in this upsampled output
denote the motion status of the semantic object class predicted by the complementary
semantic stream. Figure 6.1 (e) shows the final output of the SMSnet which contains both
the predicted semantic labels and the corresponding motion labels.

6.2.2 SMSnet++ Architecture

In this section, we describe our SMSnet++ architecture that aims to improve motion
estimation using learned semantic cues and simultaneously improve semantic segmentation
using learned motion cues. The architecture follows the similar three stream principle as
SMSnet consisting of Motion Feature Learning, Semantic Feature Learning, and Semantic-
Motion Feature Fusion. Unlike SMSnet, SMSnet++ exploits the temporal coherence across
consecutive input images to improve the semantic segmentation performance. This is
achieved by warping intermediate network representations of the previous frame into the
corresponding representation of the current frame using an edge-enhanced optical flow
representation computed using our ego-flow suppressed optical flow with the NetWarp
module [238] and dynamically fusing them with the representations of the current frame
using our adaptive SSMA fusion technique. Simultaneously, we improve the performance
of the motion segmentation using our SSMA module to combine the motion and semantic
features, in addition to improving the granularity of segmentation using a multi-stage
refinement strategy. In the rest of this section, we detail each of these network components.

Motion Feature Learning: In order to learn optical flow field features from consecutive
images, we employ the FlowNet3 architecture as shown in Figure 6.3. The FlowNet3
architecture improves optical flow prediction by building upon FlowNet2 and incorporating
occlusion estimation as it often negatively influences correspondence estimation tasks.
FlowNet3 consists of multiple stacked encoder-decoder networks, where the first network
takes consecutive monocular images as input and the subsequent networks take the first
image, the second image warped with the intermediate optical flow, the intermediate optical
flow and the occlusions as input. Unlike in FlowNet2, the brightness error is omitted from
the inputs. In SMSnet, we rescaled the output optical flow to the 0-255 range and rounded
it to the nearest integer before extracting motion features. However, in SMSnet++, we
maintain the pixel displacements as floating point numbers and rescale them to the 0-
255 range in order to improve the quality of the subsequently learned motion features.
We present experiments that demonstrate the improvement due to this transformation in
the ablation study presented in Section 6.5. We obtain the optical flow maps from the
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embedded FlowNet3 network and pass the features through a series of convolution and
pooling layers, similar to the SMSnet architecture, but we employ the residual units from
the full pre-activation ResNet-50 architecture [72] as opposed to the standard ResNet-
50 [27]. The full pre-activation residual units are shown in the legend enclosed in a red box
in Figure 6.3, while the original residual units are shown in the legend in Figure 6.2. The
feature maps at the output of this Motion Feature Learning stream which are 1/16-times
downsampled with respect to the input image resolution are then used for fusion in the
Semantic-Motion Feature Fusion stream.

Semantic Feature Learning: We employ our recently proposed AdapNet++ architecture
that we presented in Chapter 4 for learning the semantics in the SMSnet++ architecture. The
architecture builds upon AdapNet and incorporates our efficient Atrous Spatial Pyramid
Pooling (eASPP) module that captures long-range context with a large effective receptive
field by cascading multiple atrous convolutions. The size of the receptive field is a critical
factor for motion segmentation tasks. If a filter with a small receptive field falls entirely
within an object with non-zero flow values, it is impossible to identify if the flow is due to
the moving object or due to the motion of the robot equipped with the camera. Whereas,
if the receptive field includes a portion of the background then the network can easily
identify the moving regions from the change in flow across the dynamic object boundaries.
As objects in driving scenarios have multiple scales, our eASPP effectively aggregates
multiscale features using atrous convolutions with different dilation rates in parallel. We
also reconfigure our multiscale residual units that we incorporate in the encoder according
to the full pre-activation configuration. The two multiscale residual units are shown in the
bottom right of the legend enclosed in a red box in Figure 6.3.

Additionally, to further improve the semantic segmentation performance, we propose a
technique to first enhance the optical flow generated by the complementary Motion Feature
Learning stream using the NetWarp module [238] to a more discriminative representation
with sharper object boundaries. We then utilize this edge-enhanced flow to warp interme-
diate semantic network representations from the previous frame into the current frame,
followed by fusing them with the representations of the current frame. We show examples
of the edge-enhanced flow and evaluate its utility for the temporal warping in comparison
to directly using the optical flow in Section 6.4.4.3. This principle of combining temporally
close representations learned by the network to improve the semantic consistency across
frames has previously been explored in different ways [238, 241, 242]. However, in this
work, we propose to exploit the pixel correspondences learned by our Motion Feature
Learning stream to dynamically fuse intermediate network representations to improve the
temporal consistency.

The NetWarp module [238] that computes the edge-enhanced flow shown in Figure 6.4
takes the consecutive images It–1, It and the predicted optical flow Ft as input, and outputs
an edge-enhanced flow F̂t. Let zk

t–1 and zk
t be the representations of the kth layer of the
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Figure 6.4: Topology of the NetWarp module [238] that computes the edge-enhanced flow to
emphasize the object boundaries. The resulting edge-enhanced flow is then utilized to warp
intermediate network representations from the previous frame into the current frame. The symbol
W denotes warping operation and || denotes concatenation along the channel dimension.

network for the input frames It–1 and It respectively. The network first downsamples
each of the inputs using max pooling layers to match the spatial dimensions of the tensor
at layer k that is to be warped. As identified in the ablation study that we present in
Section 6.4.4.3, we warp the intermediate representations at the end of the encoder after
the eASPP, as they are semantically more meaningful than the low-level representations
from earlier layers. Therefore, the pooling layers downsample the inputs to 1/16-times
the input image resolution. The downsampled current image is then warped with the
downsampled edge-enhanced flow, followed by concatenating the resulting tensor with the
predicted flow and the previous image. The concatenated feature maps are then passed
through three 3 × 3 convolution layers with 16, 32 and 2 feature channels respectively.
The resulting convolved tensor is then concatenated with the original predicted flow and
passed through a 1× 1 convolution layer to reduce the number of feature channels to two
and yield the edge-enhanced flow F̂t. We employ the NetWarp module [238] after the
ego-flow subtraction from the embedded flow subnetwork and in parallel to the Motion
Feature Learning stream as shown in Figure 6.3. We then warp the representations of
the previous frame zk

t–1 to align with the representations of the current frame zk
t using the

edge-enhanced flow F̂t to obtain the warped representation ẑk
t–1 as demonstrated in the work

of Gadde et al. [238] as

ẑk
t–1 = Warp

(
zk

t–1, F̂
)

. (6.3)
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More formally, to compute the warped representation ẑk
t–1 at the pixel location (x, y) of

the current frame It mapped to the spatial locations (x′, y′) of the previous frame It–1, we
implement the warping function as a bilinear interpolation of zk

t–1 at the desired coordinates
(x′, y′). Let (x1, y1), (x1, y2), (x2, y1) and (x2, y2) be the corner coordinates of the previous
frame’s grid cell where (x′, y′) lies. The warping of zk

t–1 to obtain ẑk
t–1(x, y) is computed as

defined in the work of Gadde et al. [238] as

ẑk
t–1(x, y) = zk

t–1(x′, y′) =
1
η

[
x2 – x′

x′ – x1

]ᵀ [
zk

t–1(x1, y1) zk
t–1(x1, y2)

zk
t–1(x2, y1) zk

t–1(x2, y2)

] [
y2 – y′

y′ – y1

]
, (6.4)

where η = 1/(x2 – x1)(y2 – y1). If (x′, y′) lies outside the spatial area of zk
t–1, we then

backproject it to the nearest border of zk
t–1. In some cases when the flow values are

integers, the warping function is non-differentiable as the corner coordinates used in the
interpolation suddenly change when (x′, y′) moves across one grid cell to another. In order
to circumvent this problem, we add a small ε = 0.0001 to the flow transform to make the
warping function always differentiable. In order to fuse the warped representation ẑk

t–1 with
the representation zk

t of the current frame, we employ our SSMA fusion module that we
presented in Chapter 5. We reconfigure our SSMA module to adaptively recalibrate the
feature maps by weighing ẑk

t–1 and zk
t channel-wise according to the scene context.

Semantic-Motion Feature Fusion: The topologies of the streams that we presented
thus far enable our network to learn highly discriminative semantic features and motion
features. In order to upsample these feature maps to a high resolution semantic motion
segmentation output, we employ two individual decoders as shown in Figure 6.5. We
incorporate the decoder of our AdapNet++ architecture that we presented in Section 4 to
upsample the semantic feature maps back to the input image resolution. To obtain the
pixel-level motion status, we first employ our SSMA fusion module that we presented in
Chapter 5 to adaptively fuse the semantic features from the encoder with learned motion
features. We utilize our SSMA module for the fusion, rather than simple concatenation
that we used in the SMSnet architecture in order to adaptively only fuse the relevant
semantic features that aid in better motion estimation. We demonstrate utility of employing
our SSMA fusion module in the ablation study presented in Section 6.4.4.1. We then
convolve the fused semantic-motion features through the Res4 and Res5 blocks of the
full preactivated ResNet-50 architecture [72] incorporating our multiscale residual units
with different dilation rates to further capture multiscale context. The multiscale residual
units are shown in the bottom right two blocks of the legend closed in a red box, while the
corresponding standard residual units are shown in bottom left two blocks in Figure 6.5.
The representations at the end of this stage where they are 16-times downsampled with
respect to the input image, are upsampled using the AdapNet++ decoder, similar to the
semantic decoder stream. The output of this is stream consists of pixel-level motion labels
corresponding to the semantic object classes predicted by the parallel semantic decoder.



6.2. Technical Approach 195

n
x
n
 c

o
n
v
o
lu

ti
o
n

B
a
tc

h
 n

o
rm

U
p

-c
o
n
v
o
lu

ti
o
n

st
ri

d
e
 s

ns

n
x
n
 c

o
n
v
o
lu

ti
o
n

d
ila

ti
o
n
 d

, 
st

ri
d

e
 =

1
nd

1
2

8

5
1

2

1
0

2
4

x
2

4
x
4

8

1
2

8

5
1

2

1
2

8

5
1

2

2
5

6

  
  

  
  

  
 1

2
8

1
0

2
4

2
5

6

  
  

  
  

  
 1

2
8

1
0

2
4

2
5

6

  
  

  
  

  
 2

5
6

1
0

2
4

5
1

2

  
  

  
  

  
 2

5
6

2
0

4
8

5
1

2

  
  

  
  

  
 2

5
6

2
0

4
8

2
0

4
8

x
2

4
x
4

8

2
4

8
1

6
1

6

2
1

1
1

4
4

1

M
o
v
in

g
/S

ta
ti

c
3

8
4

x
7

6
8

S
e
m

a
n
ti

c 
Fe

a
tu

re
 L

e
a
rn

in
g

S
e
m

a
n
ti

c-
M

o
ti

o
n
 F

u
si

o
n
 

R
e
LU

1 1
1 3

1 1

d
1

d
2

d
1

d
2

d
1

d
2

1 1
1 1

3
1 1

1 1
s 3

1 1 s 1

1 1
1 1

3

d
1

d
2

d
3

d
3

d
1

d
1

d
2

d
1

d
1

d
2 d
2

d
1

d
2

d
3 d
3

d
1

d
2

d
3 d
3

d
2

r2
r2

r2
r2

s

3r1
3r1

r1
r1

2 2

2 2

x
4

C
x

9
6

x
1

9
2

2
5

6
x

9
6

x
1

9
2

1 1

2
5

6
x

9
6

x
1

9
2

1 3

2
8

0
x

9
6

x
1

9
2

1 3

2
5

6
x

9
6

x
1

9
2

x
2

2
5

6
x

4
8

x
9

6
2

5
6

x
4

8
x
9

6
2

8
0

x
4

8
x
9

6

1 3
1 3

2
4

x
4

8
x
9

6

2
5

6
x

4
8

x
9

6

x
2

2
5

6
x

2
4

x
4

8

skip1

2
4

x
9

6
x
1

9
2

skip2

S
e
m

a
n
ti

c
e
n
co

d
e
r

S
S

M
A

Fl
o
w

Fe
a
tu

re
s

x
4

C
x

9
6

x
1

9
2

2
5

6
x

9
6

x
1

9
2

1 1

2
5

6
x

9
6

x
1

9
2

1 3

2
8

0
x

9
6

x
1

9
2

1 3

2
5

6
x

9
6

x
1

9
2

x
2

2
5

6
x

4
8

x
9

6
2

5
6

x
4

8
x
9

6
2

8
0

x
4

8
x
9

6

1 3
1 3

2
4

x
4

8
x
9

6

2
5

6
x

4
8

x
9

6

x
2

skip1

2
4

x
9

6
x
1

9
2

skip2

S
e
m

a
n
ti

c
3

8
4

x
7

6
8

Fi
gu

re
6.

5:
To

po
lo

gy
of

th
e

m
ot

io
n

an
d

se
m

an
tic

de
co

de
rs

tr
ea

m
s

of
ou

rp
ro

po
se

d
SM

Sn
et

++
ar

ch
ite

ct
ur

e
th

at
up

sa
m

pl
e

th
e

fe
at

ur
e

m
ap

s
ba

ck
to

th
e

in
pu

ti
m

ag
e

re
so

lu
tio

n.
W

e
fu

se
th

e
se

m
an

tic
fe

at
ur

es
w

ith
th

e
le

ar
ne

d
m

ot
io

n
fe

at
ur

es
us

in
g

ou
ra

da
pt

iv
e

SS
M

A
fu

si
on

m
od

ul
e

pr
es

en
te

d
in

C
ha

pt
er

5.
T

he
fu

se
d

fe
at

ur
es

ar
e

th
en

fu
rt

he
rc

on
vo

lv
ed

th
ro

ug
h

a
se

ri
es

of
m

ul
tis

ca
le

re
si

du
al

un
its

an
d

up
sa

m
pl

ed
to

a
hi

gh
-r

es
ol

ut
io

n
ou

tp
ut

us
in

g
de

co
nv

ol
ut

io
n

la
ye

rs
an

d
sk

ip
re

fin
em

en
ts

ta
ge

s.
T

he
le

ge
nd

en
cl

os
ed

in
re

d
lin

es
sh

ow
th

e
va

ri
ou

s
fu

ll
pr

e-
ac

tiv
at

io
n

re
si

du
al

bo
ttl

en
ec

k
un

its
th

at
w

e
us

e
in

ou
ra

rc
hi

te
ct

ur
e.

T
he

sy
m

bo
l|

|d
en

ot
es

co
nc

at
en

at
io

n
al

on
g

th
e

ch
an

ne
ld

im
en

si
on

an
d

+
de

no
te

s
th

e
el

em
en

t-
w

is
e

ad
di

tio
n.



196 Chapter 6. Joint Semantic Motion Segmentation

6.2.3 Ego-Flow Suppression

As the robot equipped with the camera is itself in motion during navigation, the resulting
ego-motion introduces additional optical flow magnitudes that are not induced by moving
objects in the scene. This hampers the network from distinguishing the real motion of
objects from the camera motion. The flow induced from ego-motion can cause ambiguities
since objects in the scene can appear with high optical flow magnitudes although they are
not moving in reality. In order to circumvent this problem, we predict the optical flow map
X̂′ purely caused by the ego-motion and subtract it from the predicted optical flow. We first
estimate the backward camera translation T and the rotation matrix R from the position of
the current frame It to the previous frame It–1. Using the IMU and odometry data, we can
then estimate X̂′ as

X̂′ = KRK–1X + K
T
z

, (6.5)

where K is the intrinsic camera matrix, X = (u, v, 1)T is the homogenous coordinate of
the pixel in the image coordinates and z is the depth of the corresponding pixel in meters.
By computing the flow vector for every pixel coordinate using Eq. (6.5), we obtain the
2-dimensional optical flow that purely represents the ego-motion, which we denote as
the ego-flow. As Eq. (6.5) requires the depth map of the corresponding input images, we
estimate the depth z using the recently proposed DispNet [243] architecture that has a fast
inference time. We then subtract the ego-flow X̂′ from the predicted optical flow X̂ right
after the flow generation network in our proposed SMSnet and SMSnet++ architectures
as shown in Figure 6.2. We denote this step as Ego-Flow Suppression (EFS) in this
work. This enables the network to account for the induced ego-flow while maintaining
the flow magnitudes that are caused by the other moving objects. We demonstrate the
utility of introducing EFS in the ablation study presented in Section 6.4.4.2. An example
of the optical flow with ego-flow suppression EFS is shown in Figure 6.1 (d). We present
extensive ablation studies with and without the EFS in Section 6.4.4.

6.3 Dataset and Augmentation

Training our proposed networks require a large amount of labeled semantic and motion
annotations. Although there are a handful of approaches that have tackled the problem
of semantic motion segmentation, all of them have only utilized the 200 labeled images
from the KITTI dataset that were hand-annotated by Reddy et al. [239]. Employing data
augmentation strategies can alleviate this problem to a certain extent. However, for credible
quantitative evaluations, several hundreds of training images with groundtruth labels are
required, apart from the separate set of images and groundtruth labels for testing. Standard
motion segmentation datasets such as DAVIS [244], Sintel [245] and FBMS [246] do
not have semantic groundtruth annotations, while standard semantic scene segmentation
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(a) Image It–1 (b) Image It with motion label overlay

(c) Generated optical flow (d) Ego-motion suppressed flow

Figure 6.6: An example scene from the Cityscapes dataset showing a pair of consecutive images
with the correspondingly generated optical flow field and the ego-motion compensated flow field.
The image from the current timestep It also shows the groundtruth static (blue) and moving (orange)
object labels as an overlay.

datasets such as Cityscapes[143], SUN RGB-D [145] and ScanNet [146] do not have
motion annotations.

Training our network for joint semantic motion segmentation requires semantic and
motion annotations for the same scenes. Obtaining pixel-level groundtruth of object
motion is particularly hard as visible pixel displacement quickly decreases with increasing
distance from the camera due to the motion parallax effect. In addition, ego-motion of the
vehicle makes labeling an arduous task. In order to facilitate this work and to allow for
credible quantitative evaluation, we extend three benchmark scene understanding datasets
with manually annotated motion labels. We made these annotations publicly available at
http://deepmotion.cs.uni-freiburg.de to enable further progress in learning this
joint task. In the rest of this section, we briefly describe these datasets with example scenes
contained in them and the annotation procedure that we employ.

Cityscapes-Motion: The Cityscapes dataset [143] is one of the standard benchmarks
for scene understanding, that we also employed for semantic segmentation and multimodal
fusion in Chapters 4 and 5 correspondingly. As we already presented an extensive descrip-
tion of this dataset in the previous chapters, we only give a brief overview of the motion
annotations that we generated. We manually labeled the dynamic objects with motion
status by observing consecutive images from the video sequences and by assigning the
semantic instance annotations of the objects provided in the dataset with static or moving
motion tags. We labeled a total of 2975 training images and 500 validation images. The

http://deepmotion.cs.uni-freiburg.de
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(a) Image It–1 (b) Image It with motion label overlay

(c) Generated optical flow (d) Ego-motion suppressed flow

Figure 6.7: An example scene from the KITTI dataset showing a pair of consecutive images with
the correspondingly generated optical flow field and the ego-motion compensated flow field. The
image from the current timestep It also shows the groundtruth static (blue) and moving (orange)
object labels as an overlay.

Cityscapes dataset is highly challenging for dynamic scene understanding as it contains
many dynamic objects including person, car, truck, bus, tram, motorcycle, bicycle, caravan
and trailer. However, we only labeled the category of cars on this dataset with motion
annotations. We plan to extend the annotations to other dynamic object categories in the
future. Figure 6.6 shows an example scene with the RGB images of the current frame It and
the preceding frame It–1, the groundtruth motion label overlaid on the current frame, the
computed optical flow and the corresponding flow with EFS applied. Note that we compute
the reverse flow mapping from the current frame It with semantic motion annotations to
the previous frame It–1.

KITTI-Motion: The KITTI vision benchmark suite [247] contains 200 training images
and 200 testing images with semantic groundtruth annotations, however, it does not
provide any moving object annotations. Existing techniques that address the problem of
semantic motion segmentation have been benchmarked on the 200 motion annotations
created by Reddy et al. [239], yet no training data is available with both semantic and
motion groundtruth labels. Therefore, we introduce the KITTI-Motion dataset consisting
of 255 training and 200 testing images with manually annotated pixel-level semantic as
well as motion labels. The images were captured at a resolution of 1280 × 384 pixels
in a diverse set of driving scenarios including freeways, residential and inner-city areas.
This dataset contains a large amount of moving and parked cars, often partially occluded
due to trees or street lamps, making moving object segmentation equally challenging as
the Cityscapes dataset. We manually annotated the 255 training images with pixel-level
semantic class labels for the same object categories that are present in the Cityscapes dataset
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(a) Image It–1 (b) Image It with motion label

(c) Generated optical flow (d) Ego-motion suppressed flow

Figure 6.8: An example scene from the ApolloScape dataset showing a pair of consecutive images
with the correspondingly generated optical flow field and the ego-motion compensated flow field.
The image from the current timestep It also shows the groundtruth static (blue) and moving (orange)
object labels as an overlay.

and additionally with moving object annotations for cars. The 200 testing images are
taken from the dataset provided by Reddy et al.. In addition, we combine two community
annotated KITTI semantic segmentation datasets [248, 249] consisting of 253 images for
pretraining the semantic stream of our network. These images also do not overlap with
the training or testing images in the KITTI-Motion dataset that we introduced. Figure 6.7
shows an example scene from this dataset with the preceding frame It–1, the groundtruth
motion label overlaid on the current frame It, the optical flow map that was generated and
the corresponding flow with EFS.

ApolloScape-Motion: ApolloScape [240] is one of the most recent and largest scene
understanding datasets till date. The images were captured using two VMX-CS6 cam-
eras at a resolution 3384 × 2710 pixels and the depth maps were generated from laser
measurements acquired using a Riegl VMX-1HA scanner. All the images were tagged
with IMU/GNSS measurements and were time synchronized. A total of 143,906 video
frames and corresponding pixel-level semantic annotations were released, including 89,430
instance-level semantic object annotations. The dataset was collected in easy, moderate,
and heavy scene complexities, where the complexity is computed from the amount of
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movable objects such as person and vehicles in the scene. This dataset is substantially
more challenging than Cityscapes and KITTI datasets, as it contains extreme lighting
conditions caused by driving under overpasses, glare on the camera optics and reflections
of multiple nearby vehicles that are visible on other vehicles. Semantic annotations are
provide for 21 object classes including car, motorcycle, bicycle, person, rider, truck, bus,
tricycle, road, sidewalk, traffic cone, bollard, fence, traffic light, pole, traffic sign, wall,
trash can, billboard, building, bridge, tunnel, overpass and vegetation.

Depth maps have only been released for a subset of the labeled images. Therefore, we
chose the images for which the depth maps are available for our ApolloScape-Motion
dataset, which corresponds to 40,960 training images and 8327 testing images. Similar
to the Cityscapes and KITTI datasets, we manually annotated each of these images with
pixel-level motion labels. Unlike the other datasets where only cars, trucks and buses
were annotated with motion labels, in this dataset, we annotated all the different types of
dynamic objects, thereby individually classifying static/moving car, static/moving person
and static/moving cyclist. We use the same semantic object classes as the Cityscapes and
KITTI datasets for consistency and in order to be able to combine the datasets. Figure 6.8
shows an example scene from the ApolloScape dataset with the previous image It–1,
the current image It, the current image with the groundtruth motion labels overlaid, the
generated optical flow image and the corresponding optical flow with EFS.

Despite the reasonable amount of training data, we perform a series of data augmen-
tations to introduce more diversity into the training set. Data augmentation is critical to
prevent overfitting and to enhance the generalization ability of the network. We apply
spatial transformations such as rotation (–13◦ to 13◦), scaling (0.5 to 2.0), flipping, trans-
lation (–20% to +20%) and cropping (0.8 to 0.9), as well as chromatic transformations
such as color (0.5 to 2), contrast (0.5 to 1.5) and brightness (–40 to 40) modulation. As our
networks take two consecutive images as input, we augment the pair and the corresponding
groundtruth label jointly with the same parameters.

6.4 Experimental Evaluation

In this section, we first describe the training protocol that we employ in Section 6.4.1,
followed by comprehensive quantitative results for semantic motion segmentation using our
proposed architectures in Section 6.4.2 and an analysis on the influence of motion parallax
in Section 6.4.3. We then present detailed ablation studies that describe our architectural
decisions in Section 6.4.4 and extensive qualitative semantic motion segmentation results
on each of the datasets in Section 6.4.5. Finally, we present evaluations of the generalization
ability of our models to new environments in Section 6.4.6.

We use the TensorFlow [159] deep learning library for the implementations and all the
experiments were carried out on a system with an Intel Xeon E5, 2.4 GHz and an NVIDIA
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TITAN X GPU. We quantify the performance using the standard Jaccard Index which is
commonly known as average intersection-over-union (IoU) metric. It can be computed
for each object class as IoU = TP/(TP + FP + FN), where TP, FP and FN correspond to
true positives, false positives and false negatives respectively. We also report the mean
intersection-over-union (mIoU), pixel-wise accuracy (Acc) and average precision (AP) for
the empirical analysis.

6.4.1 Network Training

We train our networks with an input image resolution of 768× 384 pixels. We use bilinear
interpolation for resizing the RGB images and the nearest-neighbour interpolation for
resizing the groundtruth labels. We employ the same multi-stage training protocol to
effectively train both our SMSnet and SMSnet++ architectures. We first train the Semantic
Feature Learning stream of SMSnet and SMSnet++ that encompass the AdapNet and
AdapNet++ architectures respectively for learning the semantic features corresponding to
the C number of object classes in the datasets. We use the training scheme described in
Section 4.4.3 of Chapter 4 for this purpose. Subsequently, in the second stage, we leverage
transfer learning to train the joint model in either the SMSnet or the SMSnet++ framework
by initializing the Semantic Feature Learning stream with weights from the previous stage
and the embedded optical flow generation network in the Motion Feature Learning stream
with weights pre-trained on the KITTI Flow dataset [247]. While, we initialize the other
layers using the He initialization [93] scheme.

We train the entire joint architecture while keeping the weights of the Semantic Feature
Learning stream and the flow generation network fixed. This enables our joint architecture
to exploit the stable optical flow field features and semantic features, while learning deeper
discriminative motion representations at the high-level in the second stage. We use the
Adam solver for optimization with β1 = 0.9, β2 = 0.999 and ε = 10–10. We train the joint
model for a maximum of 100,000 iterations using an initial learning rate of λ0 = 10–4

with a mini-batch size of 8 and a dropout probability of 0.5. In the final stage, we fix the
weights of the Semantic Feature Learning stream, the Motion Feature Learning stream and
the layers in the Semantic-Motion Feature Fusion until the first deconvolution layer, while
only training the decoder for the motion segmentation with a learning rate of λ0 = 10–5 and
a mini-batch size of 12 for 50,000 iterations. This enables us to train the network with a
larger batch size, while focusing more on the upsampling stages to yield the high-resolution
motion segmentation output.

6.4.2 Comparison with the State-of-the-Art

In this section, we present comprehensive benchmarking results of our proposed SMSnet
and SMSnet++ architectures on the Cityscapes-Motion, KITTI-Motion and Apolloscape-
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Motion datasets. We compare the performance of our models with the state-of-the-art
semantic motion segmentation architectures including CRF-M [232] and CNN-MCA [237],
as well as architectures that only perform end-to-end motion segmentation, namely, MP-
net [235], MODNet [250], AHCRF-Motion [234] and GEO-M [251]. Additionally, we
also compare against a baseline technique that we term SMSnet++FLO, for which we use
the same topology as our proposed SMSnet++ architecture, but we remove the Semantic
Feature Learning stream. Therefore, this baseline performs motion segmentation only
based on the optical flow and in comparison with the SMSnet++ architecture, it highlights
the improvement that our model achieves by encoding semantic features into the motion
segmentation stream. Furthermore, we report results of two model variants for each of our
proposed networks; one that is trained on a label set consisting of all the semantic object
classes in the dataset for motion segmentation, regardless of whether the specific object
class is movable, and secondly, the model that is trained on the label set consisting of only
the movable semantic objects classes in the dataset for motion segmentation. Intuitively,
providing the network with this prior about the movable objects will help the network
learn the diverse motion patters more accurately, as instead of considering objects such
as building and fence that would never move in reality, it can focus more on learning the
motion patters of movable objects such as car and person. We denote the model that is
trained on the label set containing all the semantic objects as movable with the suffix FULL
and the model that is trained on the label set consisting of only the movable semantic
objects for motion segmentation with the suffix MOV. In the ablation study presented in
Section 6.4.4.5, we demonstrate performance comparison of models trained on both these
label sets for different moving object distances. As our proposed networks jointly predict
both motion segmentation labels as well as semantic segmentation labels, we first present
the results for motion segmentation using class-wise IoU scores for the static and moving
classes for each of the datasets in Section 6.4.2.1, and subsequently present the class-wise
results for semantic segmentation in Section 6.4.2.2.

6.4.2.1 Motion Segmentation

Table 6.1 shows the benchmarking results on the Cityscapes-Motion dataset. Among the
existing approaches, the CNN-MCA model achieves the highest mIoU score of 82.23%,
followed by MODNet which trails by 1.90%. It should be noted that CNN-MCA jointly
predicts both the semantic object class and motion labels, whereas MODnet is purely a
motion segmentation network. Our proposed SMSnet model outperforms the state-of-
the-art achieving an mIoU score of 85.78%, which constitutes a moving object IoU score
of 78.69% and an IoU score of 92.87% for the static class. Furthermore, our SMSnet++
architecture sets the new state-of-the-art on this dataset by achieving a mIoU score of
89.92%, thereby amounting to a large improvement of 7.69% over the previous state-of-
the-art CNN-MCA model. Analyzing the individual class IoU scores in comparison to
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Table 6.1: Comparison of semantic motion segmentation on the Cityscapes-Motion dataset.

Approach IoU (%) mIoU Acc. AP

Moving Static (%) (%) (%)

MPnet [235] 54.19 89.68 71.93 90.80 89.18
MODNet [250] 69.53 92.76 81.14 93.89 92.51
CNN-MCA [237] 72.27 92.18 82.23 93.78 93.16
SMSnet++FLO 67.42 92.90 80.16 93.81 94.69

SMSnetFULL (Ours) 76.56 92.38 84.47 93.90 94.20
SMSnetMOV(Ours) 78.69 92.87 85.78 94.21 94.75
SMSnet++FULL (Ours) 83.11 94.38 88.75 95.59 95.37
SMSnet++MOV (Ours) 85.02 94.82 89.92 95.99 94.85

CNN-MCA, our SMSnet++ model demonstrates a improvement of 12.75% and 2.64%
for the moving and static object classes respectively. Although our SMSnet++FULL model
achieves a performance 1.17% lower than SMSnet++MOV, it still substantially outperforms
existing methods. Interestingly, the SMSnet++FLO baseline only achieves a moving object
IoU score of 67.42%. This signifies that our SMSnet++ model achieves an improvement
of 17.60% by adaptively fusing the semantic features into the motion segmentation stream.

We present benchmarking results on the KITTI-Motion dataset in Table 6.2. All the
semantic motion segmentation approaches that have been proposed thus far have been
benchmarked on the KITTI-Motion dataset. Similar to the observation that we made for
the results on the Cityscapes-Motion dataset, the CNN-MCA model demonstrates the
highest performance among the existing methods, achieving a mIoU score of 82.50%,
followed by MODNet achieving a mIoU score which is 1.94% lower than the CNN-MCA
model. The results shown in Table 6.2 are chronologically ordered and it can be seen
that the methods that jointly predict the semantic object class and motion labels such as
CNN-MCA and CRF-M substantially outperform motion segmentation approaches that
were proposed before them. This can be attributed to the fact that these approaches learn
to correlate motion features with the learned semantic representations, which improves the
overall motion segmentation accuracy. Intuitively, these methods learn that there is a higher
probability of a car moving than a building or a pole. Although Fan et al. [233] also propose
an approach for semantic motion segmentation, the KITTI scene flow dataset that they
evaluate on has inconsistent class labels, which does not allow for a meaningful comparison.
Our proposed SMSnet model achieves a mIoU score of 86.78%, which exceeds the state-of-
the-art by 4.28%. Furthermore, our SMSnet++ model achieves a higher mIoU of 93.97%
and sets the new state-of-the-art on the KITTI-Motion benchmark. This constitutes to a
significant improvement of 16.62% in the IoU score for the moving object class and 6.34%
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Table 6.2: Comparison of semantic motion segmentation on the KITTI-Motion dataset.

Approach IoU (%) mIoU Acc. AP Time

Moving Static (%) (%) (%) (ms)

GEO-M [251] 46.50 49.80 48.15 N/A N/A N/A
AHCRF-Motion [234] 60.20 75.80 68.00 N/A N/A N/A
CRF-M [232] 73.50 82.40 77.95 N/A N/A 240000
MPnet [235] 67.41 86.49 76.95 89.44 92.08 156
MODNet [250] 72.68 88.45 80.56 90.96 92.94 326
CNN-MCA [237] 75.36 89.63 82.50 91.64 93.17 413
SMSnet++FLO 69.29 87.40 78.34 90.18 93.30 109

SMSnetFULL (Ours) 78.59 90.48 84.54 92.95 93.74 134
SMSnetMOV (Ours) 81.78 91.78 86.78 93.99 94.47 134
SMSnet++FULL (Ours) 90.00 94.94 92.47 96.52 92.47 176
SMSnet++MOV (Ours) 91.98 95.97 93.97 96.78 92.53 176

in the IoU score for the static object class, over the previous state-of-the-art CNN-MCA
model. Analyzing the performance of the SMSnet++FLO model for the moving object
segmentation, we observe that our SMSnet++ model achieves an improvement of 22.69%
in the IoU score by encoding semantics into the motion segmentation stream. Other
performance metrics such as the pixel accuracy (Acc) and average precision (AP) show a
similar improvement in comparison to existing methods.

Additionally, Table 6.2 also shows the inference time for each of the models. Fast
prediction time is one of the most essential requirements for adoption in real-world robotic
applications. Therefore, we designed the topology of our architectures keeping this critical
factor in mind. Run-time of existing semantic motion segmentation techniques vary from
4 s for CRF-M to 413 ms for CNN-MCA. Motion segmentation models have a faster run-
time than semantic motion segmentation approaches, as the complexity of these models
are simpler and they have lesser number of parameters on account of only needing to
distinguish between the static and moving pixels. Our proposed SMSnet architecture
performs inference in 134 ms which is 67.55% faster than the previous state-of-the-art.
While our proposed SMSnet++ architecture consumes 176 ms for the inference, it improves
the moving object segmentation performance over SMSnet by 10.20% in the IoU score
and still remains over twice as fast as existing semantic motion segmentation architectures.

Finally, we present results on the newer and more challenging ApolloScape-Motion
dataset in Table 6.3. Unlike the other datasets that we benchmark on, the ApolloScape-
Motion dataset contains moving object annotations for multiple semantic object classes,
namely, car, person and cyclist. Therefore, we report the IoU scores of the individual
semantic moving and static object classes, as well as the global Intersection over Union
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Table 6.3: Comparison of semantic motion segmentation on the ApolloScape-Motion dataset.

Approach Moving Static mIoU

Car Person Cyclist gIoU Car Person Cyclist gIoU (%)
(%) (%)

MPnet [235] 26.95 5.46 6.47 23.89 51.96 79.02 90.21 58.32 43.34
MODNet [250] 35.79 14.96 14.38 37.21 52.78 79.22 90.44 60.34 47.93
CNN-MCA [237] 47.20 14.21 18.76 43.38 53.45 79.09 90.71 62.83 50.57
SMSnet++FLO 28.47 15.15 10.28 25.54 51.28 79.76 89.90 58.69 45.81

SMSnetFULL (Ours) 49.67 14.17 23.92 50.24 54.59 79.44 90.81 63.54 52.10
SMSnetMOV (Ours) 56.90 16.38 25.07 53.25 64.92 79.35 91.06 64.78 55.61
SMSnet++FULL (Ours) 58.21 18.45 27.82 56.95 66.35 80.31 91.31 67.53 56.90
SMSnet++MOV (Ours) 60.32 20.31 28.36 59.00 68.65 81.32 91.56 68.37 58.42

(gIoU) score for the moving classes as a whole and for the static classes as a whole. The
gIoU is computed by aggregating the true positives, false positives and false negatives,
across all the semantic moving object classes together and the static objects classes together,
followed by computing the intersection over union with these aggregated values. This
gives us a measure of the overall motion segmentation performance. The ApolloScape
dataset is significantly more challenging than the Cityscapes and KITTI datasets, as it
contains scenes in a densely populated urban city and therefore has large open spaces with
a substantial amount of moving objects.

Among the existing methods, the CNN-MCA model achieves the highest performance
in the overall mIoU score and the class-wise IoU scores as well as the gIoU scores, except
for the person class for which our SMSnet++FLO baseline model achieves the highest IoU
score. The person and cyclist classes are the hardest to accurately segment in this dataset
due to their relatively small size which is further exaggerated by the far away distances at
which they appear within the image. Our proposed SMSnet model achieves an mIoU score
of 55.61%, thereby outperforming the existing the approaches. The largest improvement
in the moving object segmentation over the previous state-of-the-art is observed for the
car class for which SMSnet achieves an improvement of 9.70%.

Our proposed SMSnet++ further outperforms SMSnet by achieving an mIoU score
of 58.42%, as well as consistently outperforming each of the static and moving object
classes, thereby achieving state-of-the-art performance. In comparison to the previous
state-of-the-art CNN-MCA model, SMSnet++ achieves an improvement of 15.62% in
the gIoU for the moving classes and 5.54% in the gIoU for the static classes. Similar to
the SMSnet model, the largest improvement achieved by SMSnet++ over the CNN-MCA
model is for the car class, followed by the person class. A notable improvement of 11.10%
is also observed in the pixel accuracy. By comparing the performance of our SMSnet++
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model with SMSnet++FLO which does not incorporate the semantics, we observe an overall
improvement of 12.61% in the mIoU score and a significant improvement of 33.46% in the
gIoU for the moving classes. These results corroborate the fact that adaptively encoding
semantic information using our SSMA fusion module enables the motion segmentation
network to effectively learn heterogeneous motion patterns of different semantic objects.

6.4.2.2 Semantic Segmentation

In order to evaluate the performance of our proposed architectures on semantic segmenta-
tion, we benchmark against both the previous state-of-the-art semantic motion segmen-
tation network CNN-MCA, as well as state-of-the-art semantic segmentation networks
including DeepLab v3 [132], ParseNet [168], FCN-8s [24] and AdapNet++. Our proposed
SMSnet architecture adopts the topology of our AdapNet architecture for the semantic
segmentation stream and the weights of the Semantic Feature Learning stream are kept
fixed while training the joint semantic motion segmentation architecture, therefore the
performance of the joint model is identical to that of the AdapNet model. Whereas, in our
proposed SMSnet++ architecture, we build upon our AdapNet++ model and incorporate
our temporal representational warping technique using an edge-enhanced optical flow
representation to simultaneously improve the semantic segmentation performance in the
joint model. Therefore, we also compare against the performance of the AdapNet++ archi-
tecture in order to quantify the improvement due to temporal representational warping that
we introduce. Comprehensive comparisons from this experiment are shown in Table 6.4.

Results on the Cityscapes dataset shown in Table 6.4 (a) demonstrates that our SMSnet
model achieves a mIoU score of 77.56%, thereby outperforming the state-of-the-art se-
mantic segmentation model DeepLab v3 by 2.35% and exceeding the performance of the
semantic motion segmentation model CNN-MCA by 11.29%. However, the performance
of SMSnet is still lower than our AdapNet++ model introduced in Chapter 4. Nevertheless,
our proposed SMSnet++ model outperforms SMSnet as well as all the baselines networks
by achieving the state-of-the-art performance of 82.31% for the mIoU score, while also
consistently achieving a higher performance in each of the individual object class IoU
scores. The largest improvement over DeepLab v3 is observed for the object classes that
have thin structures such as the fence and pole classes for which SMSnet++ achieves an
improvement of 21.23% and 10.87% respectively. Comparing the performance of our
SMSnet++ model with AdapNet++ to analyze the impact of introducing the temporal warp-
ing, we observe an improvement of 1.51% in the overall mIoU score. This demonstrates
the benefit of exploiting the complementary motion features to improve the learning of
semantics with a minimal additional overhead in the computation. Note that AdapNet++
and DeepLab v3 are specialized semantic segmentation architectures. In comparison to
CNN-MCA which is a semantic motion segmentation architecture, our proposed SMSnet++
achieves a much larger improvement of 16.02% in the mIoU score.



6.4. Experimental Evaluation 207

Ta
bl

e
6.

4:
C

om
pa

ri
so

n
of

th
e

se
m

an
tic

se
gm

en
ta

tio
n

pe
rf

or
m

an
ce

of
ou

rp
ro

po
se

d
jo

in
ts

em
an

tic
m

ot
io

n
se

gm
en

ta
tio

n
ar

ch
ite

ct
ur

es
.

A
pp

ro
ac

h
Sk

y
B

ui
ld

in
g

R
oa

d
Si

de
w

al
k

Fe
nc

e
V

eg
Po

le
C

ar
Si

gn
Pe

rs
on

C
yc

lis
t

m
Io

U
(%

)
(a)Cityscapes

FC
N

-8
s

[2
4]

76
.5

1
83

.9
7

93
.8

2
67

.6
7

24
.9

1
86

.3
8

31
.7

1
84

.8
0

50
.9

2
59

.8
9

59
.1

1
59

.9
7

Pa
rs

eN
et

[1
68

]
77

.5
7

86
.8

1
95

.2
7

74
.0

2
33

.3
1

87
.3

7
38

.2
4

88
.9

9
53

.3
4

63
.2

5
63

.8
7

69
.2

8
C

N
N

-M
C

A
[2

37
]

80
.7

6
80

.6
9

96
.7

1
76

.4
0

40
.0

1
77

.0
0

41
.9

3
86

.3
5

39
.6

9
60

.3
3

49
.3

5
66

.2
9

D
ee

pL
ab

v3
[1

32
]

92
.4

0
89

.0
2

96
.7

4
78

.5
5

41
.0

0
90

.8
1

49
.7

4
91

.0
2

64
.4

8
66

.5
2

66
.9

8
75

.2
1

A
da

pN
et

++
94

.1
8

91
.4

9
97

.9
3

84
.4

0
54

.9
8

92
.0

9
58

.8
5

93
.8

6
72

.6
1

75
.5

2
72

.9
0

80
.8

0

SM
Sn

et
(o

ur
s)

92
.4

5
89

.9
8

97
.4

3
81

.4
3

49
.9

3
91

.4
4

53
.4

3
92

.2
3

65
.3

2
69

.8
6

69
.6

2
77

.5
6

SM
Sn

et
++

(o
ur

s)
94

.4
6

92
.2

5
98

.1
9

86
.2

8
62

.3
2

92
.5

6
60

.6
1

94
.2

3
73

.4
8

76
.9

5
74

.0
8

82
.3

1

(b)KITTI

FC
N

-8
s

[2
4]

89
.3

8
84

.5
6

83
.5

9
61

.4
6

61
.4

5
82

.2
5

27
.8

5
84

.3
3

42
.6

6
37

.8
0

40
.2

8
63

.2
4

Pa
rs

eN
et

[1
68

]
89

.4
5

83
.4

8
86

.4
1

66
.7

3
62

.8
8

82
.2

2
34

.2
5

85
.6

2
35

.1
6

39
.6

6
36

.7
5

63
.8

7
C

N
N

-M
C

A
[2

37
]

87
.3

6
81

.7
8

79
.4

0
55

.6
9

63
.0

1
65

.6
7

26
.1

5
81

.0
9

23
.1

2
36

.3
3

29
.9

1
57

.2
3

D
ee

pL
ab

v3
[1

32
]

88
.4

6
83

.6
9

84
.5

5
60

.7
1

61
.6

6
80

.6
9

34
.4

2
86

.0
6

47
.1

7
42

.9
9

36
.5

4
64

.2
7

A
da

pN
et

++
89

.4
7

85
.6

5
86

.8
9

70
.7

1
67

.2
5

83
.6

3
36

.8
1

86
.5

1
49

.6
1

46
.1

1
49

.1
7

68
.3

4

SM
Sn

et
(o

ur
s)

88
.9

0
83

.7
7

86
.3

8
64

.1
6

63
.8

2
80

.9
6

34
.1

2
85

.7
5

50
.3

4
41

.8
7

40
.0

4
65

.4
7

SM
Sn

et
++

(o
ur

s)
89

.2
4

85
.5

9
88

.0
4

70
.9

1
68

.9
0

82
.3

6
39

.2
8

85
.4

5
44

.1
0

50
.9

6
54

.5
8

69
.0

4

(c)ApolloScape

FC
N

-8
s

[2
4]

90
.8

5
78

.9
3

93
.7

1
19

.8
8

50
.2

3
90

.2
6

26
.6

8
77

.6
7

59
.6

6
6.

60
42

.9
3

57
.9

4
Pa

rs
eN

et
[1

68
]

92
.3

8
82

.0
6

95
.6

1
33

.8
5

59
.3

5
92

.1
2

41
.9

9
84

.5
5

70
.2

0
14

.6
5

54
.0

1
65

.5
3

C
N

N
-M

C
A

[2
37

]
91

.3
8

79
.0

0
94

.4
5

19
.3

3
55

.8
3

90
.1

2
32

.1
8

81
.7

0
61

.2
9

8.
42

40
.3

9
59

.4
6

D
ee

pL
ab

v3
[1

32
]

93
.1

7
81

.8
2

96
.3

2
40

.2
3

60
.6

1
92

.5
8

50
.3

6
86

.2
5

74
.7

5
16

.5
1

55
.8

1
68

.0
3

A
da

pN
et

++
93

.9
9

84
.7

1
96

.5
2

42
.5

1
63

.5
7

93
.5

4
54

.0
0

90
.0

4
79

.3
8

21
.7

0
63

.0
9

71
.1

9

SM
Sn

et
(o

ur
s)

93
.1

5
81

.8
6

96
.0

2
40

.4
5

60
.9

7
92

.7
6

46
.2

1
85

.1
8

72
.7

6
11

.2
8

54
.1

4
66

.8
0

SM
Sn

et
++

(o
ur

s)
93

.5
8

89
.0

1
97

.4
9

60
.7

7
67

.5
5

93
.0

2
58

.1
1

90
.9

5
68

.4
8

24
.0

6
65

.8
2

73
.5

3



208 Chapter 6. Joint Semantic Motion Segmentation

Table 6.4 (b) shows the comparison of the semantic segmentation performance on
the KITTI dataset. Our proposed SMSnet model achieves a mIoU score of 65.47%,
thereby outperforming each of the baseline models, excluding our AdapNet++ architecture.
Compared to the state-of-the-art DeepLab v3 model, it achieves an improvement of 1.2%
in the mIoU score, while we observe a substantial improvement of 8.24% in the mIoU
score, in comparison to the CNN-MCA architecture. While our improved SMSnet++
architecture sets the new state-of-the-art on this dataset by achieving a mIoU score of
69.04%, which constitutes to an improvement of 4.77% over the previous state-of-the-art
DeepLab v3 network and an improvement of 11.81% over the CNN-MCA model. The
KITTI dataset consists of images containing sidewalks with outgrown grass that are labeled
as sidewalk as opposed to vegetation. This causes significant misclassifications which is
evident from the low IoU score of the baselines for this object class. Moreover, person
and cyclist objects that appear in the KITTI dataset are often occluded by other objects
such as cars and vegetation in the scene, which also causes a substantial amount of false
positives. However, Our SMSnet++ architectures improves the prediction of these classes
by enforcing temporal consistency between consecutive frames using our representational
warping layer. Due to our temporal warping, we observe an improvement of 5.41% in the
IoU score of the cyclist class and a similar improvement of 4.85% in the IoU score of the
person class. While compared to the previous state-of-the-art DeepLab v3, we observe a
substantially larger improvement of 18.04% and 7.97% in the IoU scores of the cyclist and
person classes respectively.

We also present the results on the challenging ApolloScape dataset in Table 6.4 (c). Un-
like the Cityscapes and KITTI datasets, our SMSnet model is outperformed by DeepLab v3
by 1.23% in the mIoU score, although it exceeds the performance of the CNN-MCA archi-
tecture by 7.34%. However, our proposed SMSnet++ architecture outperforms DeepLab v3,
achieving the state-of-the-performance of 73.53% in the mIoU score. It demonstrates an
improvement of 5.5% in the mIoU in comparison to the performance of the DeepLab v3
model and a larger improvement of 14.02% in the mIoU score compared to the CNN-MCA
architecture. As we described in Section 6.4.2.1, the person and cyclist classes are the
hardest to accurately predict in this dataset. This can be observed in the low IoU score
of 16.51% for the person class and 55.81% for the cyclist class in the results achieved by
the DeepLab v3 model. Nevertheless, our SMSnet++ model achieves an improvement of
7.55% and 10.01% in the IoU scores of person and cyclist classes respectively. Comparing
the performance of the SMSnet++ model with AdapNet++, we observe an improvement
of 2.34% in the mIoU, due to temporal representational warping that we introduced. The
results demonstrate that on the ApolloScape dataset, the temporal warping benefits the
sidewalk class the most as it improves the performance by 18.32% in the IoU score,
followed by object classes such as building, fence and pole. This demonstrates that the
temporal consistency that our representational warping layer enforces not only benefits
object classes having thin pole-like structure but also large objects that occupy a significant
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portion of the image.

6.4.3 Influence of the Motion Parallax Effect

In this section, we investigate the performance of motion segmentation using our proposed
SMSnet++ architecture considering different maximum ranges within which the moving
objects might lie. One of the primary challenges of motion segmentation is to predict the
motion of moving objects that are at far away distances from the camera. As the distance
of moving objects from the camera increases, the pixel displacements of those objects in
consecutive frames decreases due to the motion parallax effect. Therefore, segmenting
distant moving objects from camera images is extremely challenging. On the one hand,
including training examples that contain distant moving objects might enable learning of
more multiscale features that can cover a wide variety of motion appearances. While, on
the other hand, these highly difficult training examples can also restrict the network from
training effectively, if it is unable to learn features that can distinguish the state of distant
moving objects. In order to quantify this influence on the performance of our models
for motion segmentation, we trained individual models on the entire training data but
only considering moving objects within a certain maximum distance from the camera in
the label set and objects that lie beyond this distance are ignored for training. We then
evaluated these models on the different test sets, each containing moving objects within
certain maximum distances. For this experiment, we considered moving objects within
four discrete set of maximum distances. Specifically, for 20 m, 40 m, 60 m and over 60 m
that denote as∞.

Figure 6.9 shows results from this experiment on the Cityscapes-Motion and KITTI-
Motion datasets. As we hypothesized, our models achieve the best performance while
training on the label set containing moving objects within 20 m and testing with the cor-
responding label set with same configuration. On the Cityscapes-Motion dataset, our
SMSnet++ model achieves a IoU of 85.02% for the moving object class, whereas on
the KITTI-Motion dataset, it achieves a mIoU of 91.98% for the moving object class.
The models demonstrate the best trade-off considering moving objects within a maxi-
mum distance of 40 m and subsequently for larger distances, the performance drops by
approximately 3% in the IoU score. However, this score is still over 12% higher than the
best performance achieved by the previous state-of-the-art networks that we presented
in Table 6.1. Furthermore, we observe that there is a larger performance drop when the
model is trained with labels consisting of moving objects within 20 m and tested on the
label set with moving objects at increasingly larger distances. This is to be expected, as the
network has not learned features that represent distant moving objects. Nevertheless, we
observe that training the model on the label sets with moving objects at increasingly larger
distances makes the model perform well across each of the four discrete label sets with
different maximum distances. The model trained with the maximum distance at infinity



210 Chapter 6. Joint Semantic Motion Segmentation

20m
40m

60m
∞

Tested on:

20m

40m

60m∞

Trained on:

85.04
75.53

72.36
69.31

83.47
85.02

81.76
80.53

82.95
83.51

82.53
80.78

80.99
83.48

82.44
82.10

70 72 74 76 78 80 82 84

20m
40m

60m
∞

Tested on:

20m

40m

60m∞

Trained on:

92.03
87.47

82.39
75.83

91.29
91.98

88.92
88.27

90.54
90.85

90.23
88.96

88.65
90.25

90.16
89.98

76 78 80 82 84 86 88 90 92

(a)C
ityscapes-M

otion
dataset

(b)K
IT

T
I-M

otion
dataset

Figure
6.9:C

om
parison

ofm
oving

objectsegm
entation

perform
ance

ofourproposed
SM

Snet++
architecture,w

hile
training

on
labelsets

w
ith

m
oving

objects
w

ithin
differentm

axim
um

ranges
on

the
C

ityscapes-M
otion

and
K

IT
T

I-M
otion

datasets.T
he

m
odelthatw

as
trained

w
ith

the
label

setconsisting
ofm

oving
objects

w
ithin

40
m

offers
the

righttradeoff.H
ow

ever,the
m

odeltrained
w

ith
no

bounds
on

the
distance

ofthe
m

oving
object(denoted

by
∞

)stillperform
s

im
pressively

w
elland

the
perform

ance
is

substantially
higherthan

the
previous

state-of-the-art.



6.4. Experimental Evaluation 211

20m 40m 60m ∞

Tested on:

20m

40m

60m

∞

Tr
ai

ne
d 

on
:

59.06 54.29 49.72 46.32

58.28 59.00 57.32 56.12

58.08 58.18 57.51 57.35

56.57 57.72 56.94 57.49 48

50

52

54

56

58

Figure 6.10: Comparison of moving object segmentation performance of our proposed SMSnet++
architecture, while training on label sets with moving objects within different maximum ranges on
the ApolloScape-Motion dataset. Our model trained on the label set with moving objects within
40 m achieves the right trade-off. However, even our model trained on the label set with no bounds,
effectively segments distant moving objects.

performs impressively well even for challenging moving object examples that are at far
away distances.

Finally, we present results on the ApolloScape-Motion dataset in Figure 6.10. We obtain
a similar performance as the results reported on the Cityscapes-Motion and KITTI-Motion
datasets. The SMSnet++ model trained on the label set consisting of moving objects within
20 m and evaluated on the corresponding test set with the same configuration achieves the
highest moving object segmentation IoU of 59.00%. However, the model trained on the
40 m label set, demonstrates the right trade-off by achieving a moving object segmentation
mIoU of 57.68% over all the four discrete label sets with different maximum distances.
The SMSnet++ model trained on the label set that does not contain any bounds on the
moving object distances demonstrates a drop in the mIoU of 0.5% over all the four discrete
label sets with different maximum distances. Nevertheless, our SMSnet++ architecture
trained on the label set with no bounds on the moving object distances, achieves an
improvement of 15.62% over the previous state-of-the-art CNN-MCA [237] architecture,
thereby demonstrating the efficacy of our model in effectively segmenting distant moving
objects.

6.4.4 Ablation Study

In this section, we present detailed ablation studies on the various architectural design
choices that we made in our proposed SMSnet and SMSnet++ architectures with concrete
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empirical evaluations on each of the related model configurations. We first present results
on the major components of our SMSnet++ architecture in Section 6.4.4.1, followed by
an analysis on the introduction of ego-flow suppression in Section 6.4.4.2 and the utility
of temporal representational warping in Section 6.4.4.3. We then present evaluations of
different topologies of the Motion Feature Learning stream in Section 6.4.4.4 and finally,
in Section 6.4.4.5, we present an analysis on the performance of motion segmentation
with the label set that contains all the semantic objects in the dataset and the label set that
contains only the movable semantic object classes.

6.4.4.1 Detailed Study on the Architectural Components

Table 6.5 shows various configurations of the major components of our proposed archi-
tectures using models trained on the Cityscapes-Motion dataset. For this experiment, we
consider all the labels in the Cityscapes-Motion dataset for learning the moving object
segmentation, regardless of whether the object class is movable, therefore this corresponds
to the models with the suffix FULL in the benchmarking results that we presented. The
model M1 has a topology similar to our proposed SMSnet architecture, but we remove
the Semantic Feature Learning stream, therefore the model only learns motion features
from the learned optical flow maps. We employ the residual units from the ResNet-50
architecture in the various network blocks and we embed the FlowNet2 architecture in
the Motion Feature Learning stream to generate the optical flow maps from which our
network learns the motion features. The resulting optical flow maps are scaled to the 0
to 255 range and the flow vectors are represented as integers, which is indicated by (i)
in the Flow Arch column of Table 6.5. This M1 model demonstrates an IoU of 67.42%
and 92.90%, for the moving and static classes respectively. In the subsequent M2 model,
we build upon the M1 model and add the Semantic Feature Learning stream, which has
the topology of our AdapNet architecture that we introduced in Chapter 4. Feature maps
from the Semantic Feature Learning stream are then fused with the learned flow field
features in the Semantic-Motion Fusion stream using simple concatenation. This model
exactly resembles the topology of our proposed SMSnet architecture and hence, learns
joint semantic motion segmentation. It achieves a semantic segmentation performance of
77.58% in the mIoU score and demonstrates an improvement of 9.14% and 0.52%, for the
moving and static classes respectively. This improvement can be attributed to the benefit
of encoding semantic representations in the motion segmentation stream.

In the M3 model, we replace the standard residual units that are in the M2 model,
with full pre-activation residual units and we also replace the AdapNet architecture in
the Semantic Feature Learning stream, with our improved AdapNet++ architecture. This
model achieves an improvement of 3.78% for the moving class and 1.01% for the static
class, in addition to an improvement of 3.22% in the mIoU score for semantic segmentation.
This increase in the scores is primarily due to the multiscale feature learning and long-range



6.4. Experimental Evaluation 213

Ta
bl

e
6.

5:
In

flu
en

ce
of

th
e

va
ri

ou
s

ar
ch

ite
ct

ur
al

co
nt

ri
bu

tio
ns

pr
op

os
ed

in
th

e
SM

Sn
et

an
d

SM
Sn

et
++

ar
ch

ite
ct

ur
es

.T
he

pe
rf

or
m

an
ce

is
sh

ow
n

fo
r

th
e

m
od

el
s

tr
ai

ne
d

on
th

e
C

ity
sc

ap
es

-M
ot

io
n

da
ta

se
t.

B
as

e
A

rc
h

de
no

te
s

th
at

th
e

va
ri

ou
s

re
si

du
al

un
its

fo
llo

w
ei

th
er

th
e

st
an

da
rd

st
an

da
rd

R
es

N
et

-5
0

or
th

e
fu

ll
pr

e-
ac

tiv
at

io
n

R
es

N
et

-5
0

ar
ch

ite
ct

ur
e.

F
lo

w
A

rc
h

de
no

te
s

th
e

ar
ch

ite
ct

ur
e

em
be

dd
ed

fo
rl

ea
rn

in
g

op
tic

al
flo

w
fie

ld
fe

at
ur

es
an

d
th

e
sy

m
bo

ls
(i

)o
r(

f)
de

no
te

if
th

e
flo

w
di

sp
la

ce
m

en
ts

ar
e

in
te

ge
rs

or
flo

at
in

g
po

in
tv

al
ue

s.
T

he
sy

m
bo

ls
⊕

F
w

de
no

te
w

ar
pi

ng
of

in
te

rm
ed

ia
te

en
co

de
rr

ep
re

se
nt

at
io

ns
fr

om
th

e
pr

ev
io

us
tim

es
te

p
th

at
ar

e
dy

na
m

ic
al

ly
fu

se
d

us
in

g
ou

rS
SM

A
m

od
ul

e,
w

ith
re

pr
es

en
ta

tio
ns

of
th

e
cu

rr
en

tt
im

es
te

p.
T

he
F

us
io

n
co

lu
m

n
de

no
te

s
if

th
e

m
ot

io
n

an
d

se
m

an
tic

fe
at

ur
e

ar
e

co
nc

at
en

at
ed

(||
)o

ra
da

pt
iv

el
y

fu
se

d
us

in
g

ou
rS

SM
A

m
od

ul
e.

T
he

su
bs

eq
ue

nt
co

lu
m

ns
de

no
te

if
cl

as
s

ba
la

nc
in

g
is

ap
pl

ie
d,

if
ou

r
pr

op
os

ed
ne

w
de

co
de

r
is

em
pl

oy
ed

an
d

if
th

e
sk

ip
re

fin
em

en
ti

s
pr

ef
or

m
ed

in
th

e
m

ot
io

n
se

gm
en

ta
tio

n
st

re
am

.T
he

fin
al

m
od

el
M

10
is

ou
rp

ro
po

se
d

SM
Sn

et
++

ar
ch

ite
ct

ur
e

tr
ai

ne
d

on
th

e
fu

ll
la

be
ls

et
.

M
od

el
B

as
e

A
rc

h
Fl

ow
A

rc
h

Se
m

an
tic

A
rc

h
Fu

si
on

C
la

ss
N

ew
Sk

ip
M

ov
in

g
St

at
ic

Se
m

an
tic

B
al

D
ec

Io
U

(%
)

Io
U

(%
)

m
Io

U
(%

)

M
1

R
es

N
et

-5
0

Fl
ow

N
et

2
(i

)
-

-
-

-
-

67
.4

2
92

.9
0

-

M
2

R
es

N
et

-5
0

Fl
ow

N
et

2
(i

)
A

da
pN

et
||

-
-

-
76

.5
6

92
.3

8
77

.5
8

M
3

PA
R

es
N

et
-5

0
Fl

ow
N

et
2

(i
)

A
da

pN
et

++
||

-
-

-
80

.3
4

93
.3

9
80

.8
0

M
4

PA
R

es
N

et
-5

0
Fl

ow
N

et
3

(i
)

A
da

pN
et

++
||

-
-

-
80

.8
7

93
.4

2
80

.8
0

M
5

PA
R

es
N

et
-5

0
Fl

ow
N

et
3

(f
)

A
da

pN
et

++
||

-
-

-
81

.0
5

93
.5

1
80

.8
0

M
6

PA
R

es
N

et
-5

0
Fl

ow
N

et
3

(f
)

A
da

pn
et

++
⊕

F
w

||
-

-
-

81
.0

8
93

.4
9

82
.3

1

M
7

PA
R

es
N

et
-5

0
Fl

ow
N

et
3

(f
)

A
da

pN
et

++
⊕

F
w

SS
M

A
-

-
-

80
.5

5
94

.7
8

82
.3

1

M
8

PA
R

es
N

et
-5

0
Fl

ow
N

et
3

(f
)

A
da

pN
et

++
⊕

F
w

SS
M

A
X

-
-

81
.9

5
94

.0
8

82
.3

1

M
9

PA
R

es
N

et
-5

0
Fl

ow
N

et
3

(f
)

A
da

pN
et

++
⊕

F
w

SS
M

A
X

X
-

82
.4

9
94

.0
5

82
.3

1

M
10

PA
R

es
N

et
-5

0
Fl

ow
N

et
3

(f
)

A
da

pN
et

++
⊕

F
w

SS
M

A
X

X
X

83
.1

1
94

.3
8

82
.3

1



214 Chapter 6. Joint Semantic Motion Segmentation

context aggregation in the semantic segmentation stream. In the subsequent M4 model,
we replace the FlowNet2 architecture in the beginning of the Motion Feature Learning
stream, with the FlowNet3 architecture with the aim of improving the learning of optical
flow field features. This model achieves a IoU of 80.87% for the moving class and 93.42%
for the static class. However, as the improvement in performance is not significant, we
further removed the rounding-off to the nearest decimal that was being applied on the
optical flow maps and maintained the optical flow vectors are floating point numbers in
the M5 architecture. We indicate the floating point flow maps with the suffix (f) in the
Flow Arch column of Table 6.5. This model in comparison to the M3 model, achieves an
improvement of 0.71% in the IoU for the moving class and 0.12% in the IoU of the static
class.

In an effort to simultaneously improve the semantic segmentation performance, we
employ our temporal representational warping layer that also transforms the optical flow to
the edge enhanced flow for improving the warping in the Semantic Feature Learning stream
of the M6 model. This improves the semantic segmentation performance by 1.51% in the
mIoU score. Furthermore, a comparison of warping directly using the optical flow maps,
instead of using the edge-enhanced flow is presented in Section 6.4.4.3. In the models
that we presented thus far, we concatenate the learned semantic features with the motion
features in the Semantic-Motion Fusion stream. This direct concatenation may not be ideal
as the motion boundaries learned from the optical flow maps do not exactly correspond
to the object boundaries in the semantic feature maps. Moreover, the motion features do
not contain much information about distant moving objects. Therefore, in order to exploit
complementary information from both semantic and motion features, we employ our
SSMA fusion module that we introduced in Chapter 5 to fuse the semantic representations
with the motion features in the M7 model. However, this model demonstrates a reduction
in the IoU score of the moving object class with a concurrent increase in the IoU score
of the static object class. Upon closer inspection of the performance of this model, we
observed that static and moving object classes are highly imbalanced. The images often
contain a substantial amount of pixels that belong to static objects while only a few number
of pixels representing the moving objects. In order to account for this imbalance, in the
M8 model, we employ the normalized inverse class frequency weighting to balance the
loss. Most networks employ the inverse class frequency weighting, however, as the moving
object class is not present in each training example, it leads to large weight updates and
causes the gradients to explode. In order to alleviate this problem, we re-normalize the
frequency weightings by a factor to make the sum of the weights for each training example
as one. This model achieves an improved performance of 81.95% and 94.05%, for IoU of
the moving and static classes respectively.

Finally, in order to improve the granularity of the motion segmentation along object
boundaries, we employ our new multistage decoder that we introduced in Chapter 5 in
the Semantic-Motion Feature Fusion stream of the M9 model and we subsequently add
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two skip refinement stages from the encoder of the Semantic Feature Learning stream to
the decoder of the Semantic-Motion Feature Fusion stream in the M10 model. This leads
to an IoU improvement of 0.54% in the M9 model and an additional 0.62% in the M10
model for the moving object class. We denote this final model M10, which achieves a IoU
of 83.11% for the moving class, 94.38% for the static class and a mIoU of 82.31% for the
semantic segmentation as our proposed SMSnet++ architecture.

6.4.4.2 Influence of Ego-Flow Suppression

As the main goal of this work is to enable a robot to detect moving objects in dynamic
environments, the movement of the robot itself causes discontinuities in the optical flow
magnitude, where nearby static objects can appear to have a larger optical flow magnitudes
even though they are static in the environment. In order to alleviate this problem, we
compute the ego-motion of the robot and subtract the resulting ego-flow from the generated
optical flow maps. In this section, we compare the performance of the SMSnet++ model
with and without Ego-Flow Suppression (EFS) on the Cityscapes-Motion dataset with
only the movable object labels in the motion segmentation network. Results from this
experiment shown in Table 6.6 demonstrate that the E1 model that directly uses the optical
flow maps in floating point precision from the embedded FlowNet3 network to learn motion
features, achieves a mIoU of 79.44% for the motion segmentation. In the subsequent E2
model, we scale the optical flow maps to the 0-255 range and maintain the floating point
precision. This model achieves an improvement of 3.68% and 2.24% in the IoU score of
the moving and static classes. Although our Motion Feature Learning stream contains
convolution layers with batch normalization that normalizes the output of the previous
activation layer, we find that explicitly normalizing the optical flow maps to the 0-255
range yields a notable performance improvement. In our final E3 model, we employ our
EFS technique to compensate for the flow induced due to the ego-motion of the robot. The
E3 model achieves a mIoU score of 89.92%, which accounts for a large improvement in
the IoU score of 11.53% for the moving class and 3.5% for the static class, in comparison
to the E2 model. The improvement is more apparent when compared with the E1 model
which directly uses the optical flow maps from the embedded flow generation network.
More specifically, this amounts to an improvement of 15.23% in the moving object class
and 5.74% for the static object class.

Furthermore, we show a comparison of the motion segmentation performance using
our SMSnet++ model trained on each of the aforementioned optical flow transformations
on all the datasets that we benchmark on in Figure 6.11. The results demonstrate that
our E3 model, which scales the optical flow maps to the 0-255 range in floating point
precision and employs our EFS technique, consistently achieves the highest performance
on the Cityscapes-Motion, KITTI-Motion and ApolloScape-Motion datasets. The largest
improvement of 15.23% in the IoU score for the moving object class is observed on the
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Table 6.6: Evaluation of the motion segmentation performance with different optical flow transfor-
mations in the SMSnet++ architecture. Results are shown on the Cityscapes-Motion dataset.

Model Scaling EFS IoU (%) mIoU Acc. AP

(0-255) Moving Static (%) (%) (%)

E1 - - 69.79 89.08 79.44 91.28 88.68
E2 X - 73.47 91.32 82.40 93.14 93.47
E3 X X 85.02 94.82 89.92 95.99 94.85
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Figure 6.11: Performance comparison of motion segmentation with different optical flow transfor-
mations in our SMSnet++ architecture.

Cityscapes-Motion dataset and the smallest improvement of 5.68% in the IoU score for the
moving object class is observed on the ApolloScape-Motion dataset. The comparatively
smaller improvement on the ApolloScape-Motion dataset is due to the substandard optical
flow maps that were obtained on this dataset, attributable to the significantly different scene
structure compared to the other datasets. Since this dataset does not provide groundtruth
optical flow maps for training the flow network, we employed the FlowNet3 model trained
on the KITTI dataset and kept the weights fixed, while training the rest of the Motion
Feature Learning stream. Employing an unsupervised optical flow learning network would
yield a larger improvement in the final E3 model. Nevertheless, these results demonstrate
the utility of employing our EFS technique to learn more effective motion representations
in our proposed architectures.

6.4.4.3 Influence of Warping Semantic Features

In this section, we evaluate the improvement due to temporal representational warping
by introducing our warping module at different stages of the segmentation stream in our
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Table 6.7: Evaluation of warping semantic features in the SMSnet++ architecture at various stages
of the network using the edge-enhanced optical flow. The M3 model is our final SMSnet++
architecture. Results are shown on the Cityscapes dataset.

Model Warping Stage Edge mIoU Acc. AP
Enhance (%) (%) (%)

M1 - - 80.80 96.04 90.37
M2 eASPP - 81.96 96.26 91.22
M3 eASPP X 82.31 96.37 90.67
M4 eASPP + Res3 X 81.36 96.11 90.54
M5 eASPP + Res4 X 81.89 96.22 90.56
M6 eASPP + Res3 + Res4 X 81.19 96.11 90.59

SMSnet++ architecture. Table 6.7 shows the results from this experiment on the Cityscapes
dataset. In the M2 model, we directly use the optical flow maps from the embedded
FlowNet3 network to warp the feature maps at the end of the semantic encoder after the
eASPP, where the feature maps are of dimensions 24× 48. This model achieves a mIoU
of 81.96%, accounting for an improvement of 1.16% compared to the M1 model that has
the topology of our AdapNet++ architecture. In order to further improve the semantic
segmentation performance using representational warping, we employ the edge-enhanced
flow for warping in the M3 model, as opposed to the optical flow directly. Figure 6.12
shows examples of the edge-enhanced flow in comparison to the original optical flow from
our network. We perform the warping at the same stage as the M2 model, after the eASPP.
This model achieves a mIoU 82.31% which accounts for an improvement of 1.51% over
the standard AdapNet++ segmentation model M1.

Subsequently, we experiment with adding another temporal warping layer to the M3
model at the end of the previous downsampling stages in an effort to enforce multiscale
temporal consistency. Specifically, we add the second warping layer at the end of the Res3
block in the M4 model and at the end of the Res4 block in the M5 model. However, the
results demonstrate that both these models do not improve the performance over the M3
model with the temporal warping layer after the eASPP module. Furthermore, we also
experimented with introducing the warping layer at more than two downsampling stages.
In the M6 model, we introduce a warping layer at the end of the eASPP module and at the
end of the last residual unit of the Res3 as well as the Res4 blocks. This model achieves
a lower performance than the M4 and M5 models with two temporal warping layers.
Therefore, we employ the M3 model configuration in the Semantic Feature Learning
stream of our proposed SMSnet++ architecture to introduce temporal consistency in the
semantic segmentation output with respect to the previous frame.

Analyzing the results presented in Table 6.7, we observe that the performance of our
model increases considerably using the edge-enhanced flow for warping at the end of
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Input frame It Optical Flow Edge-Enhanced Flow

Figure 6.12: Examples from the Cityscapes dataset showing the input image It, the original
optical flow and the corresponding edge-enhanced flow from our SMSnet++ architecture. The
edge-enhanced flow clearly shows more emphasis on the structure of objects in the scene.

the eASPP but thereafter, the increase in performance is lower than that obtained from
introducing only one temporal warping layer. This can be attributed to the max pooling
layer that we employ to downsample the optical flow map to the desired warping resolution.
Pooling the optical flow maps at multiple scales causes the downsampled flow maps to
not align with the corresponding semantic feature maps and therefore, when the semantic
feature maps from the previous timestep are warped with the unaligned optical flow maps, it
negatively affects the performance of the model. Hence, computing the optical flow maps at
multiple scales or employing a scaling technique that maintains the point correspondences
could potentially alleviate this problem.

6.4.4.4 Evaluation of Motion Feature Learning Configuration

In order to learn optical flow field features in the Motion Feature Learning stream of
our proposed architectures, we experiment with adding different number of residual
blocks after the embedded optical flow network. Table 6.8 presents the results from this
experiment on the Cityscapes-Motion dataset with the full label set. The optical flow



6.4. Experimental Evaluation 219

Table 6.8: Evaluation of various network configurations for learning optical flow field features in
the SMSnet++ architecture. The F4 model is our final SMSnet++ architecture trained on the full
label set in the Cityscapes-Motion dataset.

Model Configuration IoU (%) mIoU Acc. AP

Moving Static (%) (%) (%)

F1 Res1 81.93 93.56 87.74 95.12 94.89
F2 Res1 + Res2 82.47 94.23 88.35 95.45 95.12
F3 Res1 + Res2 + Res3 82.79 93.51 88.15 95.38 95.01
F4 Res1 + Res2 + Res3(2) 83.11 94.38 88.75 95.59 95.37
F5 Res1 + Res2 + Res3(2) + Res4 82.34 93.67 88.00 95.33 95.07

network in the beginning of the Motion Feature Learning stream yields an output with the
same dimensions as the input image resolution. Therefore, in the F1 model, we employ
the Res1 block from the full pre-activation ResNet-50 architecture, followed by a 1× 1
convolutional layer with striding to downsample the features maps to match the resolution
of the semantic encoder output. This model achieves a mIoU of 87.74% for the motion
object segmentation.

In the subsequent two models, we build upon the F1 model and add an additional Res2
block the in F2 model and an additional Res2 as well as a Res3 block in the F3 model.
While the F2 model improves the IoU of the moving object class by 0.54% and 0.67%
for the moving object class, the F3 model further improves the moving object IoU by
0.32% but yields a lower performance for the static class. Therefore, in the M4 model,
we build upon the topology of the M3 model and reduce the number of residual units in
the Res3 block by employing only the first two units (indicated by (2) next to Res3 in the
Configuration column of Table 6.8) to prevent the model from overfitting to the training
data. This model further improves the performance of both the moving and static classes by
1.18% and 0.82% respectively, compared to the first F1 model. We also experimented with
adding the fourth residual block from the full pre-activation ResNet-50 architecture to the
F4 model, however, this lowered the overall mIoU score by 0.65%. Therefore, we employ
the F4 model configuration to effectively learn flow field features in both our proposed
SMSnet and SMSnet++ architectures.

6.4.4.5 Evaluation on Full Labels vs. Only Movable Objects

In the motion segmentation benchmarking results that we reported in Section 6.4.2.2,
we presented the performance of two variants of our models, one that is trained on the
label set containing all the semantic objects in the dataset, despite all of the objects
being not movable (SMSnet++ALL) and one that is trained on the label set consisting of
only movable objects (SMSnet++MOV). In this section, we compare the performance of
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Figure 6.13: Comparison of motion segmentation of our SMSnet++ model with the previous
state-of-the-art CNN-MCA model, each trained on a label set consisting of only movable objects
and the label set that contains all the objects in the dataset, irregardless of their movability. We
report the results of these model variants for a set of discrete ranges within which the moving object
lies in the test set.

these two model variants with the corresponding variants of the previous state-of-the-art
CNN-MCA architecture on the Cityscapes-Motion dataset with moving objects at different
maximum ranges. Figure 6.13 shows the results from this experiment for four discrete set
of maximum ranges within which the moving object lies. Specifically, for 20 m, 40 m, 60 m
and over 60 m that we denote as∞.

We observe that both the SMSnet++ALL and SMSnet++MOV model variants, significantly
outperform the corresponding variants CNN-MCAALL and CNN-MCAMOV models for
each of the discrete maximum ranges. The highest performance is achieved by our
SMSnet++MOV model trained only the movable objects that are within 20 m from the
ego-vehicle equipped with the camera. It can also be seen that the performance of each
of these models slowly decreases as the distance from the moving object increases. This
can be attributed to the motion parallax effect, where the pixel displacements of moving
objects in consecutive images become smaller as the distance from the camera increases
and thereby, detecting the motion of these objects becomes increasingly hard.

More importantly, we see that our SMSnet++MOV model trained only on the movable
object labels outperforms the SMSnet++ALL model that is trained on the entire label set
consisting of all the semantic object classes in the dataset for each of the discrete maximum
ranges. Although the difference in performance of these two models is not significant,
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this demonstrates that the motion segmentation network learns the heterogeneous motion
patterns of various dynamic objects more effectively, if the network is provided with the
prior of defining what types of semantic categories are potentially movable in the label
set while training. In contrast, when the network is trained on all the semantic object
labels in the dataset that contain both permanently static objects and movable objects, it
is additionally required to learn which of the semantic objects are movable which causes
the performance to decrease by 1.8% in the mIoU over all the discrete maximum ranges.
Nevertheless, our proposed SMSnet++ architecture demonstrates a smaller decrease in
performance, while compared to the previous state-of-the-art CNN-MCA architecture.

6.4.5 Qualitative Evaluations

In this section, we present qualitative results of semantic motion segmentation using
our proposed SMSnet and SMSnet++ architectures in comparison with the previous
state-of-the-art CNN-MCA [237] architecture on diverse scenes from the Cityscapes-
Motion, KITTI-Motion and ApolloScape-Motion datasets. Figure 6.14 shows the results
on the Cityscapes-Motion dataset, where the first two rows shows the comparison of
SMSnet++ with the CNN-MCA model as the baseline, while the last two rows show the
comparison of SMSnet++ with our SMSnet model as the baseline. Furthermore, we also
show the improvement / error map where the improvement in moving object segmentation
of SMSnet++ in comparison to the baseline is indicated with cyan pixels, while the
improvement in semantic segmentation of SMSnet++ in comparison to the baseline model
is indicated with green pixels and finally, the misclassifications in the SMSnet++ output
in comparison to the groundtruth is indicated with red pixels. The color legend for the
segmentation labels correspond to those shown in the motion and semantic benchmarking
results in Section 6.4.2.1.

In Figure 6.14 (a), we show a scene with heavy traffic. We observe one moving car
in the same direction as our ego-vehicle and four moving cars in the opposite direction.
The CNN-MCA model mispredicts the parked truck in front of the ego-vehicle as well
as the parked car in front of the parked truck as moving and does not detect the distant
moving car in the front of the opposite lane. Additionally, it also mispredicts the person
standing behind the truck as a car and does not detect the bumper of the car that is just
entering the frame on the right side of the image. Whereas, our proposed SMSnet++ model
accurately predicts the motion status as well the semantic category of these objects. The
multiscale residual units in our SMSnet++ model enables accurate detection of entire
moving objects of different scales. Moreover, it can be observed that the granularity of
the motion segmentation along the moving object boundaries is much finer than the CNN-
MCA model. The overall improvement in the semantic segmentation can also be seen in
the more refined segmentation of the two people on the sidewalk, accurate estimation of
the object boundaries of the sidewalk class as well as refined segmentation of pole and
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sign objects.
In the second example shown in Figure 6.14 (b), we observe that the ego-vehicle is

waiting at the traffic light, while a bus, car and a van are moving in the perpendicular
direction to the ego-vehicle. It can be seen that the bus and the car are moving in the
opposite directions and are adjacent to each other. This causes the baseline CNN-MCA
model to not entirely detect all the pixels that belong to the bus as moving due to its
small receptive field that does not encompass the entire moving object. Moreover, in the
CNN-MCA output, the van entering the frame on the left side of the image is also not
detected as moving and the static car waiting at the traffic light on the opposite side of
the ego-vehicle is incorrectly detected as moving. Whereas, we observe that our proposed
SMSnet++ model accurately predicts the semantic object class and motion status of all the
pixels in the these cases. In the first two examples, the improvement seen in the motion
segmentation is due to the large effective receptive field of our SMSnet++ architecture that
enables the detection of entire large moving objects that occupy a substantial portion of
the image. The improvement in semantic segmentation output of our SMSnet++ model in
comparison to CNN-MCA can be observed in the accurate detection of person and cyclist
in the scene, as well as in the boundaries of the vegetation class.

We show a comparison of the output of our SMSnet++ architecture with SMSnet as the
baseline in Figure 6.14 (c). We observe that the four static cars waiting at the pedestrian
crossing on the opposite side of the ego-vehicle are incorrectly segmented as moving in the
output of the SMSnet model and additionally, the distant bus behind the trees on the right
side of the image is also incorrectly segmented as moving in the output of SMSnet model.
Whereas, our SMSnet++ model accurately predicts the motion status of these objects as
static. We observe an improvement in the semantic segmentation output of our SMSnet++
model in comparison to SMSnet, for objects such as pole, sign and pedestrians, as well
as a part of the building which is overexposed due to the sun. This improvement can be
attributed to the representational warping layer that leverages semantic features from the
previous frames to enforce temporal consistency. In the results shown in Figure 6.14 (d),
we see an interesting scenario where a moving car is partly occluded by a tree that splits
the car in two halves. This causes the SMSnet model to predict the pixels of the car as
static. whereas our SMSnet++ model accurately predicts the entire car as moving due to
its large effective receptive field which encompasses the parts of the car on either side of
the tree. Furthermore, a cyclist is incorrectly predicted as a person in the segmentation
output of the SMSnet model. An improvement in the semantic segmentation output of
SMSnet++ can be observed in the accurate prediction of the semantic category of objects
such as sidewalk, road, cyclist, pole and sign classes. Most of these improvements can be
attributed to the strong decoder with skip refinement stages that accurately captures the
boundaries of these objects.

Figure 6.15 shows qualitative results on the KITTI-Motion dataset which contains both
scenes from residential areas where cars are moving with low velocities, and in highway
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driving scenarios where cars are moving at high velocities, therefore causing a substantial
amount of motion blur in the captured images. These scenes also have moving objects
of different scales and lighting conditions that cause significant shadows on the ground.
The first two rows show the comparison of SMSnet++ with the previous state-of-the-art
CNN-MCA model as the baseline, while the next two rows show the comparison of
SMSnet++ with the SMSnet model as the baseline model. In addition to the semantic
motion segmentation outputs, we also show the optical flow maps with EFS for each of the
examples. In Figure 6.15 (a), we observe that the CNN-MCA model incorrectly segments
the static cars on the opposite lane from the ego-vehicle as moving and also segments the
shadow of the first moving car in the opposite direction as belonging to the moving car.
Whereas, our SMSnet++ architecture accurately predicts the semantic category and motion
status of each of these objects. Moreover, the improvement in the semantic segmentation
output of SMSnet++ can be observed in the accurate segmentation of sidewalk, pole and
sign classes. In the second example shown in Figure 6.15 (b), we see that the CNN-MCA
model incorrectly predicts the moving car on the opposite side of the lane as static and
a distant moving car turning on the same side of the lane as the ego-vehicle as static,
while our SMSnet++ model accurately predicts these cars as moving. It can also be seen
that the CNN-MCA model misclassifies a large portion of objects such as sign, fence and
vegetation. The accurate prediction of object classes such as the sidewalk and the fence in
the above examples can be attributed to the representational warping and the improvement
in segmenting thin pole-like structures is enabled by our new decoder that fuses mid-level
encoder features to yield a high-resolution segmentation output.

In the example shown in Figure 6.15 (c), we observe that the SMSnet output shown as
the baseline does not segment the entire van as moving and it also incorrectly segments a
parked car on the opposite side of the road adjacent to the van as moving. This primarily
occurs in the segmentation output of SMSnet, when there is a moving vehicle that is partly
visible due to it entering or leaving the frame. Note that both our SMSnet and SMSnet++
models employ the same optical flow map with EFS to learn the motion features and it
can be observed that even though there are high flow gradients in the optical flow maps,
SMSnet does not entirely segment the moving van. In the subsequent example shown in
Figure 6.15 (d), we observe a residential scene, in which a moving car on the opposite
side of the lane is only partly segmented as moving in the output of the SMSnet model
due to an occluding light pole dividing the moving car into two parts. Moreover, it can
be seen that as the distance to the moving objects increases, the region of segmentation
on the moving cars decreases. In the output of the SMSnet model, we observe that most
part of the second moving car is accurately segmented as moving, but only a small part
of the third moving car is segmented as moving and the fourth moving car is entirely
segmented incorrectly as static. However, we observe that the multiscale receptive fields of
the SMSnet++ architecture enable it to efficiently distinguish between static background
and moving objects of different scales, thus achieving accurate motion segmentation.
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The last two rows of Figure 6.15 shows failure cases in comparison to SMSnet in (e)
and in comparison to the CNN-MCA model in (f). In Figure 6.15 (e), we observe a distant
moving car on the road among static cars being parked on both sides of the street. Both
the SMSnet output shown as the baseline and the SMSnet++ output incorrectly segment
the moving car as static. As the scene is not well lit near the distant moving car, the
network is unable to detect the change in the pixel displacements. While in the second
failure case shown in Figure 6.15 (f), we observe a scene in which a moving car is merely
visible due to the occlusion caused by another moving car, in addition to a traffic light
pole and a sign covering most of the vehicle. This causes both the networks to detect the
pixels of the moving car as static. However, it can be seen that a moving van on the left
side of the image is accurately segmented as moving in the output of the SMSnet++ model,
even though a large portion of the object is occluded by a tree trunk, while the CNN-MCA
model incorrectly predicts the van as being static. Nevertheless, we remark that these
corner cases can be overcome by aggregating temporal features of moving objects from a
sequence of frames, while our network currently only learns the motion patterns from a
pair of subsequent images.

Finally, Figure 6.16 shows the qualitative semantic motion segmentation results on
the recently introduced ApolloScape-Motion dataset. As this dataset consists of images
in high resolution, they contain objects such as cars and pedestrians that are captured
at extremely far away distances, which makes motion segmentation highly challenging.
Moreover, it contains multiple types of moving objects such as cars, person and cyclist
The first two rows show the comparison of our proposed SMSnet++ architecture with the
previous state-of-the-art CNN-MCA baseline and the last two rows show a comparison of
partial failure modes of our SMSnet++ model with SMSnet as the baseline. For each of
the examples, we show the input image, the corresponding optical flow maps with EFS,
the segmentation outputs and the improvement / error map.

In the first example shown in Figure 6.16 (a), we see a scene with multiple distant
moving cars in several directions. Out of the six cars that are moving in the same direction
as the ego-vehicle, the CNN-MCA model segments two of them as moving and does not
capture the last two cars in the segmentation output. In addition, the CNN-MCA model
misclassifies the moving motorcycle as static and it does not capture the truck that is moving
adjacently in the opposite direction of the ego-vehicle. Whereas, our SMSnet++ model that
incorporates our multiscale residual units and the eASPP, accurately predicts the semantic
category and motion status of pixels belonging to the aforementioned objects of different
scales. It can also be observed that the CNN-MCA model falsely predicts vegetation on
the bottom left of the road due to motion blur in the image and it does not entirely detect
the two static cars on the left lane. Comparing the quality of the segmentation, we can see
that our SMSnet++ model has a more refined segmentation output due to the multistage
refinement strategy that it incorporates, while the segmentation of the CNN-MCA model
is coarse and has several discontinuities or missing structures of pole-like objects. In
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the second example shown in Figure 6.16 (b), there are eight moving cars on the same
lane and a moving person on the right side of the image. The CNN-MCA model only
segments three of the eight cars as moving and misclassifies the moving person as static.
Additionally, it does not detect a static person on the right side of the image and again
misclassifies parts of the road on the bottom right of the image as vegetation due to motion
blur. Analyzing the segmentation output of our SMSnet++ model, we see that it accurately
predicts the motion status and the semantic object category of the pixels in this image.

In the next example shown in Figure 6.16 (c), we observe five moving cars on the same
direction as the ego-vehicle, one moving car on the opposite direction of the ego-vehicle,
one moving person and one moving motorcycle. The output of the SMSnet model shown
as the baseline only partially segments two of the moving cars out of the total six present in
the scene, and does not detect both the moving person and the motorcycle. Moreover, the
numerous parked static cars along the road in front of the ego-vehicle are all left undetected
in the segmentation output and most parts of the buildings are misclassified as vegetation.
In addition static pedestrians and poles that are at far away distances are not captured in
the segmentation output of the SMSnet model. Once again, we also observe parts of the
road on the bottom corners of the image are segmented incorrectly, as vegetation due to
motion blur in the images. Whereas, our proposed SMSnet++ model does not demonstrate
the misclassifications due to motion blur as it effectively leverages semantic information
from the previous frames using our representational warping to yield temporally smoother
predictions. Although SMSnet++ accurately segments the scene, it can be seen that certain
pixels of the moving car are incorrectly classified as static. This is primarily due to
the optical flow maps that do not capture the accurate boundaries of the moving objects
on this dataset, in addition to artifacts such as trails of ghost regions that are observed
behind moving objects. As there are no groundtruth optical flow labels to train the flow
generation network in a supervised fashion on this dataset, we employ the network trained
on the KITTI flow dataset and keep the weights fixed while training the rest of the motion
segmentation stream. Therefore, employing an unsupervised optical flow network will
alleviate the aforementioned problem.

In the last example shown in Figure 6.16 (d), we observe seven moving cars on the
same lane as the ego-vehicle and a moving bus as well as a moving car on the opposite
lane. It can be seen that the SMSnet model only partially segments four out of the eight
moving cars in the same lane, while also partially segmenting the moving bus and the
car on the opposite lane. However, our SMSnet++ model segments all the cars but
misclassifies three out of the seven distantly moving cars on the same lane as static. While
it accurately segments the bus on the opposite lane as moving, it only partially classifies
the pixels on the car behind the bus as moving. Observing the optical flow map, we see
that the distant objects are not captured in the scene which causes the motion segmentation
network to misclassify distant moving cars as static. Comparing the semantic segmentation
output of the SMSnet++ model with SMSnet, we observe a significant improvement in
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the granularity of the segmentation for object classes such as vegetation, pole and sign.
Nevertheless, we remark that this dataset is extremely challenging and the results that we
presented in this chapter is the first method that has been benchmarked thus far.

6.4.6 Generalization Evaluations

In this section, we demonstrate the generalization ability and the platform independence
of our proposed SMSnet++ architecture in comparison to the previous state-of-the-art
CNN-MCA [237] and our SMSnet architectures. We trained each of these networks on
the Cityscapes-Motion dataset and evaluated them on the images that we collected in
Freiburg using a ZED stereo camera. Note that the Cityscapes dataset was collected with
an automotive grade large baseline stereo camera, while we employed a consumer grade
stereo camera for collecting the images that we evaluate on in this section. The images
that we collected consists of challenging perceptual conditions such as low-lighting, glare,
shadows and motion blur, which make semantic motion segmentation more challenging.
Qualitative semantic motion segmentation results from this experiment are presented in
Figure 6.17, where the first two rows show a comparison of the segmentation output
from SMSnet++ with CNN-MCA as the baseline and the subsequent two rows show the
comparison of the output from our SMSnet++ architecture with the SMSnet architecture
as the baseline.

Figure 6.17 (a) shows a scene with a moving car in the adjacent lane and static cars
that are parked along the sidewalk. Although the CNN-MCA model accurately detects
the moving car, it also segments parts of the static cars that are parked along the road
as moving. Additionally, due to glare from the sun, it misclassifies pixels on buildings
as sign and segments the entire sky as a building. It also incorrectly classifies sections
of the road near the vanishing point as sidewalk and it does not detect the sidewalk that
the cars are parked on in the left side of the image. Whereas, our SMSnet++ model
accurately segments the scene and classifies the moving objects precisely, even in the
presence of glare from the sun. The second example shown in Figure 6.17 (b) shows a
similar scene in which there is one moving car on the same lane as the ego-vehicle and
there are two moving cars approaching from the opposite direction, with parked cars along
the sidewalk on either sides of the road. Analyzing the output of the CNN-MCA model, we
observe that it reasonably segments the car ahead of the ego-vehicle as moving, however,
it misclassifies the parked car along the right side of the road as moving. Interestingly, it
can be observed that the model classifies the two moving cars that are approaching from
the opposite direction as static and simultaneously classifies the entire lane that the cars
are traversing on as sidewalk. Our hypothesis is that as a consequence of classifying the
two moving cars as static, it incorrectly classifies the lane that they are traversing on as
sidewalk. Conversely, as a consequence of classifying the the adjacent lane as a sidewalk,
it incorrectly classifies the moving cars as static. However, the segmentation output of
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our SMSnet++ model does not show these incorrect classifications, rather it accurately
distinguishes between the static and moving objects in the scene.

In Figure 6.17 (c), we observe a scene with a moving car ahead of the ego-vehicle on
the same lane and another moving car approaching on the adjacent lane. The output of
the SMSnet model shown as the baseline, segments most of the car on the adjacent lane
as moving, however, it misclassifies pixels along the edge of the image where the car
is exiting the frame as static. Additionally, it incorrectly classifies the car ahead of the
ego-vehicle as static. Whereas, our SMSnet++ model accurately assigns the pixels to the
static and moving object categories. Comparing the semantic segmentation output of both
models, we observe that due to the glare from the sun, the SMSnet model misclassifies
most of the pixels near the vanishing point of the road and also misclassifies objects on
the section of the sidewalk on the right side of the image that is brightly lit by sunlight.
However, our SMSnet++ model leverages semantic information from the previous view
using our temporal warping layer to more accurately segment these areas that are over
exposed due to the sunlight. The improvement in the semantic segmentation output of
SMSnet++ can be observed in precise segmentation of the object boundaries as well as in
the segmentation of thin pole-like structures.

The final example shown in Figure 6.17 (d) depicts a scene where there is a moving car
as well as a motorbike ahead of the ego-vehicle and another moving car is approaching
on the opposite side in the adjacent lane. The output of the SMSnet model demonstrates
accurate segmentation of the car and most pixels belonging to the motorbike ahead of the
ego-vehicle as moving. However, as the car approaching on the opposite side is partly
occluded due to a bollard on the traffic island, the section of the car on one side of the
bollard is incorrectly classified as static, while the other section is incorrectly classified as
motorbike. Observing the output of our SMSnet++ model, we see that both the cars and the
motorbike are accurately predicted as moving and more interestingly, both sections of car
on the either side of the bollard as predicted as moving. This can be attributed to the large
effective receptive field of the SMSnet++ architecture that effectively enables the network
to incorporate more context information into the final prediction. The improvement in the
semantic segmentation of the SMSnet++ model is more evident in the area on the left side
of the image, where the distinction between fence and sidewalk is accurately predicted.
In addition, we can see that our SMSnet++ model accurately segments the bollard as a
sign and a pole. However, the SMSnet model misclassifies the bollard as a person and
a motorbike. Overall, we observe that our SMSnet++ model trained on the Cityscapes-
Motion dataset performs substantially better in newer environments than the previous
state-of-the-art CNN-MCA model and the SMSnet architecture. Our SMSnet++ model
accurately segments moving objects according to their semantic classes and demonstrates
negligible false positives as well as exceptional generalization of the learned kernels.
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6.5 Related Work

In this chapter, we addressed the problem of joint semantic motion segmentation using
convolutional neural network architectures. The networks that we introduced enables a
robot to simultaneously predict both the semantic object category and motion status of
each pixel in an image, more accurately than employing individual specialized models for
each task. Moreover, as robots require information from both tasks simultaneously in order
to plan future actions, a single coherent model is more efficient for deployment. Semantic
segmentation and motion segmentation are two fundamental problems in scene understand-
ing that each have substantial amount of prior work in their areas. However, there are only
a handful of techniques that have focused on tackling them in a joint framework with the
aim of exploiting semantic representations to improve motion segmentation. In Section 4.5
of Chapter 4, we presented a thorough review of the related work in semantic scene seg-
mentation. In this section, we first describe the most relevant work in motion segmentation
as well as the closely related task of video segmentation, followed by methods that address
the problem of semantic motion segmentation jointly.

There are numerous approaches that have been proposed for segmenting moving objects
from stationary camera images [252, 253, 254]. Vidal et al. [252] propose a classical
approach that minimizes the reprojection error subject to all multibody epipolar con-
straints for segmenting dynamic scenes containing multiple rigidly moving objects. Sapag-
nolo et al. [253] introduce an approach for foreground moving object segmentation that
combines background subtraction with temporal image analysis. While, Gao et al. [254]
propose a method that combines the Kirsch operator with optical flow for moving object
detection. However, these approaches fail in degenerate cases and they cannot be directly
applied to moving camera images as the movement causes a dual motion appearance which
consists of the background motion and the object motion.

In general, methods that detect motion from freely moving cameras partition the image
into coherent regions with homogenous motion. This process splits the image into back-
ground and moving clusters. These methods can be categorized into optical flow based
and tracking based approaches. Optical flow based techniques [255, 256] check if the
motion speed as well as direction of a region is consistent with its radially surrounding
pattern and then classifies it as a moving object if the motion of the region deviates from
this pattern. Namdev et al. [257] propose an approach that combines optical flow and
geometric cues to generate dense segmentation using a graph-based clustering algorithm.
The approach further demonstrates how both these cues complement each other to segment
moving objects that have difficult degenerate motions. In a similar work, Lenz et al. [258]
introduce a class independent method for object detection that uses stereo images as
well as optical flow information and demonstrate superior performance in the presence
of unknown objects in traffic scenarios where appearance-based object detectors often
fail. Wedel et al. [259] propose an energy minimization approach to detect and segment
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independently moving objects using scene flow and stereo images. Experiments that
were performed in challenging scenarios show that their approach accurately localizes
independently moving objects where traditional background subtraction techniques fail.
Kao et al. [260] derive a geometric model that relates 2D motion to a 3D motion field
relative to the camera, based on estimated depth and motion of vanishing points in the
scene. Spectral clustering is then applied on the recovered 3D motion field to obtain the
moving object segmentation. Although qualitative evaluations have been shown on the
KITTI benchmark, no quantitative comparisons were reported. The major disadvantage of
these methods is that they are prone to occlusion, noise in the optical flow map and edge
effects due to optical flow misalignments with true object boundaries.

Tracking based techniques [234, 251, 261, 262] on the other hand, aim to detect and
localize target objects in successive frames. Tracking of objects yields movement trajec-
tories and by estimating the ego-motion of the camera, objects can be segmented from
the background motion. Romero-Cano et al. [263] propose a technique that estimates the
likelihood of pixel motion from the fusion of dense optical flow with depth information and
temporal consistency is incorporated by tracking the moving objects across consecutive
images. Lin et al. [264] propose a motion segmentation framework that combines 3D
geometric constrains with high-level spatio-temporal features learned from consecutive
stereo images. Tourani et al. [265] propose an approach in which first motion models are
generated and merged using trajectory clustering into different motion affine subspaces.
Moving object proposals generated from the prior model then yield a sparse collection of
points on the dynamic object. Drayer et al. [262] introduce a weakly supervised motion
segmentation technique that first extracts temporally consistent object tubes based on an
off-the-shelf detector, followed by building a spatio-temporal graph by connecting the
detections to segment objects. Ochs et al. [230] cluster long term point trajectories for
temporally consistent moving object segmentation. A disadvantage of these approaches is
that they typically have long processing pipelines resulting in high computation times and
coarse segmentations.

Several approaches have extensively explored the use of convolutional neural networks
for motion segmentation [235, 236]. Fragkiadaki et al. [236] propose an approach that
first generates region proposals using multiple segmentations on optical flow and static
boundaries, following which a moving objectness detector rejects proposals on static
backgrounds and then ranks spatio-temporal segments by mapping clustered trajectories to
pixel tubes. Tokmakov et al. [235] introduce an encoder-decoder architecture that takes
the optical flow as input to first learn a coarse representation of the motion features which
are then iteratively upsampled and refined to yield the full resolution motion segmentation.
Perazzi et al. [266] formulates the motion segmentation as a guided instance segmentation
problem, while combining offline and online training on static images to perform video
object segmentation. Similarly, Caelles et al. [267] propose a video object segmentation
network that is first pre-trained on generic datasets for the task of foreground object
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segmentation and then fine-tuned on the first frame of the test sequence while processing
each frame independently. Cheng et al. [268] propose a unified architecture consisting of
an optical flow learning stream and a semantic segmentation stream. Features from both
these streams are propagated bidirectionally at the high-level to improve both segmentation
and optical flow generation. Jain et al. [269] propose a similar two-stream architecture
that fuses motion and appearance features for video object segmentation. Subsequently,
Siam et al. [250] propose another similar architecture that performs object detection in
addition to motion segmentation in a joint model. Most of these approaches are oblivious
to object categories and generate coarse object boundary segmentations. Moreover, they
have been solely benchmarked on video segmentation datasets that only have one moving
object in each frame. Whereas, our proposed networks are capable of segmenting multiple
moving and static objects while accounting for their semantic object category.

Recent methods have also explored estimating semantic object labels and motion labels
jointly [232, 233, 237, 270]. Reddy et al. [232] propose an approach that generates motion
likelihoods based on depth and optical flow estimations, while combining them with
semantic and geometric constraints within a dense conditional random field. However, the
approach has limited generalization ability as it primarily relies on handcrafted features.
Chen et al. [270] introduce a method that detects object-level motion from a moving
camera using two consecutive image frames and provides 2D bounding boxes as the
output. They design a robust context-aware motion descriptor that considers moving
speed, as well as the direction of objects and combines them with an object classifier. The
descriptor measures the inconsistency between local optical flow histograms of objects and
their surroundings, giving a measure of the state of motion. More recently, a multi-step
framework was proposed [233], in which sparse image features from two consecutive stereo
image pairs are first extracted and matched, followed by classifying the matched feature
points using RANSAC into inliers caused by the camera and outliers caused by moving
objects. Subsequently, the outliers are then clustered in a U-disparity map which provides
the motion information of objects and a dense CRF is then used to merge the motion
information with the semantic segmentation provided by a FCN. Another closely related
work was proposed by Haque et al. [237] in which a three stage pipeline is employed.
Their approach integrates optical flow as a constraint with semantic features into a dilated
convolutional neural network and achieves state-of-the-art performance for joint semantic
motion segmentation on the KITTI dataset.

One of the major drawbacks of these approaches is the substantially large interference
time, which ranges from a few seconds to even minutes, thereby making them unusable
for robotic applications that require near real-time performance such as autonomous driv-
ing. More importantly, these approaches only focus on jointly learning both semantic
segmentation and motion segmentation in single framework but they do not simultaneously
exploit the semantic cues to improve motion segmentation and vice versa. In contrast
to these techniques, in this chapter, we presented the novel SMSnet architecture that
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combines learned multiscale semantic representations with optical flow field features for
joint semantic motion segmentation. Our model compensates for the flow induced by
the ego-motion of the camera and is several orders faster than existing techniques. Addi-
tionally, our improved SMSnet++ architecture also improves the semantic segmentation
performance using a representational warping technique and further improves the motion
segmentation by incorporating adaptive fusion as well as a multistage refinement strategy
for high-resolution motion segmentation.

6.6 Conclusions

In this chapter, we addressed the problem of semantic motion segmentation using con-
volutional neural network architectures that take two consecutive images as input and
learns to predict both the semantic object class label and motion status of each pixel in
an image. Our proposed SMSnet architecture first learns coarse representations of optical
flow field features while compensating for the flow induced due to the ego-motion of the
camera and simultaneously learns multiscale semantic representations in a parallel stream.
Subsequently, the network combines the learned semantic features with the flow field
features and further learns discriminative deep representations while refining the predic-
tions to yield the pixel-wise semantic motion labels. The fusion of semantic features with
learned optical flow field features boosts the performance of segmenting moving objects,
especially in cluttered and challenging scenes with multiple moving objects of different
semantic categories in the scene. Furthermore, we presented the SMSnet++ architecture
that achieves deeper synergy between semantics, motion and appearance by incorporating
a representational warping technique to improve the temporal consistency of semantic
segmentation, while adaptively fusing semantic information with flow field features to
improve motion segmentation. Rather than using the learned optical flow directly to warp
semantic feature maps, the temporal warping layer transforms the ego-flow suppressed
optical flow to an edge-enhanced representation, which further improves the semantic
segmentation performance. Concurrently, the adaptive fusion of semantic and optical flow
field features discards over-segmentation or parts of semantic objects that are static in
the resulting motion segmentation. The proposed SMSnet++ architecture additionally
integrates our multistage refinement strategy in both the semantic stream and the motion
stream to yield a high resolution segmentation output that accurately captures the object
boundaries. Our proposed semantic motion segmentation frameworks are modular and
can be easily be adapted with other semantic segmentation or optical flow generation
architectures.

We extended three standard semantic segmentation benchmark datasets with motion
annotations and made them publicly available to encourage future research in this domain.
These large datasets are the first-of-its-kind and enable training of deep convolutional
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neural networks for joint semantic motion segmentation. We validated the effectiveness of
our joint model through extensive experiments on both semantic segmentation as well as
motion segmentation tasks and showed that it outperforms individual specialized models.
We presented exhaustive quantitative results on the Cityscapes-Motion, KITTI-Motion and
ApolloScape-Motion datasets that demonstrate that both our architectures set the new state-
of-the-art on these benchmarks and run in an online fashion. We presented comprehensive
ablation studies that detail our architectural design choices and also presented extensive
qualitative results in autonomous driving scenarios. Furthermore, we presented qualitative
evaluations on real-world driving data from Freiburg that contain challenging perceptual
conditions and demonstrated that our models generalize effectively to new environments.



Chapter 7

Geometrically Consistent Semantic
Visual Localization

Semantic understanding and localization are fundamental key en-
ablers of robot autonomy that have for the most part been tackled
as disjoint problems. While deep learning has enabled recent break-
throughs across a wide spectrum of scene understanding tasks, its
applicability to state estimation tasks has been limited due to the di-
rect formulation that renders it incapable of encoding scene-specific
constrains. In this chapter, we propose two multitask convolutional
neural network architectures coupled with a novel Geometric Con-
sistency loss function that utilizes auxiliary learning to leverage rel-
ative pose information during training, thereby constraining the
search space to obtain consistent pose estimates. We introduce the
VLocNet architecture that incorporates hard parameter sharing to
enable inter-task learning while regressing the 6-DoF global pose
and the relative odometry estimate from consecutive monocular im-
ages. We also propose the novel VLocNet++ architecture that ex-
ploits complex interdependencies between learning semantics, re-
gressing 6-DoF global pose and odometry, for the mutual benefit of
each of these tasks. Our network aggregates motion-specific tem-
poral information and fuses semantic features into the localization
stream based on region activations. Extensive experiments on the
Microsoft 7-Scenes and DeepLoc datasets demonstrate that our net-
works set the new state-of-the-art.

7.1 Introduction

Thus far in this thesis, we have addressed several critical scene understanding challenges
in the context of robot perception. The techniques that we have introduced enable a
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Figure 7.1: Output of our multitask VLocNet++ model that simultaneously estimates the 6-DoF
global pose pt, semantics of the scene Mt and the 6-DoF odometry estimate pt–1,t from consecutive
monocular images (It–1, It) as input. Results are shown for the testing seq-2 from the DeepLoc
dataset. VLocNet++ yields accurate pose estimates by leveraging semantic and geometric knowl-
edge from the environment during training and inference. Additionally, the multitask network
improves learning of semantics by aggregating context from the previous timestep.

robot that is tasked with navigating in dynamic outdoor environments or complex indoor
environments to reliably understand the various elements of its surroundings even in
adverse perceptual conditions. In this chapter, we advocate that by utilizing this information
about the scene, a robot can accurately estimate its position in the environment. Moreover,
visual localization can benefit from this understanding as both these tasks share complex
interdependencies that can be exploited for their mutual benefit. Therefore, our goal in this
chapter is to enable an autonomous robot to accurately localize itself in the environment,
understand its surroundings and precisely estimate its ego-motion in a single coherent
framework, while exploiting the synergies between these diverse yet vital tasks that are
precursors to action execution or planning.

Visual localization is a fundamental transdisciplinary problem and a crucial enabler
for numerous robotics as well as computer vision applications, including autonomous
navigation, Simultaneous Localization and Mapping (SLAM), Structure-from-Motion
(SfM) and Augmented Reality (AR). More importantly, it plays a vital role when robots
lose track of their location, or what is commonly known as the kidnapped robot problem.
In order for robots to be safely deployed in the wild, their localization system should
be robust to frequent changes in the environment; whether environmental changes such
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as illumination and seasonal appearance, dynamic changes such as moving vehicles
and pedestrians, or structural changes such as renovated buildings. Visual localization
techniques can be broadly classified into two categories: topological and metric methods.
Topological localization provides coarse estimates of the position, usually by dividing the
map into a discretized set of locations and employing image retrieval techniques [271, 272,
273]. While this approach is well suited for large environments, the resulting location
accuracy is bounded by the granularity of the discrete set. Metric localization approaches
on the other hand, provide a 6-DoF metric estimate of the pose within the environment.
Currently, local feature-based approaches that utilize SfM information achieve state-of-the-
art performance [274, 275]. However, a critical drawback of these methods is the decrease
in speed and increase in complexity of finding feature correspondences as the size of the
environment grows. Moreover, most approaches require a minimum number of matches to
be able to produce a pose estimate. This in turn causes pose estimation failures when there
is large viewpoint changes, motion blur, occlusions or textureless environments.

Inspired by the outstanding performance of Convolutional Neural Networks (CNNs) in
a variety of tasks in various domains and with the goal of eliminating manual engineering
of algorithms for feature selection, CNN architectures that directly regress the 6-DoF
metric pose have recently been explored [276, 277, 278]. However, despite their ability
to handle challenging perceptual conditions and effectively manage large environments,
they are still unable to match the performance of state-of-the-art local feature-based
localization methods [274, 275]. This can be attributed to their inability to internally
model the 3D structural constraints of the environment while learning from a single
monocular image. As a solution to this problem, we propose a principled approach to
embed geometric knowledge into the pose regression model by simultaneously learning
to estimate visual odometry as an auxiliary task. We then leverage the complementary
relative motion information from odometry to constrict the search space while training
the global localization model using our Geometric Consistency loss function which is
a result of joint work with Noha Radwan [56]. However, this problem is non-trivial as
we need to first determine how to structure the architecture to ensure the learning of
this inter-task correlation and secondly, how to jointly optimize the unified model since
different task-specific networks have different attributes and different convergence rates.

We address the aforementioned challenges and propose our VLocNet architecture
consisting of a global pose regression stream and a Siamese-type relative pose estimation
stream. Our network based on the residual learning framework, takes two consecutive
monocular images as input and jointly regresses the 6-DoF global pose as well as the
6-DoF relative pose between the images. We incorporate a hard parameter sharing scheme
to learn inter-task correlations within the network and present a multitask joint optimization
strategy for learning shared features across the different task streams. More importantly, we
devise the new Geometric Consistency loss [56] for global pose regression that incorporates
the relative motion information during training and enforces the predicted poses to be
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geometrically consistent with respect to the true motion model. By jointly learning both
tasks, our approach is robust to environmental aliasing by utilizing previous pose and
relative motion information, thereby combining the advantages of both local feature and
deep learning-based localization methods.

Inspired by how humans often describe their location to one another with respect to
reference landmarks in the scene and giving their position relative to it, we further explore
encoding semantic knowledge into the pose regression model in our proposed VLocNet++
architecture. We now formulate this problem from a multitask learning (MTL) perspective
with the goal of learning more accurate localization and semantic segmentation models by
leveraging the predicted ego-motion. This problem is even more challenging as it involves
simultaneously learning cross-domain tasks that perform pixel-wise classification and
regression with different units and scales. However, this joint formulation enables inter-
task learning which improves both generalization capabilities and alleviates the problem
of requiring vast amounts of labeled training data, which is especially hard to obtain in the
robotics domain. Moreover, as robots are equipped with limited resources, a joint model is
more efficient for deployment and enables online inference on a consumer grade GPU.

Our motivation for jointly estimating semantics is based on the premise that it can instill
structural cues about the environment into the pose regression network and implicitly pull
the attention towards more informative regions in the scene. Correspondingly, location-
specific information from the localization task can help improve learning of semantics.
A popular paradigm employed for semantics-aware localization is to extract predefined
features, emphasize on stable features [279] or combine them with local features [280].
Although these handcrafted solutions have demonstrated considerable reliability, their
performance suffers substantially when the predefined structures are occluded or not visible
in the scene. Therefore, in order to alleviate this problem, we propose a weighted fusion
layer to integrate relevant semantic features into the global pose regression stream not only
based on the semantic object category, but also the activations in the region.

Predicting consistent semantics is a critical prerequisite for semantic visual localization.
Inspired by early cognitive studies in humans showing the importance of learning self-
motion for acquiring basic perceptual skills [281], we utilize a novel self-supervised
semantic context aggregation technique (joint work with Noha Radwan [34]) leveraging
the predicted relative motion from the odometry stream of our network. Using pixel-
wise depth predictions from a CNN [243] and differential warping, we fuse intermediate
network representations from the previous timestep into the current frame using our
proposed weighted fusion layer. This enables our semantic segmentation network to
aggregate more scene-level context, thereby improving the performance and leading to
faster convergence. Additionally, in order to efficiently utilize the learned motion-specific
features in the global pose regression stream from the previous timestep, we also employ
the weighting technique to aggregate motion-specific temporal information.

To the best of our knowledge, there is no publicly available localization or pose estima-
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tion dataset with pixel-level semantic groundtruth labels tagged with 6-DoF camera poses
and containing multiple loops. Therefore, in order to facilitate training of multitask deep
learning models for semantic visual localization and odometry estimation, we introduce the
new DeepLoc dataset [34] that was gathered using our Obelix robot platform and consists
of ten loops amounting a total of 3910 RGB-D images with pixel-level semantic and 6-DoF
pose groundtruth labels. The dataset contains repetitive, translucent and reflective surfaces,
weakly textured regions and low-lighted scenes with shadows, thereby making it extremely
challenging for benchmarking a variety of tasks. We evaluate our proposed VlocNet and
VLocNet++ architectures on the challenging indoor Microsoft 7-Scenes benchmark and
our outdoor DeepLoc dataset on each of the diverse tasks. Extensive empirical evaluations
demonstrate our VLocNet architecture is the first deep learning-based localization method
to perform on par with local feature-based techniques while outperforming existing deep
learning-based approaches. Furthermore, our proposed VLocNet++ architecture sets the
new state-of-the-art outperforming both local feature-based and CNN-based techniques
while simultaneously performing multiple tasks and exhibiting substantial robustness in
challenging scenarios. The work that we present in this chapter is the first attempt to show
that a joint multitask model can precisely and efficiently outperform its task-specific coun-
terparts for global pose regression, semantic segmentation and visual odometry estimation.

In summary, the primary contributions that we make in this chapter are as follows:
• A new residual convolutional neural network architecture for 6-DoF global pose

regression.
• A new residual Siamese-type convolutional neural network architecture for 6-DoF

odometry estimation.
• The novel VLocNet architecture with a joint optimization strategy for simultaneously

regressing the global pose and visual odometry. Our approach presents an efficient,
and scalable alternative to learning task specific models.
• The novel VLocNet++ architecture for jointly learning semantics, visual localization

and odometry from consecutive monocular images.
• A novel weighted fusion layer for element-wise fusion of feature maps based on

region activations to exploit inter/intra-task dependencies.
• A first-of-a-kind urban outdoor localization dataset [34] consisting of multiple loops

with pixel-level semantic labels and 6-DoF camera poses.
• Comprehensive quantitative and qualitative comparisons of our task specific net-

works as well as our joint multitask network against various CNN-based approaches
as well as state-of-the-art local feature-based techniques on benchmark datasets.

Additionally, we also detail the following contributions which are an outcome of joint
work with Noha Radwan [34, 56]:
• The Geometric Consistency loss function [56] that incorporates the relative motion

information during training, thus enabling the network to predict pose estimates that
are consistent with the true motion model.
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• A self-supervised context aggregation technique [34] based on differential warping
that improves the semantic segmentation performance and reduces the training time.

The remainder of this chapter is organized as follows. In Section 7.2, we first detail our
Geometric Consistency loss function, followed by the topologies of our proposed VLocNet
and VLocNet++ architectures. We then describe the methodology that we employed for
collecting and annotating our DeepLoc dataset in Section 7.3. In Section 7.4, we present
extensive experimental evaluations, detailed ablation studies and insightful qualitative
results. Subsequently, we discuss the related work in Section 7.5 and conclude the chapter
in Section 7.6.

7.2 Technical Approach

In this section, we first introduce our Geometric Consistency loss function [56] for global
pose regression that constricts the search space while training by leveraging the relative
motion between two consecutive frames. We then describe our VLocNet architecture for
regressing global poses and simultaneously learning to regress relative motion between
two camera frames using only pairs of RGB images. Subsequently, we detail our multitask
VLocNet++ architecture for jointly estimating the global pose, odometry and semantic
segmentation from consecutive monocular images. While the multitask networks presented
in this chapter focus on joint learning of the aforementioned tasks, each of the task-specific
models can be deployed independently during test-time.

7.2.1 The Geometric Consistency Loss Function

Learning both translational and rotational pose components with the same loss function is
inherently challenging due to the difference in scale and units between both the quantities.
Equations 7.1 and 7.2 describe the loss function for regressing the translational and
rotational components in the Euclidean space in which we assume that the quaternion
output of the network has been normalized a priori for ease of notation.

Lx (f (θ | It)) := ‖xt – x̂t‖γ (7.1)

Lq (f (θ | It)) := ‖qt – q̂t‖γ , (7.2)

where θ is the parameters of the network, f (θ | It) denotes the predicted output of the
network for image It, xt ∈ R3 and qt ∈ R4 denote the groundtruth translation and rotation
components of the pose, x̂t and q̂t denote their predicted counterparts and γ refers to the
Lγ-norm. In this chapter, we use the L2 Euclidean norm. Recent work [282] has shown
that the performance of a model trained to jointly regress the position and orientation
components of the pose, outperforms two separate models trained for regressing each
quantity. Therefore, as the loss function is required to learn both the position and orientation
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components simultaneously, a weight regularizer β is used to balance each of the loss
terms. We represent this loss function as

Leucβ (f (θ | It)) := Lx(f (θ | It)) + βLq(f (θ | It)). (7.3)

Although initial work [276, 277, 283] has shown that by minimizing this function, the
network is able to learn a valid pose regression model, it suffers from the drawback of
having to manually tune the hyperparameter β for each new scene in order to achieve
reasonable results. To counteract this problem, we use two learnable weightings to
replace the β term. As these weightings are learned, their values get updated during the
optimization process and consequently do not require manual tuning. The resulting loss
function is represented as

Leuc(f (θ | It)) := Lx(f (θ | It)) exp(–ŝx) + ŝx (7.4)

+ Lq(f (θ | It)) exp(–ŝq) + ŝq,

where ŝx and ŝq are the two learnable weighting variables for the translation and rotational
components. Although this formulation overcomes the problem of having to manually
select a β value for each scene, it does not ensure that the estimated poses are consistent
with the previous motion.

As a solution to this problem, we utilize our novel Geometric Consistency loss func-
tion [56] that incorporates previous motion information, thereby yielding globally consis-
tent pose estimates. We introduce an additional geometric pose constraint between pairs of
observations that bootstraps the loss function by penalizing pose predictions that contradict
the relative motion. More precisely, in addition to the loss function shown in Eq. (7.4), we
add another loss term to constrain the current pose prediction by minimizing the relative
motion error between the groundtruth and the estimated motion from the auxiliary odome-
try stream. We useRx(f (θ | It)) andRq(f (θ | It)) to denote the relative motion between the
previous predicted pose p̂t–1 and the pose of the current image It as

Rx(f (θ | It)) := x̂t – x̂t–1 (7.5)

Rq(f (θ | It)) := q̂–1
t–1q̂t. (7.6)

The components from Equations 7.5 and 7.6 compute the relative motion in terms of
the network’s predictions. By utilizing the predictions of the network from the previous
timestep along with the current timestep, the relative motion relative motion loss term
Lrel (f (θ | It)) can be computed as a weighted summation of the translational and rotational
errors which minimizes the variance between the predicted poses. The corresponding loss
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function is formulated as

Lxrel(f (θ | It)) := ‖xt–1,t –Rx(f (θ | It))‖γ (7.7)

Lqrel(f (θ | It)) := ‖qt–1,t –Rq(f (θ | It))‖γ (7.8)

Lrel (f (θ | It)) = Lxrel (f (θ | It)) exp(–ŝxrel) + ŝxrel (7.9)

+ Lqrel (f (θ | It)) exp(–ŝqrel) + ŝqrel

where Lxrel computes the difference between the ground-truth relative translational motion
and its predicted counterpart, while Lqrel computes a similar difference for the rotational
component of the pose. We combine both the relative motion loss term with the loss func-
tion from Eq. (7.4) to yield the proposed Geometric Consistency loss, thereby minimizing

Lgeo(f (θ | It)) :=
(
Lx(f (θ | It)) + Lxrel(f (θ | It))

)
exp(–ŝx) + ŝx (7.10)

+
(
Lq(f (θ | It)) + Lqrel(f (θ | It))

)
exp(–ŝq) + ŝq.

By minimizing the aforementioned Geometric Consistency loss function [56], our
network learns a model that is geometrically consistent with respect to the motion. We
hypothesize that the resulting trained model is more robust to perceptual aliasing within
the environment by utilizing this relative motion in the loss function.

7.2.2 VLocNet Architecture

Our proposed VLocNet architecture consists of three network streams; a global pose
regression stream and a Siamese-type double-stream for odometry estimation. An overview
of the topology is shown in Figure 7.2. Given a pair of consecutive monocular images
(It–1, It), our network predicts both the global pose pt = (xt, qt) and the relative pose
pt–1,t =

(
xt–1,t, qt–1,t

)
between the input frames, where x ∈ R3 denotes the translation and

q ∈ R4 denotes the rotation in quaternion representation. For ease of notation, we assume
that the quaternion outputs of the network have been normalized a priori. The input to
the Siamese streams are the images (It–1, It), while the input to the global pose regression
stream is It.

Unlike conventional Siamese architectures, we do not share features across the two
temporal streams, instead we share features across the global pose regression stream and
the Siamese stream that takes the image It as input, upto a certain network depth. As our
images do not encompass any spatially centered structure, sharing features across these
streams is a viable solution to facilitate auxiliary learning and joint optimization of the
task specific network streams. We employ our Geometric Consistency loss function [56]
that enforces global consistency among the predicted poses by utilizing the relative pose
estimates while training. In the remainder of this section, we detail the constituting
components of our VLocNet architecture.
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Figure 7.2: Topology of our VLocNet architecture for 6-DoF visual localization and odometry
estimation. Our network takes two consecutive monocular images (It–1, It) as input and regresses
the 6-DoF global pose pt and 6-DoF odometry pt–1,t simultaneously. The global pose and odometry
streams incorporate hard parameter sharing and utilize our Geometric Consistency loss function
that is robust to environmental aliasing.

7.2.2.1 Geometrically Consistent Pose Regression

In this section, we describe the topology of our global pose regression stream, which given
an input image It and the predicted pose from the previous timestep p̂t–1, estimates the
7-dimensional pose p̂t. Similar to previous works [276, 277], p is defined relative to an
arbitrary global reference frame. We chose the quaternion representation for orientation
due to the ease of mapping them back to rotations, since we can easily normalize its four
dimensional values to unit length to yield a valid quaternion.

To estimate the global pose, we build upon the ResNet-50 [27] architecture with the
following reconfigurations. The topology of our network is similar to ResNet-50 truncated
before the last average pooling layer. The architecture is comprised of five residual blocks
with multiple residual units, where each unit has a bottleneck architecture consisting of
three convolutional layers in the following order: 1× 1 convolution, 3× 3 convolution,
1× 1 convolution. Each of the convolutions is followed by batch normalization, scale and
Rectified Linear Unit (ReLU). We modify the standard residual block structure by replacing
ReLUs with Exponential Linear Units (ELUs) [66]. ELUs help in reducing the bias shift
in the neurons, in addition to avoiding the vanishing gradient and yield faster convergence.
We replace the last average pooling layer with global average pooling and subsequently
add three inner-product layers, namely fc1, fc2 and fc3. The first inner-product layer fc1
has 1024 outputs and the following two inner-product layers have corresponding output
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dimensions of 3 and 4 for regressing the translation x and rotation q respectively. Our
Geometric Consistency loss [56], detailed in Section 7.2.1 ensures that the predicted
pose is geometrically consistent with respect to the true motion. Therefore, we feed the
predicted pose from the previous timestep to the network so that it can better learn about
spatial relations of the environment. In order to effectively train the network, we use the
groundtruth pose from the previous timestep during training and the predicted pose from
the model during evaluation. We do not incorporate recurrent units into our network as our
aim in this work is to localize only using consecutive monocular images and not rely on
long-term temporal features. We first feed the previous predicted pose to an inner-product
layer fc4 of dimension D and reshape the outputs to H × W × C, which corresponds
in shape to the output of the last residual unit before the downsampling stage. Both the
tensors are then concatenated and fed to the subsequent residual unit. In total, there are four
downsampling stages in our network and we experiment with fusing at each of these stages
in Section 7.4.5.2. Note that we denote the aforementioned architecture as VLocNetSTL in
our experiments.

7.2.2.2 Learning Visual Odometry

Our proposed architecture for relative pose estimation takes a pair of consecutive monocular
images (It–1, It) as input and yields an estimate of ego-motion pt–1,t =

(
xt–1,t, qt–1,t

)
. We

employ a dual-stream architecture in which each of the streams is identically similar in
structure and is based on the ResNet-50 model. We concatenate the feature maps of the
individual streams before the last downsampling stage at the end of Res4 and convolve
them through the last residual block, followed by an inner-product layer and two regressors
for estimating the pose components. During training, we optimize the following loss
function by minimizing the Euclidean loss between the groundtruth and the predicted
relative poses during training as

Lvo (f (θ | It–1, It)) := Lx (f (θ | It–1, It)) exp(–ŝxvo) + ŝxvo (7.11)

+ Lq (f (θ | It–1, It)) exp(–ŝqvo) + ŝqvo

Lx (f (θ | It–1, It)) := ‖xt–1,t – x̂t–1,t‖2

Lq (f (θ | It–1, It)) := ‖qt–1,t – q̂t–1,t‖2 ,

where Lx and Lq refers to the translational and rotational components respectively. We
also employ learnable weighting parameters to balance the scale between the translational
and rotational components in the loss term. As shown in Figure 7.2, the dual odometry
streams have an architecture similar to the global pose regression network. In order to
enable the inductive transfer of information between both networks, we share parameters
between the odometry stream taking the current image It and the global pose regression
network as detailed in Section 7.2.2.3.
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7.2.2.3 Deep Auxiliary Learning

The idea of jointly learning both the global pose and visual odometry streams from the
inherent similarities across both tasks in the feature space. More importantly, sharing
features across both networks can enable a competitive and collaborative action as each
network updates its own weights during backpropagation in an attempt to minimize the
distance to the groundtruth pose. This symbiotic action introduces additional regularization
while training, thereby alleviating the problem of overfitting. Contrary to the approaches
that use a two stream shared Siamese network for visual odometry estimation, we do
not share weights between the two temporal streams, rather we share weights between
the stream that takes the image It from the current timestep as input and the global pose
regression stream. By learning separate discriminative features in each timestep before
learning the correlation between them, the visual odometry network is able to effectively
generalize to challenging corner cases containing motion blur and perceptual aliasing.
The global pose regression network also benefits from this feature sharing, as the shared
weights are pulled more towards areas of the image from which the relative motion can be
easily estimated. This has a tremendous impact on the accuracy of the predicted global pose
in multiple scenarios. Consider the following situation in which the network attempts to
estimate the pose of an image in a textureless structurally symmetric environment. Due to
the presence of perceptual aliasing, the accuracy of the predicted pose can be substantially
lower, while compared to the predictions obtained in an environment with abundant
structural variations. However, by jointly training both networks using our Geometric
Consistency loss function [56] coupled with hard parameter sharing between both network
streams, the global pose regression network encodes relative motion information from
the odometry stream, thereby yielding more accurate pose estimates. We denote the
aforementioned architecture as VLocNet++MTL in our experiments.

While sharing features across multiple networks can be inferred as a form of regular-
ization, it is not clear a priori for how many layers should we maintain a shared stream.
Sharing only a few initial layers does not have any additive benefit to either network, as
early layers learn very generic feature representations. On the other hand, maintaining a
shared stream too deep into the network can negatively impact the performance of both
tasks, since the features learned at the stages towards the end are more task specific and
have lesser feature location information. In this work, we studied the impact of sharing
features across both network streams and experimented with varying the amount of feature
sharing. We detail the results from this experiment in Section 7.4.5.3. Another critical
aspect of auxiliary learning relates to the strategy to be employed for joint optimization.
We detail our optimization procedure in Section 7.4.2. Finally, during inference, the joint
model can be deployed coherently or each task-specific network individually, since the
relative pose estimates are only used in the loss function and there is no inter-network
dependency in terms of concatenating or adding features from either task-specific streams.
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Figure 7.3: Schematic representation of our proposed VLocNet++ architecture. The network takes
two consecutive monocular images (It, It–1) as input and simultaneously predicts the 6-DoF global
pose pt, 6-DoF odometry pt–1,t and semantics Mt of the scene. The variable zl

t–1 denotes the feature
maps of layer l from the previous timestep and Dt denotes a predicted depth map that is used for
representational warping in the semantic stream.

7.2.3 VLocNet++ Architecture

In this section, we describe our proposed VLocNet++ architecture that introduces a novel
strategy for encoding semantic and geometric constraints into the pose regression network.
Namely, by incorporating information from the previous timesteps to leverage motion-
specific information and by adaptively fusing semantic features based on the activations
in the region using our proposed weighted fusion scheme. As being able to predict
robust semantics is an essential prerequisite, we present a new self-supervised warping
technique [34] for aggregating scene-level context in the semantic segmentation model.
Our architecture, depicted in Figure 7.3 consists of four CNN streams; a global pose
regression stream, a semantic segmentation stream and a Siamese-type double stream for
visual odometry estimation.

Given a pair of consecutive monocular images It–1, It ∈ Rρ, the pose regression stream
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predicts the global pose pt = (xt, qt) for image It, where x ∈ R3 denotes the translation
and q ∈ R4 denotes the rotation in quaternion representation, while the semantic stream
predicts a pixel-wise segmentation mask Mt mapping each pixel u to one of the C semantic
classes, and the odometry stream predicts the relative motion pt–1,t =

(
xt–1,t, qt–1,t

)
between

consecutive input frames. While, zl denotes the feature maps from layer l of a particular
stream. In order to estimate the odometry in VLocNet++, we employ our proposed Siamese-
type double stream architecture that we described in Section 7.2.2.2. However, we use the
full pre-activation residual units [72] as opposed to the standard residual units [27] that
we used in VLocNet. In the remainder of this section, we describe rest of the constituting
components of our network architecture and our multitask learning scheme.

7.2.3.1 Geometrically Consistent Pose Regression

Our model for regressing the global pose is built upon our VLocNet architecture described
in Section 7.2.2.1. It has five residual blocks that downsample the feature maps by half at
each block, similar to the full pre-activation ResNet-50 architecture [72], as opposed to
the standard ResNet-50 architecture that we used in VLocNet. VLocNet++ also employs
Exponential Linear Units (ELUs) for the activation function and a global average pooling
layer is added after the fifth residual block. Subsequently, we add three inner-product
layers fc1, fc2 and fc3 with the number of output units as 1024, 3 and 4 respectively, where
fc2 and fc3 regress the translational x and rotational q components of the pose. Unlike
VLocNet which fuses the previous predicted pose directly using inner-product layers, we
adopt a more methodological approach in VLocNet++ to provide the network with this
prior. Fusing the previous prediction directly, inhibits the network from being able to
correlate the critical motion-specific spatial relations with that of the previous timestep
as the network does not retain these features thereafter. In this work, we leverage the
network’s intermediate representation z5a

t–1 from the last downsampling stage (Res5a) of the
previous timestep using our proposed weighted fusion layer that we detail in Section 7.2.3.3.
Our fusion scheme learns the optimal element-wise weighting for this fusion, and when it
is trained end-to-end with the Geometric Consistency loss function, it enables aggregation
of motion-specific features across the temporal dimension. We denote the aforementioned
architecture as VLocNet++STL in our experiments.

As opposed to naively minimizing the Euclidean loss between the predicted poses and
the groundtruth, we employ our Geometric Consistency loss function [56] described in
Section 7.2.1, which in addition to minimizing the Euclidean loss, adds another loss term to
constrain the current pose prediction by minimizing the relative motion error between the
groundtruth and the estimated motion from the odometry stream. This enables our network
to learn a model that is geometrically consistent with respect to the motion. Moreover, by
employing a mechanism to aggregate motion-specific features temporally, we enable the
Geometric Consistency loss function to efficiently leverage this information.
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7.2.3.2 Incorporating Semantics

Our model for learning consistent semantics is comprised of three components: a base
segmentation architecture (green and purple blocks in Figure 7.3), our proposed self-
supervised warping layer (orange blocks) and weighted fusion layer (red blocks). In
the remainder of this section, we first describe the single-task semantic segmentation
architecture and then detail our proposed self-supervised warping scheme [34]. The
weighted fusion layer is described in the section that follows.

Network Architecture: For the single-task base model, we employ two variants based
on our AdapNet and AdapNet++ architectures that we presented in Chapter 4. We denote
these two variants as VLocNet++(base) and VLocNet++MTL respectively. The networks
follow the general encoder-decoder design principle where the encoder learns highly
discriminative semantic features and yields an output 16-times downsampled with respect
to the input dimensions. While the decoder upsamples the output of the encoder back to
the input image resolution using deconvolution layers and skip refinement stages. Similar
to the global pose regression stream, the encoder in the VLocNet++(base) model is built
upon the ResNet-50 [27] architecture and the encoder in the VLocNet++MTL is built upon
the full pre-activation ResNet-50 model [72]. Both architectures include skip connections
and batch normalization layers that enable training of deep architectures by alleviating
the vanishing gradient problem. We also incorporate our multiscale residual units that
have dilated convolutions parallel to the 3× 3 convolutions for aggregating features from
different spatial scales, while concurrently maintaining fast inference times. In addition,
the encoder of VLocNet++MTL includes our efficient atrous spatial pyramid pooling that
captures long-range context and has a large effective receptive field. We refer the reader to
Chapter 4 for more details regarding the encoder-decoder topologies.

We represent the training set for semantic segmentation as T = {(In, Mn) | n = 1, . . . , N},
where In = {ur | r = 1, . . . , ρ} denotes the input frame and the corresponding groundtruth
mask Mn = {mn

r | r = 1, . . . , ρ}, where mn
r ∈ {1, . . . , C} is the set of semantic classes. Let

θ be the network parameters consisting of weights and biases, and sj(ur, θ) as the score
assigned for labeling pixel ur with label j. We obtain the probabilities P = (p1, . . . , pC) for
all the semantic classes using the softmax function σ(.) as

pj(ur, θ | In) = σ
(
sj (ur, θ)

)
=

exp
(
sj (ur, θ)

)∑C
k exp (sk (ur, θ))

. (7.12)

The optimal network parameters are then estimated by minimizing the cross-entropy
loss function as

Lseg(T , θ) = –
N∑

n=1

ρ∑
r=1

C∑
j=1

δmn
r ,j log pj(ur, θ | In), (7.13)

for (In, Mn) ∈ T , where δmn
r ,j is the Kronecker delta.
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Self-Supervised Warping: We employ a temporal warping technique [34] to aggregate
scene-level context in order to enable our segmentation network to learn consistent se-
mantics. In this method, we first leverage the estimated relative pose from the odometry
stream to warp semantic feature maps from the previous timestep into the current view
using a depth map obtained from the DispNet [243] network and the warping concept
from multi-view geometry. We then fuse the warped feature maps with the corresponding
semantic representations from the current timestep using our proposed weighted fusion
layer described in the following Section 7.2.3.3. We introduce the warping and fusion
layers (red and orange blocks in Figure 7.3) at Res4f and Res5c to warp the corresponding
feature maps z4f

t–1 and z5c
t–1 from the previous timestep into the current view and fuse them

with the representations z4f
t and z5c

t of the current frame respectively. We experimentally
identify these intermediate network stages to perform the semantic warping and report the
results from these experiments in Section 7.4.5.4.

We employ bilinear interpolation as a sampling mechanism for warping to facilitate
computation of gradients that are necessary for back-propagation. This sampling mech-
anism is fully differentiable and it does not require any pre-computation for training. In
order to enable our self-supervised warping technique to be computationally more efficient,
we only compute the warping grid once at the input image resolution and we then use
average pooling to downsample the grid to the required scales.

We formulate warping of a pixel ur into its warped representation ûr as mentioned in
the work of Radwan et al. [34] using the relative pose pt–1,t obtained from the odometry
stream, the estimated depth map Dt of the current image It, and the projection function π
as

ûr := π
(
T
(
pt–1,t

)
π–1 (ur, Dt (ur))

)
. (7.14)

The function T
(
pt–1,t

)
denotes the homogenous transformation matrix of pt–1,t, π denotes

the projection function transforming from camera to image coordinates as π : R3 7→ R2

and π–1 denotes the transformation from image to camera coordinates using the depth
Dt (ur) at the pixel ur. Our proposed temporal warping scheme enables our network to
fuse feature maps from multiple views and resolutions thereby making our semantic
segmentation model invariant to camera angle deviations, object scale and frame-level
distortions. Moreover, it also implicitly introduces feature augmentation during training
which facilitates the faster convergence of our network.

7.2.3.3 Deep Multitask Learning

Our main motivation for jointly learning the semantics, regressing the 6-DoF global pose
and odometry is twofold: to enable inductive transfer by leveraging domain specific
information and to enable the global pose regression network to encode geometric and
semantic knowledge of the environment while training. In order to achieve this goal, we
structure our multitask learning network to be interdependent on the outputs as well as
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the intermediate representations of the task-specific network streams. More concretely,
as shown in Figure 7.3, we employ hard parameter sharing until the end of the Res3
block between the global pose regression stream and the odometry stream that both
receive the image It from the current timestep. This enables the network to exploit
similarities among these pose regression tasks and influences the shared weights of global
pose regression network to integrate motion-specific features due to inductive bias from
odometry estimation, in addition to effectuating implicit attention on regions that are more
informative for relative motion estimation. We quantify the influence of sharing features
between the global pose regression stream and the odometry stream for different network
depths in Section 7.4.5.3.

A common practice employed for combining features from multiple layers or multiple
networks is to perform concatenation of the tensors or element-wise addition/multiplication.
Although this might be effective when both tensors contain sufficient relevant information,
it often accumulates irrelevant features and its effectiveness highly depends upon the inter-
mediate stages of the network where the fusion is performed. One of the key components of
our multitask learning network is the proposed weighted fusion layer which learns optimal
element-wise weightings for the fusion based on the activations in the region, followed
by a non-linear feature pooling over the weighted tensors. As opposed to spatial pooling,
pooling in the feature space is a form of coordinate-dependent transformation which yields
the same number of filters as the input tensor. While, suppressing or enhancing the features
using learned weightings according to the region activations enables our fusion approach
to discard irrelevant information.

For ease of notation, we formulate the mathematical representation of the weighted
fusion layer with respect to two activation maps za and zb from layers a and b, while
extending the notation to multiple activation maps is straightforward. The activation maps
can be obtained from different layers in the same network or from layers of different
task-specific networks. The output of the weighted fusion layer can be formulated as

ẑfuse = max
(
W ∗

(
(wa � za)⊕

(
wb � zb)) + b, 0

)
, (7.15)

where wa and wb are learned weightings having the same dimensions as za and zb; W
and b are the parameters of the non-linear feature pooling; with � and ⊕ representing
per-channel scalar multiplication and concatenation across the channels; and ∗ representing
the convolution operation. In other words, each channel of the activation map za is
first weighted and linearly combined with the corresponding weighted channels of the
activation map zb. Non-linear feature pooling is then applied which can be easily realized
with existing layers in the form of a 1× 1 convolution with a non-linearity such as ReLUs.
As shown in Figure 7.3, we incorporate the weighted fusion layers (red blocks) at Res4c
to fuse semantic features into the global pose regression stream. In addition, we also
employ the proposed weighted fusion layer to fuse warped semantic feature maps from
the previous timestep into the segmentation stream at the end of Res3 and Res4 blocks. In
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Section 7.4.4, we demonstrate that over simple concatenation, our weighted fusion layer
learns what features are relevant for both inter-task and intra-task fusion.

In order to jointly learn all the tasks in our network, we minimize the following combined
loss function.

Lmtl := Lloc exp(–ŝloc) + ŝloc + Lvo exp(–ŝvo) + ŝvo (7.16)

+ Lseg exp(–ŝseg) + ŝseg,

where Lloc is the global pose regression loss for which we use our Geometric Consis-
tency loss function [56] defined in Eq. (7.10); Lvo is the visual odometry loss function
from Eq. (7.11), and Lseg is the cross-entropy loss function for semantic segmentation
defined in Eq. (7.13). Due to the inherent nature of the diverse tasks at hand, each of the
associated task-specific loss terms has a different scale. If the task-specific losses were to
be naively combined, the task-specific network with the highest scale would dominate the
training and there would be little if no gain for any of the other tasks. To counteract this
problem, we use learnable scalar weights ŝloc, ŝvo, ŝseg to balance the scale of the loss terms.

7.3 DeepLoc Dataset

We introduce a large-scale urban outdoor localization dataset collected around the university
campus in Freiburg. The dataset was collected using our Obelix robot equipped with a
ZED stereo camera, an XSens IMU, a Trimble GPS Pathfinder Pro and several LiDARs.
Stereo image pairs and depth images were captured at a resolution of 1280× 720 pixels,
at a frame rate of 20 Hz. The dataset was collected in an area spanning 110 × 130 m
and contains multiple loops amounting to a total of ten sequences. Each sequence was
collected with a different driving pattern to increase the diversity of the captured data and
to have non-overlapping trajectories. The dataset was captured at different times of the
day, therefore the images contain varying lighting conditions, reflective glare from the sun,
orange dawn-sky and shadows, in addition to the motion-blur caused by the moving robot
platform. Moreover, the environment that the dataset was collected in, contains structures
such as buildings with similar facades, repetitive structures and translucent as well as
reflective buildings made of glass. This renders the dataset challenging for a number
of perception and localization tasks such as global localization, camera relocalization,
semantic segmentation, visual odometry and loop closure detection. Additionally, many
objects in the scene cause partial occlusion from different viewpoints which increases the
difficulty of the semantic segmentation task. Example images from the dataset are shown
in Figure 7.4.

In order to tag the images with 6-DoF camera poses, we used the sub-centimeter
accurate LiDAR-based SLAM system from Kümmerle et al. [45]. The resulting pose
labels are used as the groundtruth for training our deep networks. Furthermore, we
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(a) (b)

(c) (d)

Figure 7.4: Example images from our DeepLoc dataset [34] that show challenging scenarios for
global pose regression, visual odometry estimation and semantic segmentation. Several sections of
the traversed area contain buildings with (a) repetitive patterns, (b) very few distinctive features,
(c) structures made solely of glass and (d) large reflective glass surfaces as well as partially occluded
structures such as bikes attached to bike-stands.

manually annotated each image with pixel-level semantic groundtruth labels for ten object
categories: background, sky, road, sidewalk, grass, vegetation, building, poles & fences,
dynamic and other objects. To the best of our knowledge, this is the first publicly available
dataset containing images tagged with 6-DoF camera poses and pixel-level semantic
segmentation labels for an entire scene with multiple loops. We divide the dataset into
training and testing splits such that the training set consists of seven loops amounting to a
total of 2737 images, while the test set consists of three loops with a total of 1173 images.
We made the dataset publicly available at http://deeploc.cs.uni-freiburg.de and
we hope that it enables future research in multitask and multimodel learning.

7.4 Experimental Evaluation

In this section, we first describe the datasets that we benchmark on in Section 7.4.1, fol-
lowed by the training protocol that we employ in Section 7.4.2 and detailed comparisons
on the performance of our single-task models against state-of-the-art methods in each
corresponding task in Section 7.4.3. We then present comprehensive empirical evaluations
of multitask learning in Section 7.4.4 and extensive ablation studies on the various architec-

http://deeploc.cs.uni-freiburg.de
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tural configurations of our models in Section 7.4.5. Furthermore, we present visualizations
on the level of feature similarity in Section 7.4.6 as well as visualizations of the regression
activation maps in Section 7.4.7. These visualizations demonstrate the efficacy of our
approach and provide insights on the representations learned by our network. Finally, we
present qualitative evaluations of localization and semantic segmentation in Section 7.4.8.

We use the TensorFlow [159] deep learning library for the implementations and all
the experiments were carried out on a system with an Intel Xeon E5, 2.4 GHz and an
NVIDIA TITAN X GPU. While we quantify the localization performance primarily using
the median pose error metric, we also report the percentage of the predicted poses that
are below 5 cm and 5◦. We quantify the semantic segmentation performance using the
standard Jaccard Index which is commonly known as average intersection-over-union
(IoU) metric. It can be computed for each object class as IoU = TP/(TP + FP + FN),
where TP, FP and FN correspond to true positives, false positives and false negatives
respectively. We also report the mean intersection-over-union (mIoU) for the empirical
analysis. Additionally, a live demonstration of our proposed models is available at http:
//deeploc.cs.uni-freiburg.de.

7.4.1 Benchmark Datasets

Supervised learning techniques using CNNs require a large amount of training data with
groundtruth annotations which is laborious to acquire. This becomes even more critical
for jointly learning multiple diverse tasks which necessitate individual task-specific labels.
Although there are publicly available task-specific datasets for visual localization and
semantic segmentation, to the best of our knowledge there is a lack of a large enough
dataset that contains both semantic and localization groundtruth with multiple loops in the
same environment. To this end, in Section 7.3, we introduced the challenging DeepLoc
dataset containing RGB-D images tagged with 6-DoF poses and pixel-level semantic labels
of an outdoor urban environment. In addition to our new dataset, we also benchmark
the performance of our localization network (without joint semantics learning) on the
challenging Microsoft 7-Scenes dataset. We chose these datasets based on the criteria of
having diversity in scene structure and environment as well as the hardware with which
the images were captured.

Microsoft 7-Scenes dataset [284] is a widely used dataset for camera relocalization
and tracking. It contains RGB-D image sequences tagged with 6-DoF camera poses of 7
different indoor environments. The data was captured with a Kinect camera at a resolution
of 640× 480 pixels and groundtruth poses were generated using KinectFusion [284]. Each
of the sequences contains about 500 to 1000 frames. This dataset is very challenging
as it contains textureless surfaces, reflections, motion blur and perceptual aliasing due
to repeating structures. Figure 7.5 shows example images from the Microsoft 7-Scenes

http://deeploc.cs.uni-freiburg.de
http://deeploc.cs.uni-freiburg.de
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(a) Chess (b) Fire (c) Office

(d) Heads (e) Pumpkin (f) Redkitchen

(g) Stairs

Figure 7.5: Example images from the Microsoft 7-Scenes benchmark showing challenging scenar-
ios. The images exhibit significant motion blur (Chess and Heads), repetitive structures (Stairs),
highly reflective surfaces (Pumpkin, Redkitchen) and low-texture regions (Fire, Office).

dataset. The images are representative of the challenges encountered in each scene.
The images show scenarios that are challenging for global pose regression and visual
odometry estimation such as substantial blur due to camera motion (Figures 7.5 (a) and
(d)), perceptual aliasing due to repeating structures (Figure 7.5 (g)), textureless regions
(Figures 7.5 (b) and (c)) and highly reflective surfaces (Figures 7.5 (e) and (f)).

We do not perform any pose augmentations such as pose synthesis [283] and synthetic
view synthesis [285], as our initial experiments employing them did not demonstrate any
improvement in performance on the aforementioned datasets. However, we randomly
apply image augmentations on the semantic segmentation training data, similar to the
techniques that we presented in Section 4.4.2. This includes rotation, translation, scaling,
skewing, cropping, flipping, contrast and brightness modulation.
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7.4.2 Network Training

In order to train our network on different datasets, we rescale the images maintaining
the aspect ratio such that the shorter side is of length 256 pixels. We calculate the pixel-
level mean for each of the scenes in the datasets and subtract them with the input images
while training. We train our models from random crops of the image as it acts as a
good regularizer helping the network generalize better in comparison to the synthetic
augmentation techniques and while testing, we take the center crop of the images. We use
the Adam solver for optimization with β1 = 0.9, β2 = 0.999 and ε = 10–10. We employ a
multi-stage training procedure and first train task-specific models individually using an
initial learning rate of λ0 = 10–3 with a mini-batch size of 32 and a dropout probability
of 0.2. Subsequently, we initialize the five residual blocks of our tasks-specific networks
with weights from the ResNet-50 model pre-trained on the ImageNet dataset and the other
layers with Xavier initialization [108]. We then initialize the joint MTL architecture with
weights from the best performing single-task models and train with a lower learning rate
of λ0 = 10–4.

Training deep networks in an end-to-end fashion is still a challenging problem, especially
for tasks with limited amounts of training data. One approach to overcome this challenge
is to leverage transfer learning and initialize the network with pretrained weights from the
network trained on a larger dataset. However, the multitask network that we propose in
this chapter is the first approach to address such wide range of tasks, therefore existing
pretrained models cannot be leveraged to accelerate the training. In order to alleviate this
problem, we investigate different weight initializations as bootstrapping methods for our
training architecture. Results from this experiment are presented in Section 7.4.5.7.

In order to learn a unified model and to facilitate auxiliary learning, we employ different
optimization strategies that allow for efficient learning of shared features as well as task-
specific features, namely alternate training and joint training. In alternate training we use
a separate optimizer for each task and alternatively execute each task optimizer on the
task-specific loss function, thereby allowing synchronized transfer of information from
one task to the other. This instills a form of hierarchy into the tasks, as the odometry sub-
network improves the estimate of its relative poses, the global pose network in turn uses
this estimate to improve its prediction. It is often theorized that this enforces commonality
between the tasks. The disadvantage of this approach is that a bias in the parameters is
introduced by the task that is optimized the last. In joint training on the other hand, we add
each of the task-specific loss functions and use a single optimizer to train the sub-networks
at the same time. The advantage of this approach is that the tasks are trained in a way that
they maintain the individuality of their functions, but as each of our tasks is of different
units and scale, the task with the larger scale often dominates the training. We evaluate
the performance of our MTL model trained with different optimization strategies and
discussed the results in Section 7.4.5.8. We train the models for a maximum of 120,000
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Table 7.1: Median localization error for the task of 6-DoF visual localization on the Microsoft
7-Scenes dataset [34].

Scene LSTM-
Pose [277]

PoseNet2 [282] NNnet [286] VLocNetSTL

(Ours)
VLocNet++STL

(Ours)

Chess 0.24 m, 5.77◦ 0.13 m, 4.48◦ 0.13 m, 6.46◦ 0.036 m, 1.71◦ 0.023 m, 1.44◦

Fire 0.34 m, 8.99◦ 0.27 m, 11.3◦ 0.26 m, 12.72◦ 0.039 m, 5.34◦ 0.018 m, 1.39◦

Heads 0.21 m, 13.7◦ 0.17 m, 13.0◦ 0.14 m, 12.34◦ 0.046 m, 6.64◦ 0.016 m, 0.99◦

Office 0.30 m, 8.08◦ 0.19 m, 5.55◦ 0.21 m, 7.35◦ 0.039 m, 1.95◦ 0.024 m, 1.14◦

Pumpkin 0.33 m, 7.00◦ 0.26 m, 4.75◦ 0.24 m, 6.35◦ 0.037 m, 2.28◦ 0.024 m, 1.45◦

RedKitchen 0.37 m, 8.83◦ 0.23 m, 5.35◦ 0.24 m, 8.03◦ 0.039 m, 2.20◦ 0.025 m, 2.27◦

Stairs 0.40 m, 13.7◦ 0.35 m, 12.4◦ 0.27 m, 11.82◦ 0.097 m, 6.48◦ 0.021 m, 1.08◦

Average 0.31 m, 9.85◦ 0.23 m, 8.12◦ 0.21 m, 9.30◦ 0.048 m, 3.80◦ 0.022 m, 1.39◦

iterations on a single NVIDIA Titan X GPU which approximately took 23 hours for the
model to converge.

7.4.3 Comparison with the State-of-the-Art

In this section, we present empirical evaluations comparing our single-task models
VLocNetSTL and VLocNet++STL with other CNN-based methods for the task of visual
localization and odometry estimation. We use the original train and test splits provided by
each of the datasets. As we employ our semantic segmentation models from Chapter 4
for the single-task architecture, we report the improvement due to multitask learning in
VLocNet++ in Section 7.4.4.3. Note that the results presented in this section are not the
highest performance achieved by our models, the improvement achieved from multitask
learning is presented in Section 7.4.4.

7.4.3.1 Evaluation of Visual Localization

As a primary evaluation criteria, we first report results in comparison to deep learning-based
methods on the publicly available Microsoft 7-Scenes (indoor) and DeepLoc (outdoor)
datasets. Comparisons with local-feature based techniques are presented with the evaluation
of multitask learning in Section 7.4.4.1. We analyze the performance in terms of the
median translational and rotational errors for each of the scenes in the datasets. Table 7.1
shows the results for the Microsoft 7-Scenes dataset. Our proposed VLocNetSTL model
outperforms all the deep learning-based approaches in each of the scenes while achieving
a median localization error of 0.048 m and 3.80◦ which amounts to an improvement of
77.14% in translation and 59.14% in rotational component of the pose. Moreover, our
proposed single-task VLocNet++STL further outperforms VLocNetSTL by achieving an
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Table 7.2: Median localization error for the task of 6-DoF visual localization on the DeepLoc
dataset [34].

PoseNet [276] Bayesian
PoseNet [287]

SVS-
Pose [285]

VLocNetSTL

(Ours)
VLocNet++STL

(Ours)

2.42 m, 3.66◦ 2.24 m, 4.31◦ 1.61 m, 3.52◦ 0.68 m, 3.43◦ 0.37 m, 1.93◦

overall improvement of 54.17% in translational and 63.42% in rotational components
of the pose. This substantial improvement can be attributed to the effective fusion of
the previous pose information using our proposed weighted fusion layer. The largest
improvement was obtained in the perceptually hardest scenes that contain textureless
regions and reflective surfaces such as the Fire and Pumpkin scenes shown in Figures 7.5 (b)
and (e) respectively. A significant improvement of 92.22% in the translational and 90.86%
in rotational components of the pose over the previous state-of-the-art NNnet model can
also be seen for the Stairs scene that contains repetitive structures as shown in Figure 7.5 (g).
Furthermore, in addition to the comparisons with state-of-the-art models that we presented
in this section, comprehensive comparisons with all the deep learning-based networks
that have been benchmarked on the Microsoft 7-Scenes dataset thus far are presented in
Table 7.5.

Table 7.2 shows the results on the outdoor DeepLoc dataset for which we obtain almost
half the localization error as the previous methods. Our proposed VLocNetSTL outperforms
the existing deep learning-based approaches by achieving a median localization error
of 0.68 m in translational and 3.43◦ in rotational components of the pose despite the
challenging scenarios in this dataset that include transparent and reflective glass structures
and substantial lighting changes. Furthermore, our VLocNet++STL achieves an improved
median localization error of 0.37 m and 1.93◦ in translational and rotational components
of the pose respectively. This amounts to an improvement of 77.02% in the translation
and 45.17% in rotation respectively over the previous state-of-the-art. This demonstrates
that our models perform equally well in outdoor environments where there is a significant
amount of perceptual aliasing and lighting changes as well as in indoor environments with
textureless and reflective surfaces.

7.4.3.2 Evaluation of Visual Odometry

We evaluate the performance of our single-task VlocNetSTL and VLocNet++STL for the task
of 6-DoF visual odometry estimation using the average translational and rotational error
relative to the sequence length on each of the datasets. Table 7.3 shows the quantitative
results on the Microsoft 7-Scenes dataset. Our proposed VLocNetSTL model achieves an
average error of 1.51% in translation and 1.45deg/m in orientation components which
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Table 7.3: Average translational and rotational error for the task of 6DoF visual odometry on the
Microsoft 7-Scenes dataset [%, deg/m] [34].

Scene LBO [288] DeepVO [289] cnnBspp [290] VLocNetSTL

(Ours)
VLocNet++STL

(Ours)

Chess 1.69, 1.13 2.10, 1.15 1.38, 1.12 1.14, 0.75 0.99, 0.66
Fire 3.56, 1.42 5.08, 1.56 2.08, 1.76 1.81, 1.92 0.99, 0.78
Heads 14.43, 2.39 13.91, 2.44 3.89, 2.70 1.82, 2.28 0.58, 1.59
Office 3.12, 1.92 4.49, 1.74 1.98, 1.52 1.71, 1.09 1.32, 1.01
Pumpkin 3.12, 1.60 3.91, 1.61 1.29, 1.62 1.26, 1.11 1.16, 0.98
RedKitchen 3.71, 1.47 3.98, 1.50 1.53, 1.62 1.46, 1.28 1.26, 1.52
Stairs 3.64, 2.62 5.99, 1.66 2.34, 1.86 1.28, 1.17 1.55, 1.10

Average 4.75, 1.79 5.64, 1.67 2.07, 1.74 1.51, 1.45 1.12, 1.09

Table 7.4: Average translational and rotational error for the task of 6DoF visual odometry on the
DeepLoc dataset [%, deg/m] [34].

LBO [288] DeepVO [289] cnnBspp [290] VLocNetSTL (Ours) VLocNet++STL (Ours)

0.41, 0.053 0.33, 0.052 0.35, 0.049 0.15, 0.040 0.12, 0.024

amounts to a reduction in the error by 0.56% and 16.67% respectively, over the state-of-the-
art cnnBspp [290] model. Furthermore, our proposed VLocNet++STL model outperforms
existing approaches as well as the VLocNetSTL by achieving a translational error of 1.12%
and rotational error of 1.09deg/m. The largest improvement over VLocNetSTL and other
end-to-end networks can be observed for the Fire and Heads scenes that have substantial
textureless regions and motion-blur. Nevertheless, the high representational ability of the
learned features using our dual-stream Siamese architecture enable our models to achieve
state-of-the-art performance even in these challenging scenarios.

Table 7.4 shows the average translational and rotational error as a function of sequence
length on the outdoor DeepLoc dataset. Accurately estimating the ego-motion outdoors is
a rather challenging task due to the more apparent motion parallax and dynamic lighting
changes that could occur between the consecutive input frames due to factors such as
glare from the sun and shadows. Despite these challenges, both our VLocNetSTL and
VLocNet++STL outperform the other end-to-end networks and achieve state-of-the-art
performance. Our proposed VLocNetSTL achieves an average translation error of 0.15%
and a rotational error of 0.040deg/m, while our VLocNet++STL further improves upon the
performance yielding a translational error of 0.12% and a rotational error of 0.024 deg /m,
thereby demonstrating the efficacy of our model for estimating the ego-motion in challeng-
ing outdoor environments.
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7.4.4 Evaluation of Multitask Learning in VLocNet++

In this section, we present comprehensive empirical evaluations of our proposed multitask
VLocNetMTL and VLocNet++MTL for each of the visual localization, odometry estimation
and semantic segmentation tasks. We compare the performance for visual localization with
both state-of-the-art local-feature based techniques as well as deep learning-based models.
As no semantic segmentation labels are available in the Microsoft 7-Scenes dataset, we
only train the multitask model for visual localization and odometry estimation, while we
train the models for all the three tasks on the DeepLoc dataset.

7.4.4.1 Evaluation of Visual Localization

We benchmark the performance of our multitask VLocNetMTL and VLocNet++MTL models
on the Microsoft 7-Scenes and the DeepLoc datasets by comparing against local feature-
based pipelines, learning-based techniques as well as our single-task VLocNetSTL and
VLocNet++STL models. Following the standard benchmarking metrics, we report the
median localization error and present our main results on the Microsoft 7-Scenes dataset
in comparison to the state-of-the-art local feature-based techniques in Table 7.6 and in
comparison to other deep learning-based networks in Table 7.5. It can be seen that the
proposed VLocNetMTL that achieves a median localization error of 0.04 m and 3.09◦ is the
first deep learning-based model to perform on a par with state-of-the-art local feature-based
pipelines. Utilizing our Geometric Consistency loss function and jointly regressing the
relative motion in addition to the global pose enables our network to effectively exploit
motion-specific information thereby yielding accurate pose estimates. Moreover, we
observe that VLocNet++MTL achieves a median localization error of 0.013 m and 0.77◦

which amounts to a significant improvement of 67.50% in the translational and 75.08%
in the rotational components of the pose over VLocNetMTL. This can be attributed to the
fusion of feature maps from the previous timestep using our proposed weighted fusion
layer that enables the Geometric Consistency loss function to effectively incorporate
motion-specific temporal features. This enables our network to achieve sub-centimeter
and sub-degree accuracy for the majority of the scenes. Furthermore, unlike local feature-
based approaches, our proposed VLocNet++ is able to accurately estimate the global pose
in environments containing repetitive structures such as the Stairs scene and the scenes
containing textureless or reflective surfaces such as Fire, Pumpkin and RedKitchen.

Figure 7.6 further shows the median localization error and the percentage of poses for
which the error is below 5 cm and 5◦ in comparison to the state-of-the-art on the Microsoft
7-Scenes benchmark. While our proposed VLocNetMTL is the first deep learning-based
approach to yield an accuracy comparable to local feature-based pipelines achieving higher
performance than SCoRe Forests [284] in terms of number of images with pose error
below 5 cm and 5◦, its performance is still lower than DSAC2 [293] that was proposed
by Brachmann et al. which is also the current state-of-the-art. However, our proposed
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Figure 7.6: Benchmarking 6DoF localization on the Microsoft 7-Scenes dataset [34]. We compare
against state-of-the-art approaches that utilize RGB or RGB-D data and even with approaches that
depend on a 3D model, VLocNet++ only uses RGB images. We report the median localization
errors (left) and percentage of test images with a pose error below 5 cm and 5◦ (right).

Table 7.7: Summary of benchmarking the median localization error of VLocNet++MTL in compari-
son with the state-of-the-art on Microsoft 7-Scenes dataset [34].

Method Input Median
Trans Error

Median
Rot Error

Pose Acc Run-time

DSAC2 [293] w/ 3D 0.04 m 1.04◦ 76.1% 200 ms
VLocNet++MTL (Ours) Monocular 0.013 m 0.77◦ 99.2% 79 ms

VLocNet++STL model achieves a localization accuracy of 96.4%, improving over the
accuracy of DSAC2 [293] by 20.3% and by over an order of magnitude compared to the
other deep learning approaches [282, 286]. Moreover, by employing our proposed multitask
framework, VLocNet++MTL further improves on the performance and achieves an accuracy
of 99.2%, thereby setting the new state-of-the-art on this benchmark. It is important to note
that other than our proposed VLocNet and VLocNet++, the competing methods shown
in Figure 7.6 rely on a 3D scene model and hence require RGB-D data, whereas our
model only utilizes monocular images. DSAC [292] and its variant DSAC2 [293] that
utilize only RGB images demonstrate a lower performance as shown in Table 7.6. The
improvement achieved by VLocNet++ demonstrates that the apt combination of employing
the Geometric Consistency loss and the weighted fusion layer enables the network to
efficiently leverage the motion-specific features in order to learn a geometrically consistent
model.

Furthermore, Table 7.7 summarizes the comparison between our VLocNet++MTL and
DSAC2 [293] in terms of the median localization error and the percentage of the poses
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Table 7.8: Benchmarking the median localization error of our multitask models on the DeepLoc
dataset [34].

PoseNet
[276]

Bay. PoseNet
[287]

SVS-Pose
[285]

VLocNetSTL

(Ours)
VLocNet++STL

(Ours)
VLocNetMTL

(Ours)
VLocNet++MTL

(Ours)

2.42m, 3.66◦ 2.24m, 4.31◦ 1.61m, 3.52◦ 0.68m, 3.43◦ 0.37m, 1.93◦ 0.47m, 2.38◦ 0.32m, 1.48◦

with localization error below 5 cm and 5◦ denoted by pose accuracy. It can be seen that
our proposed model exceeds the state-of-the-art by 67.5% in the translational and 25.9%
in the rotational components of the pose. Unlike DSAC2, our proposed approach does
not require a 3D model of the scene which facilitates ease of deployment, in addition
to occupying less storage space for the model. While achieving accurate pose estimates
is crucial for any localization approach, the run-time requirements and complexity of
deploying the models play an important role in its ease of deployment in the real-world on
various robotic systems. Our proposed VLocNet++MTL model only requires 79 ms for a
forward-pass on a single consumer grade GPU versus the 200 ms consumed by DSAC2
which makes VLocNet++ 60.5% faster. This renders our method well suited for real-time
deployment in an online manner, as well as in resource constrained platforms.

Table 7.8 shows the performance of our multitask VLocNetMTL and VLocNet++MTL on
the DeepLoc dataset. Although our proposed single-task models outperform the the other
deep learning networks by a large margin, our multitask VLocNetMTL further improves
upon the performance and achieves a median localization error of 0.47 m and 2.38◦ which
amounts to an improvement of 70.81% in translational and 32.39% in rotational compo-
nents of the pose while compared to the best performing SVS-Pose [285] network. Even
though perceptual aliasing is more apparent outdoors than indoors, this large improvement
demonstrates that our Geometric Consistency loss function is as effective at aggregating
motion-specific information outdoors as indoors. Furthermore, our VLocNet++MTL model
that simultaneously encodes geometric and semantic knowledge of the environment into
the pose regression network achieves a median localization error of 0.32 m and 1.48◦

thereby setting the new state-of-the-art on this benchmark. This amounts to an improve-
ment of 31.91% and 37.81% in translation and rotation respectively, over VLocNetMTL

which signifies that our proposed weighted fusion layer enables our network to aggregate
motion-specific temporal information as well as effectively encode semantic constraints to
learn a geometric and structure-aware pose regression model.

7.4.4.2 Evaluation of Visual Odometry

In this section, we evaluate the performance of our multitask models for the task of visual
odometry estimation and report the average translation and orientation error as a function
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of the trajectory length for each of the scenes in the datasets. Table 7.9 shows the results
on the Microsoft 7-Scenes benchmark where our proposed VLocNetMTL outperforms all
the other deep learning-based approaches and achieves an average error of 1.46% and
1.31deg/m in translation and orientation components respectively. This demonstrates that
by jointly learning to regress the relative motion along with the global pose benefits both
tasks and enables the joint model to outperform their single-task counterparts. Additionally,
our VLocNet++MTL further improves upon the performance and achieves an average error
of 1.08% in translation and 1.03deg/m in orientation, thereby outperforming each of the
single-task models and the other deep learning-based methods, while setting the state-of-
the-art on this dataset. Our model is able to better estimate the relative motion by sharing
representations with the global pose regression stream which enables it to learn temporally
invariant features which can be used to accurately estimate the relative motion between
the input frames, while being robust to motion blur, textureless regions and repetitive
structures in the scene.

We observe a similar trend from the experimental comparisons on the outdoor DeepLoc
dataset shown in Table 7.10, where both our multitask models outperform their single-
task counterparts as well the other deep learning-based networks. Our VLocNet++MTL

achieves state-of-the-art performance with an average error of 0.10% and 0.020deg/m for
the translation and orientation components, which is an improvement of 0.25% and 59.18%
respectively, over the best performing cnnBspp [290] network. An improvement of this
scale is especially hard to obtain in outdoor environments due to several factors such as
areas with very similar appearance as shown in Figure 7.4 (a), glass structures that cause
reflections as shown in Figure 7.4 (c) and variable lighting conditions between the consec-
utive input images. Despite these factors our proposed models yield reliable performance
in challenging outdoor environments demonstrating the efficacy of our multitask leaning
scheme.

7.4.4.3 Evaluation of Semantic Segmentation

We present comprehensive empirical evaluations for the task of semantic segmentation
using our proposed VLocNet++MTL model that is built upon the topology of our AdapNet++
architecture as well as the VLocNet++(base) variant that is built upon the topology of our
AdapNet architecture. We present results on the DeepLoc dataset and report the Intersection
over Union (IoU) score for each of the individual object categories as well as the mean
IoU. We benchmark the performance of our model against several state-of-the-art networks
including FCN-8s [24], SegNet [136], UpNet [48], ParseNet [168], DeepLab v2 [138] and
DeepLab v3 [132]. We also compare with the performance of AdapNet and AdapNet++
that we presented in Chapter 4. Results from this experiment are shown in Table 7.11.

Our proposed VLocNet++(base) model achieves a mIoU score of 80.44%, thereby
outperforming the other baseline models in the overall mIoU score as well as consistently
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Table 7.11: Comparison of the semantic segmentation performance of our multitask models against
state-of-the-art networks on the DeepLoc dataset. Our model VLocNet++(base) has a topology
built upon AdapNet, while our model VLocNet++MTL has a topology built upon AdapNet++.

Approach Sky Road Sidew Grass Veg Bldng Poles Dyn Other Mean
IoU

FCN-8s [24] 94.65 98.98 64.97 82.14 84.47 87.68 45.78 66.39 47.27 69.53
SegNet [136] 93.42 98.57 54.43 78.79 81.63 84.38 18.37 51.57 33.29 66.05
UpNet [48] 95.07 98.05 63.34 81.56 84.79 88.22 31.75 68.32 45.21 72.92
ParseNet [168] 92.85 98.94 62.87 81.61 82.74 86.28 27.35 65.44 45.12 71.47
DeepLab v2 [138] 93.39 98.66 76.81 84.64 88.54 93.07 20.72 66.84 52.70 67.54
DeepLab v3 [132] 93.51 98.80 77.63 85.78 88.62 93.56 24.66 67.75 53.86 76.02
AdapNet 94.65 98.98 64.97 82.14 84.48 87.68 45.78 66.40 47.27 78.59
AdapNet++ 96.38 99.09 80.99 89.91 92.25 95.03 48.80 73.11 61.72 81.92

VLocNet++(base) 95.84 98.99 80.85 88.15 91.28 94.72 45.79 69.83 58.59 80.44
VLocNet++MTL 96.77 99.19 83.65 90.38 92.92 95.10 48.93 75.76 64.02 82.96

for each of the individual class-wise IoU scores. However, VLocNet++(base) does not
exceed the performance of our AdapNet++ architecture. As we employ the topology of our
AdapNet architecture for the single-task topology of VLocNet++(base), the improvement
of 1.85% observed in comparison to AdapNet. This can be attributed to the self-supervised
representational warping scheme that we introduced as well as the inductive transfer that
occurs from the training signals of the localization network due to jointly training the
models in a MTL framework. Furthermore, our VLocNet++MTL model outperforms all the
other architectures as well as its single-task counterpart and sets the new state-of-the-art
on this benchmark by achieving a mIoU score of 82.96%. In addition, the self-supervised
warping scheme enables our VLocNet++MTL model to converge in 26, 000 iterations,
whereas the single-task model requires 120, 000 iterations to converge.

Inspecting the individual object class IoU scores of our VLocNet++(base) model in
comparison to AdapNet, we observe the largest improvement of 15.88% for the sidewalk
class, followed by an improvement of 11.32% for the other object class. The other object
class is one of the hardest to accurately segment in our dataset due to the diversity of object
contained in that category. A notable improvement of 7.06%, 6.8% and 6.01% can also
be observed for the building, vegetation, and grass categories. Furthermore, the largest
improvement in the performance of VLocNet++MTL over VLocNet++(base) was observed
for the dynamic object class where VLocNet++MTL achieves an improvement of 5.93%,
followed by an improvement of 5.43% for the other object class. The improvement in
object categories such as sidewalk, building, vegetation, and grass can be attributed to our
proposed self-supervised warping scheme that effectuates temporal coherence by warping
and fusing representations from the previous timestep into the current view. While the
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Table 7.12: Comparison of the median localization error of different VLocNet++ base architecture
topologies on the DeepLoc dataset [34].

Method Base Model Activation Median Error

M1 ResNet-18 ReLU 0.83 m, 5.96◦

M2 ResNet-34 ReLU 0.57 m, 4.04◦

M3 ResNet-50 ReLU 0.65 m, 2.87◦

M4 PA ResNet-50 ReLU 0.57 m, 2.44◦

improvement for the other object class can be primarily attributed to the fusion of learned
representations from the localization stream using our weighted fusion layer that facilitates
encoding location-specific information. This enables our network to learn a more accurate
disambiguation between the diverse set of objects that are categorized under the other
object class. The improvement in these object classes can also be seen in the extensive
qualitative semantic segmentation results presented in Section 7.4.8.2.

7.4.5 Ablation Study

In this section, we present comprehensive ablation studies investigating the various architec-
tural design choices that we made in our proposed VLocNet and VLocNet++ architectures
while rationalizing the decisions with empirical results. We first describe the base architec-
ture topology of our VLocNet model in Section 7.4.5.1 and subsequently investigate the
influence of the previous pose fusion in Section 7.4.5.2.

We then present experiments that describe our multitask learning design choices such as
analyzing the effect of hard parameter sharing in Section 7.4.5.3, influence of warping and
fusing the semantic features from the previous timestep at different stages of the network in
Section 7.4.5.4, influence of fusing semantic features into the localization stream at various
stages in Section 7.4.5.5, analyzing the influence of our proposed weighted fusion layer to
aggregate motion-specific features and encode semantic information into the localization
stream in Section 7.4.5.6, influence of initializing our multitask model with different
pre-trained weights in Section 7.4.5.7 and finally, evaluation of the various optimization
strategies in Section 7.4.5.8.

7.4.5.1 Detailed Study on the Base Architecture Topology

In Table 7.12, we present the localization performance on the DeepLoc dataset for the dif-
ferent variants of the base architecture that we experiment with. Models M1 to M3 employ
shallow to deeper residual architectures with the standard ReLU activation function. The
M3 model consisting of the ResNet-50 architecture [27] as the backbone, demonstrates an
improved performance compared to the shallower ResNet-34 and ResNet-18 architectures.



7.4. Experimental Evaluation 269

Table 7.13: Comparative analysis of different loss functions and loss weightings in the VLocNet++
architecture in terms of the median localization performance on the DeepLoc dataset [34].

Model Activation Loss Function Loss Weighting Median Error

PoseNet [276] ReLU Leuc β 0.44 m, 10.40◦

M4 ReLU Leuc β 0.57 m, 2.44◦

M41 ELU Leuc β 1.71 m, 2.14◦

M42 ELU Lgeo β 0.56 m, 2.06◦

M43 (VLocNet++STL) ELU Lgeo ŝx, ŝq 0.37 m, 1.93◦

Moreover, the full pre-activation ResNet-50 architecture [72] further increases the perfor-
mance as it reduces overfitting and improves the convergence of the network. Therefore,
we employ the M4 model as our base architecture in the remainder of this chapter.

Using the M4 architecture as the network backbone, we investigate the influence of
different activation functions, loss functions and loss weightings on the localization perfor-
mance. More specifically, we quantitatively analyze the performance improvements for
the following architectural configurations:

• M4: Full pre-activation ResNet-50 base architecture with ReLUs, Euclidean loss for
translation and rotation with loss weighting β = 1

• M41: Full pre-activation ResNet-50 base architecture with ELUs, Euclidean loss for
translation and rotation with loss weighting β = 1

• M42: Full pre-activation ResNet-50 base architecture with ELUs and previous pose
fusion using Lgeo loss with loss weighting β = 1

• M43: Full pre-activation ResNet-50 base architecture with ELUs and previous pose
fusion using Lgeo loss with learnable loss weightings ŝx, ŝq. This model corresponds
to our proposed single-task VLocNet++STL architecture.

Table 7.13 shows the median localization error of the aforementioned models on the
DeepLoc dataset. We also show the performance of the PoseNet [276] model for reference
as it was the one of the first end-to-end pose regression methods that was proposed. Our
base M4 model outperforms PoseNet significantly in the rotational component of the pose
by 76.54%, however it trails behind PoseNet by 22.81% in the translational component.
We replacing the ReLU activation function with ELU in the M41 model as they are
more robust to noisy data and further accelerate the training. However, this yields an
improvement of 12% in the rotational component of the pose at the cost of a reduction
in the accuracy of the translational component by factor of two. In the M42 model, we
employ our Geometric Consistency loss function which reduces both the translational and
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orientation errors. Furthermore, utilizing learnable loss weightings ŝx, ŝq in the M43 model
(VLocNet++STL), instead of the constant weighting β, yields a substantial improvement
of 37.09% and 20.90% in the translational and rotational components over our base M1
model and outperforms the PoseNet model. This validates our hypothesis that constricting
the search space with the relative pose information while training using our Geometric
Consistency loss function coupled with learnable loss weighting parameters enables the
network to learn a model that is more representative of the environment and thus improves
the localization performance.

7.4.5.2 Evaluation of Previous Pose Fusion

Fusing the previous predicted pose information is critical to enable the Geometric Con-
sistency loss function to effectively constrict the search space by leveraging the relative
motion while training. In order to identify the downsampling stage to fuse the previous pre-
dicted pose in the global pose regression stream, we evaluate the localization performance
by fusing this information a various stages in our VLocNet architecture. Figure 7.7 shows
the median localization error on the Microsoft 7-Scenes dataset while fusing the previous
predicted pose at Res3, Res4 and Res5 in our architecture. The results demonstrate that
fusing this information at earlier stages of the network results in an imbalance in the pose
error by either reduction in the translational error at the cost of increasing the rotational
error or vice versa. However, fusing the previous predicted pose at Res5, where the feature
maps are of dimensions 7× 7, yields the lowest localization error that is consistently lower
than fusing at earlier stages. We hypothesize that this occurs due to fact that the features
at the later stages are more mature and task-specific, which enables the network to easily
exploit this previous pose prediction information while training.

7.4.5.3 Evaluation of Hard Parameter Sharing

Sharing features across the global pose regression and odometry streams can enable a
competitive and collaborative action as each task-specific stream updates its own weights
during backpropagation in an attempt to minimize the distance to the groundtruth. This
symbiotic action introduces additional regularization while training, thereby alleviating
overfitting. While sharing features across multiple networks can be inferred as a form
of regularization, it is not clear apriori for how many layers should a shared stream be
maintained. Sharing only a few initial layers does not have any additive benefit to either
network, as early network layers often learn very generic feature representations. On the
other hand, maintaining a shared stream too deep into the network can negatively impact
the performance for the shared tasks, as the features learned towards the end are more
task-specific.

In this section, we investigate the impact of sharing features across the global pose
regression and visual odometry streams by experimenting with varying amounts of feature
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Figure 7.7: Comparison of median localization error on the Microsoft 7-Scenes dataset from fusing
previous predicted pose information at various stages in VLocNet architecture [56]. The results
consistently show that the highest localization accuracy is achieved by fusing the previous predicted
pose in the Res5 residual block of the network.
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Table 7.14: Comparison of the localization performance achieved by VLocNetMTL with varying
amounts of weight sharing between the global pose regression and odometry streams. Results are
shown on the Microsoft 7-Scenes dataset [56].

Scene Res2 Res3 Res4

Chess 0.04 m, 1.60◦ 0.03 m, 1.69◦ 0.05 m, 1.76◦

Fire 0.05 m, 4.40◦ 0.04 m, 4.86◦ 0.05 m, 4.59◦

Heads 0.05 m, 4.44◦ 0.05 m, 4.99◦ 0.06 m, 5.99◦

Office 0.04 m, 1.68◦ 0.03 m, 1.51◦ 0.04 m, 1.82◦

Pumpkin 0.05 m, 1.83◦ 0.04 m, 1.92◦ 0.04 m, 1.64◦

RedKitchen 0.04 m, 1.89◦ 0.03 m, 1.72◦ 0.04 m, 1.75◦

Stairs 0.10 m, 5.08◦ 0.07 m, 4.96◦ 0.09 m, 4.67◦

Average 0.06 m, 2.99◦ 0.04 m, 3.09◦ 0.05 m, 3.17◦

sharing. Table 7.14 shows the median localization error achieved by VLocNetMTL by
maintaining a shared stream up to the end of Res2, Res3 or Res4 blocks of the networks.
The localization performance is shown for each of the scenes in the Microsoft 7-Scenes
dataset. The results indicate that the lowest localization error is achieved by maintaining
a shared stream up to the Res3 block. This demonstrates that the representations learned
after the Res3 block are highly task-specific and maintaining a shared stream beyond Res3
negatively impacts both tasks. However, maintaining a shared stream until the end of
the Res2 block also negatively impacts the performance, as the representations learned
before the Res2 block are too generic to provide any benefit to either task. Whereas,
maintaining a shared stream until the end of the Res3 block results in an improvement of
12.5% in translational and 18.49% in rotational components of the pose in comparison
to the single-task VLocNetSTL model. We believe that these results further corroborate
the utility of jointly learning visual localization and odometry estimation in a multitask
learning framework.

7.4.5.4 Where to Warp Semantic Features?

In this section, we quantify the improvement in semantic segmentation due to our proposed
self-supervised warping scheme. We conducted experiments on the DeepLoc dataset
to determine the network stage at which fusion of warped feature maps from previous
timesteps is most beneficial. There are several aspects to this problem, primarily concerning
the incorporation of the warping scheme at the beginning of a residual block or the end of
the residual block, and secondly, to determine the different residual blocks to introduce
the warping in. We hypothesize that warping at the end of the residual block will be more
effective as the features are more discriminative than at the beginning where the features
are just fused with that of the previous block that are of different dimensions. Moreover, as
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Table 7.15: Improvement in the segmentation performance due to the fusion of warped feature
maps from the previous timestep in the VLocNet++MTL model. The Warping Layer denotes the
layer at which the feature maps from the previous timestep are warped and fused in the segmentation
stream. The results are shown on the DeepLoc dataset [34].

Warping Layer mIoU (%)

No warping 78.59

Res-3a 80.03
Res-3d 80.19

Res-2c, Res-3d 80.09
Res-3d, Res-5c 80.34
Res-4f, Res-5c 80.44

Res-3d, Res-4f, Res-5c 80.31

our encoder architecture has four downsampling stages, the warping can also be introduced
in multiple stages. In this case, we hypothesize that warping at multiple downsampling
stages will be more beneficial as it would enable the network to aggregate features of
different object scales from the previous timestep, thereby implicitly enforcing multiscale
temporal consistency.

Table 7.15 shows the mIoU score achieved by fusing warped feature maps from the previ-
ous timestep at different stages in the semantic segmentation stream of our VLocNet++MTL

architecture. In order to first determine whether the warping scheme should be introduced
at the beginning or the end of a residual block, we experimented with adding the self-
supervised warping layer at the Res3a unit and in another model at the Res3d unit. The
results shown in Table 7.15 corroborate our hypothesis that warping the feature maps
the end of the residual unit is more beneficial, as warping at Res-3d yields an increased
mIoU than at Res-3a. Subsequently, we experimented introducing the warping layers at
the end of the residual blocks at multiple downsampling stages, namely, at (Res2c, Res3d),
(Res3d, Res5c), (Res4f, Res5c) and at (Res3d, Res4f, Res5c). The results demonstrate
that warping at multiple downsampling stages only marginally increases the mIoU score
and introducing the warping at the later stages of the network where the features are
semantically more meaningful yields a larger improvement in the mIoU score. From the
results shown in Table 7.15, we observe that the model incorporating the warping at the
Res-4f and Res-5c residual blocks achieves an improvement of 1.85% over the model with
no warping, thereby demonstrating the efficacy of our proposed self-supervised warping
scheme in aggregating scene-level context.
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Table 7.16: Improvement in the localization performance of VLocNet++MTL due to the fusion of
semantic feature maps. The fusion layer denotes where the semantic feature maps are fused into
the localization stream. The results are shown on the DeepLoc dataset [34].

Fusion Layer Median Median
Translational Error Rotational Error

No fusion 0.37 m 1.93◦

Res4a 0.49 m 3.10◦

Res4c 0.32 m 1.48◦

Res4d 0.54 m 1.30◦

Res4e 0.46 m 1.95◦

Res4f 0.61 m 1.45◦

7.4.5.5 Where to Fuse Semantic Features?

In order to identify the network stage at which fusing semantic feature maps into the
localization stream is most beneficial, we performed experiments fusing the semantic
features at various residual units of the Res4 block of the localization stream. Although the
feature maps at the Res4 and Res5 blocks have the same dimension as the semantic feature
maps, the Res5 block has a substantially large amount of feature channels that would in
turn outweigh the rich semantic features. We do not consider fusing semantic features
at earlier stages of the network before the Res4 block, as the representations learned in
the early layers are overly generic and would not benefit from the fusion of high-level
semantic features. Therefore, we only experiment with fusing the semantic features at
different residual units of the Res4 block of the localization stream.

Results from this experiment on the DeepLoc dataset are shown in Table 7.16. We show
the performance in terms of the median localization error achieved by fusing semantic
features into the localization stream at different network stages of the VLocNet++MTL

model. The results demonstrate that the lowest median error of 0.32 m in translation and
1.48◦ in orientation components of the pose is obtained by fusing the semantic feature maps
at the Res4c unit of the localization stream which enables our model to exploit the right
balance between task-specificity and feature maturity. Note that we do not experiment with
fusing semantic features at the Res4b unit of the localization stream as we fuse location-
specific feature maps from this layer into the semantic segmentation stream, therefore
adding this connection would result in a cyclic dependency between these two streams.

7.4.5.6 Influence of the Weighted Fusion Layer

In this section, we investigate the effectiveness of employing our proposed weighted fusion
layer for encoding semantic information and aggregating motion-specific features in the
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Figure 7.8: Comparison of the median localization error of VLocNet++MTL with baseline multitask
models that fuse semantic features into the localization stream. Results are shown on the DeepLoc
dataset [34].

global pose regression stream. We compare the localization accuracy of VLocNet++MTL

which incorporates our fusion scheme against the single-task models as well as three
competitive multitask baselines. The topologies of the three baselines are as follows:

• MTL_input-concat: A simple technique that can be employed for incorporating
semantic features into the global pose regression stream is by concatenating the
predicted semantic segmentation output Mt with input image It as a fourth-channel
and feeding the resulting four-channel tensor as input to the localization stream.

• MTL_mid-concat: As a second baseline, we concatenate the semantic feature
maps with intermediate representations of the global pose regression stream. As the
experiments that we presented in Section 7.4.5.5 demonstrated that fusing semantic
features with the Res4c unit is most beneficial, we similarly fuse semantic feature
maps at Res4c using simple concatenation as opposed to employing our proposed
weighted fusion layer.

• MTL_shared: Finally, we compare with an approach [294] that shares the latent
spaces of both the semantic segmentation and global pose regression streams. Shar-
ing the latent space can be realized by sharing the weights of a specific layer across
different networks. In our implementation, we share the weights of the Res4c unit
between both the global pose regression and semantic segmentation streams.

Figure 7.8 shows the results from this experiment on the DeepLoc dataset in terms
of the median localization error metric. The results clearly show that employing the
naive MTL-input-concat approach drastically reduces the performance over our single-task
VLocNet++STL model. Furthermore, we observe that the MTL_mid-concat model achieves
lower localization error than our single-task VLocNet++STL demonstrating that fusing



276 Chapter 7. Geometrically Consistent Semantic Visual Localization

Figure 7.9: Localization performance of our single-task model in comparison to the multitask
VLocNetMTL with different pre-trained weight initializations in the layers that are shared between
the global pose regression stream and the odometry stream [56]. Results are shown on the Microsoft
7-Scenes dataset. (x) and (q) denote the translation and orientation components.

semantic features at intermediate network stages is more effective than at the input to the
network directly. The final multitask baseline model MTL_shared achieves the lowest
localization performance in comparison to the other multitask baselines as well as the
single-task models. We hypothesize that this is primarily due to the diverse nature of the
tasks at hand which causes the learned features to be significantly different and therefore,
sharing weights across both network streams does not benefit the pose regression task.

Compared to the best performing MTL-input-concat model, our proposed VLocNet++MTL

achieves an improvement of 36% in translational and 53.87% in rotational components of
the pose, thereby outperforming all the baseline multitask models. While in comparison to
our single-task VLocNet++STL model, VLocNet++MTL achieves an improvement of 13.51%
and 23.32% in the translation and rotation components respectively, demonstrating the
efficacy of our proposed weighted fusion scheme in learning the most optimal weightings
for fusion based on region activations in the feature maps as well as the utility of fusing
semantic features into the global pose regression stream.

7.4.5.7 Evaluation of Initialization with Pre-trained Weights

In this section, we evaluate the localization performance of our multitask model with
different pre-trained weight initializations in the layers that are shared between the global
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pose regression stream and the odometry stream. As each task-specific network stream is
initially trained separately, it alters the weights of the convolution layers in a way that best
minimizes the respective loss function. Combining the task-specific networks in a multitask
learning framework to jointly learn multiple tasks requires an initialization strategy that
enables effective feature sharing. Therefore, we evaluated various initialization strategies
that facilitate the learning of inter-task correlations. Using the model trained on our
single-task global pose regression stream VLocNetSTL (STL) as a baseline, we evaluate the
localization performance of the joint model with different pre-trained weight initializations.
More precisely, we compare the performance of the following models:

• MTL-GLoc: Initializing the shared layers of the global pose regression stream with
the weights from the pre-trained task-specific global pose regression model and the
remaining layers with the Xavier initialization [108].

• MTL-VO: Initializing the shared layers of the global pose regression stream with the
weights from the pre-trained task-specific visual odometry model and the remaining
layers with the Xavier initialization [108].

• MTL-Dual: Utilizing the combined weights from each task-specific network to
initialize the joint model.

Figure 7.9 shows the results from this experiment on the Microsoft 7-Scenes dataset in
terms of the median localization error of our VLocNetMTL model employing the aforemen-
tioned initialization strategies. The results demonstrate our multitask model outperforms
its single-task counterpart which further validates the efficacy of jointly learning global
pose regression and visual odometry estimation tasks in a multitask learning framework.
The improvement is clearly seen in the Stairs scene which is the most challenging scene to
localize in the Microsoft 7-Scenes dataset as it contains repetitive structures and textureless
surfaces.

On closer examination of the results, we find that the dual initialization of both network
streams with weights from their task-specific models results in the best performance,
contrary to initializing only one of the task-specific streams in the joint model and learning
the other from scratch. This can be attributed to the training data that is insufficient to
train large multitask networks without any pre-trained weight initialization. Furthermore,
we observe that initializing only the global pose regression stream (MTL-GLoc) yields
the least reduction in the localization error while compared to the single-task model. We
hypothesize that this occurs due to the visual odometry stream needing to be trained
from scratch and as a result, it does not provide reasonable relative pose estimates at
the beginning of the training. Therefore, the localization stream cannot benefit from the
motion-specific features from the odometry stream.
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Table 7.17: Evaluation of different optimization strategies on the median localization performance
of VLocNet++MTL trained on the Microsoft 7-Scenes dataset [34].

Optimization Strategy Median Median
Translational Error Rotational Error

Alternate 0.042 m 3.09◦

Joint constant weights 0.059 m 3.79◦

Joint learnable weights 0.022 m 1.39◦

7.4.5.8 Evaluation of Optimization Strategies

In this section, we evaluate the localization performance of our VLocNet++MTL model
using different optimization strategies. Note that we measure the overall utility of the
optimization strategy in terms of the performance of the visual localization model as
our main goal is to improve the global pose regression by learning auxiliary tasks. In
this experiment, we explored using both joint and alternating optimization strategies to
minimize the loss function. While employing the joint optimization strategy, we further
experimented with using weights for balancing the scales between the different loss terms.
More precisely, we compared the performance of utilizing constant equal weighting for
each of the loss terms against employing learnable weightings.

Table 7.17 shows the results from this experiment on the Microsoft 7-Scenes dataset in
terms of the median localization error of the MTL model employing different optimization
strategies. The results demonstrate that using an alternating optimization strategy yields
a localization error 28.99% and 18.47% lower in translation and rotation components
respectively while compared to a joint optimization strategy with fixed equal weightings.
This can be attributed to the difference in scales of the loss values for each task which in
turn results in the optimizer becoming more biased towards minimizing the global pose
regression error at the cost of having suboptimal relative pose estimates. However, this
inadvertently results in worse accuracy for both tasks. Whereas, employing learnable
weightings for the loss terms in the joint optimization strategy enables the model to achieve
the lowest localization error with an improvement of 47.62% in the translational and
55.02% in the rotational components of the pose, over the alternating optimization strategy.
Employing learnable loss weightings enables the network to maintain the individuality of
each task during training while prohibiting the task with the largest scale from dominating
the training process.

7.4.6 Visualization of the Level of Feature Similarity

Despite the recent surge in applying deep learning approaches to various domains, there is
still a lack of fundamental knowledge regarding the representations learned by the deep net-
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PoseNet [276] VLocNet++

Figure 7.10: Comparison of the 3D multi-dimensional scaling (MDS) [295] of features from
the penultimate layer of PoseNet [276] and VLocNet++MTL trained on the DeepLoc dataset [34].
Inputs are images from the testing seq-01 loop and the points on the plot shown are chronologically
colored. Features learned by our VLocNet++MTL show precise correlation with the traversed
trajectory (Figure 7.13 (b)), whereas PoseNet fails to capture the distribution especially for the
poses near the glass buildings as shown in Figure 7.11 (a).

works. This can be attributed to the high dimensionality of the embedded representations.
In order to aid in this understanding, feature visualization and dimensionality reduction
techniques when thoughtfully applied can provide helpful insights. Such techniques trans-
form the data from high dimensional spaces to ones of lower dimensions by decomposing
the features along a set of principle axis. For the task of visual localization, preserving
the global geometry of the features is highly critical over techniques that find clusters and
sub-clusters in the data, such as those often applied for classification tasks. Therefore, in
this section, we provide visualizations of the underlying distribution of the learned features
from the penultimate layer of our multitask VLocNet++MTL model using the 3D metric
Multi-Dimensional Scaling (MDS) [295].

Figure 7.10 shows the down-projected features after applying MDS to the representations
of the penultimate layer of VLocNet++MTL trained on the DeepLoc dataset. For comparison,
we also show a similar visualization using the features learned by the PoseNet [276] model.
Unlike PoseNet, the features learned by our VLocNet++MTL model directly correspond
to the red groundtruth trajectory shown in Figure 7.13 (b), whereas PoseNet fails to
capture the pose distribution in several areas of the trajectory. This demonstrates that our
proposed multitask VLocNet++MTL architecture trained using our Geometric Consistency
loss function learns a global localization model that is geometrically consistent with respect
to the motion of the robot equipped with the camera.
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(a) Input Image (b) Semantic Output (c) STL Activation (d) MTL Activation

Figure 7.11: Comparison of the regression activation maps of our single-task VLocNet++STL

and multitask VLocNet++MTL [34]. The visualization of the activation maps are generated using
Grad-CAM++ [204] and the results are shown on the models trained on the DeepLoc dataset along
with the corresponding semantic segmentation output. The color legend for the segmentation labels
correspond to those shown in the benchmarking results in Table 7.11.

7.4.7 Visualization of the Regression Activation Maps

In an effort to investigate the effect of incorporating semantic information in the features
learned by the global pose regression stream, we visualize the regression activation maps
of the network for both the single-task VLocNet++STL and multitask VLocNet++MTL

using Grad-CAM++ [204]. The Grad-CAM++ technique generates an activation map
using a weighted combination of the positive partial derivatives of feature maps from
the last convolutional layer of the network. The resulting activation map acts as a visual
explanation to the output produced by the network. Figure 7.11 shows the input image,
the corresponding semantic segmentation output from VLocNet++MTL and the activation
maps of both the single-task as well as the multitask VLocNet++ model. We present
results on two example scenes from the DeepLoc dataset that contain glass facades and
optical glare. Despite the challenging nature of both scenes, our model yields an accurate
semantic segmentation output with high granularity. Investigating the activation maps of
our single-task and multitask models, we observe that the activation maps generated from
VLocNet++MTL contains less noisy activations. Moreover, we observe that the activation
maps of the multitask model places more attention on multiple stable structures that are
unique to the scene such as the pole in the first example and the glass building in the bottom
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example. This demonstrates that fusing semantic features into the global pose regression
stream enables the network to focus its attention on semantically more informative regions
in the image in order to yield an accurate pose estimate.

7.4.8 Qualitative Evaluations

The experimental results that we have presented thus far demonstrate the capability of our
proposed architectures in terms of the standard benchmarking metrics. In this section, we
present exhaustive qualitative results on both the Microsoft 7-Scenes and DeepLoc datasets
to analyze the performance of our models in each of the tasks.

7.4.8.1 Qualitative Localization Results

In order to qualitatively evaluate the localization performance of the VLocNet++MTL model
in the various scenes, we present visualizations depicting the predicted poses in comparison
to the groundtruth poses on the indoor Microsoft 7-Scenes dataset as well as the outdoor
DeepLoc dataset in Figures 7.12 and 7.13 respectively. The predicted poses from our
network are represented by the yellow trajectory and the groundtruth poses are shown in
red. Note that we only show the trajectory plotted with respect to the 3D scene model for
visualization purposes and our approach does not rely on the 3D model for localization
rather it operates on monocular images.

Our proposed VLocNet++MTL model accurately estimates the global pose in both indoor
(Figures 7.12 (a), (b), (c), (d), (e), (f)), and 7.13 (a)) and outdoor (Figure 7.12 (b))
environments, while being robust to textureless regions (Figures 7.12 (b) and (c)), repetitive
structures (Figure 7.12 (f)), scenes with reflective surfaces (Figures 7.12 (e) and 7.13 (a))
and motion blur (Figures 7.12 (a) and (d)). Despite these challenges, the poses predicted
by VLocNet++MTL are well aligned with their groundtruth counterparts. Furthermore,
by adopting a methodological approach to exploiting information from the multiple task-
specific network streams as well as by effectively incorporating motion-specific features
and encoding semantic information about the scene, VLocNet++ accurately estimate the
6-DoF global pose without requiring a 3D model of the environment. Additionally, we
provide interactive visualizations of the 3D scene models along with the predicted and
groundtruth poses at http://deeploc.cs.uni-freiburg.de.

7.4.8.2 Qualitative Semantic Segmentation Results

In this section, we present qualitative results of semantic segmentation using our proposed
VLocNet++MTL architecture in comparison with the AdapNet++ model that we build
upon. The primary goal of this experiment is to analyze the improvement in semantic
segmentation due to the incorporation of the proposed self-supervised warping technique
and the fusion of location-specific information from the global pose regression stream.

http://deeploc.cs.uni-freiburg.de
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(a) Chess (b) Fire

(c) Office (d) Heads

(e) Pumpkin (f) Stairs

Figure 7.12: Qualitative localization results of the predicted global pose (yellow) versus the
groundtruth pose (red) plotted with respect to the 3D scene model for visualization [34].
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(a) Redkitchen

(b) DeepLoc

Figure 7.13: Qualitative localization results depicting the predicted global pose (yellow trajectory)
versus the groundtruth pose (red trajectory) plotted with respect to the 3D scene model for visu-
alization [34]. VLocNet++MTL accurately estimates the global pose in both indoor and outdoor
environments while being robust to textureless regions, repetitive as well as reflective structures
in the environment where local feature-based pipelines perform poorly. Note that we only show
the trajectory plotted with respect to the 3D scene model for visualization, our approach does not
rely on a 3D model for localization. We show the second testing loop for the DeepLoc dataset, as
visualizing all the testing loops in one scene creates a intertwined output that is hard to analyze.
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We present results on the DeepLoc dataset and show the improvement / error map which
indicates the improvement over the segmentation output of AdapNet++ in green and the
misclassifications by the VLocNet++MTL model with respect to the groundtruth in red.

Figures 7.14 and 7.15 show the qualitative results from this experiment. Figure 7.14 (a)
depicts a scene where the improvement in semantic segmentation output of VLocNet++MTL

can primarily be seen in the detection of the person standing next to the building on
the left as belonging to the dynamic object class, identification of the vegetation behind
the underpassage in the center of the image, detection of the entire sidewalk that the
bicyles are parked on in the center of the image and parts of the road on the right being
corrected predicted. While, in Figure 7.14 (b), the manhole cover near the grass on the
right of the image is accurately classified as the other object class, whereas AdapNet++
entirely misclassifies the manhole over as sidewalk. In addition, the third pole in the
end of the street is entirely captured in the segmentation of VLocNet++MTL, although
it is missing in the segmentation output of the AdapNet++ model. Subsequently, in the
output of VLocNet++MTL shown in Figure 7.14 (c), we observe that the corner of the
shed on the right which is translucent, is precisely predicted as the building class and the
bicycles on the right as well as in the center of the image are more accurately predicted
in comparison to the segmentation output of the AdapNet++ model. Moreover, in all the
examples shown in Figure 7.14, the boundaries between the vegetation and its surroundings
are more precisely predicted in the output of the VLocNet++MTL model. Most of these
improvements can be attributed to our proposed self-supervised warping scheme that
fuses the intermediate representations from the previous timestep into the current view to
improve the segmentation performance by aggregating more scene-level context. Therefore
in the aforementioned scenarios where bad lighting and occlusion cause misclassifications,
leveraging and incorporating features of the same location from another view improves the
overall prediction.

Figure 7.15 shows the second set of examples on the DeepLoc dataset where in Fig-
ure 7.15 (a), our proposed VLocNet++MTL accurately classifies the entire shed in the center
of the image as the building class and captures the whole stretch of the sidewalk near
the trashcan in the center of the image. Whereas, AdapNet++ misclassifies these regions.
Moreover, in the output of AdapNet++, we observe that in the center of the image, the
network predicts parts of the building behind the trees as a tree trunk (vegetation) and the
discolored road near the edge of the building on the left as the building class, where our
VLocNet++MTL accurately predicts the object category of these pixels. In Figure 7.15 (b),
we observe that VLocNet++MTL more precisely captures the boundaries between grass
and vegetation, accurately segments the entire sidewalk path near the trashcan in the right
and captures more of the structure of the rails on the left of the image. In the last example
shown in Figure 7.15 (c), we can see that VLocNet++MTL accurately captures the trash
can in the center-right of the road, while the structure is entirely missing the segmentation
output of the AdapNet++ model. Another challenging aspect is to identify the boundary
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between road and sidewalk and well as sidewalk and grass, which can be often challenging
even for humans when viewing from large distances. Inspecting the examples, we see that
our VLocNet++MTL model precisely detects these boundaries.

In the examples where an object is entirely missing in the segmentation output of the
AdapNet++ model, but it is accurately captured in the output of the VLocNet++MTL model,
the improvement can be attributed to both the fusion of location specific information
and the fusion of warped intermediate representations from the previous timesteps. Most
of the scenes have thin pole-like structures such as lamp posts, sign posts, and fences
are the hardest to fully segment for any semantic segmentation network. Although the
VLocNet++MTL architecture utilizes a considerably small input image, it is still able to
detect the entire structure of pole-like objects more accurately than AdapNet++ due to the
aggregation of information from previous observations. One of the challenging aspects of
the DeepLoc dataset is the presence of glass buildings which are reflective or translucent
that makes classifying them in images extremely challenging. Despite the presence of
several glass-constructs (Figures 7.14 (b) and (c)), our network classifies the corresponding
pixels as their correct semantic object categories. Finally, we observe several challenging
perceptual conditions in these examples such as varying lighting conditions that cause
shadows (Figure 7.15 (b)), glare (Figures 7.14 (a) and (c)) and over/under exposure due to
sunlight (Figures 7.14 (c), 7.15 (a) and 7.15(b)). In all these scenarios, our models yield an
accurate representation of the scene while being robust to these disturbances.

7.5 Related Work

In this chapter, we presented novel convolutional neural network architectures that simulta-
neously learn to regress the global pose, predict the semantics of the scene and estimate
the visual odometry in a joint multitask learning framework. Our framework is structured
to enable inductive transfer by leveraging domain specific information from each of the
tasks for their mutual benefit. More importantly, we introduced a principled approach to
embed geometric and semantic knowledge of the world into the pose regression network
to learn a model that is geometrically consistent with respect to the motion. Over the past
decade, there has been a gradual shift from employing traditional handcrafted pipelines to
learning-based approaches. Although significant strides have been made, most of these ap-
proaches have been particularly proposed to address perception related tasks. However, the
applicability of these learning-based techniques have also been explored for tasks in other
domains. In Chapter 4, we presented a thorough review of the literature on semantic scene
segmentation. In this section, we discuss some of the recent developments in multitask
learning, visual localization and odometry estimation.
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Multitask Learning can be defined as an inductive transfer mechanism that improves
generalization by leveraging domain specific information from related tasks [296]. It
has been applied to a wide range of tasks from different domains including image under-
standing [297, 298], sentiment prediction [299], language modelling and translation [300],
semantic segmentation [301, 302] and even recently on learning from demonstration [303].
Yu et al. propose a model based on convolutional neural networks and denoising autoen-
coders for the task of face detection and object recognition using RGB-D images [297].
Their joint model consists of individual streams for each task, while sharing the input
layer and the final hidden layer. Their approach demonstrates substantial increase in
performance by employing their joint model in comparison to individually trained mod-
els. Bilen et al. [298] propose the use of a instance normalization layer to normalize the
information across a single network that is trained to recognize across multiple visual
domains including objects, digits, signs and faces. X-ResNets [299] are residual models
with cross connections that have less than 40% of the parameters than their single-task
counterparts and achieve competitive performance for visual sentiment concept detection.
Shazeer et al. [300] introduce a model with a sparsely-gated mixture of experts layer with
thousands of feed-forward sub-networks for the task of language modelling and machine
translation.

Teichmann et al. propose the Multinet [301] architecture consisting of a shared en-
coder and task-specific decoders for classification, detection and semantic segmentation.
Lu et al.[304] introduce an automatic approach to learn compact multitask networks for
person attribute classification in which the method first starts with a thin network model
and expands it during training using a multi-round branching mechanism which determines
with whom each task shares features in each layer. Kuga et al. [305] introduce a multitask
architecture that consists of multimodal encoder-decoder streams that are connected via
shared latent representation as well as shared skip connections. They demonstrate that
sharing representations across different modalities improves the multitask learning perfor-
mance. Misra et al. propose Cross-stitch networks [306] for multitask learning in which
they introduce the cross-stitch unit that combines activations from multiple networks by
modeling shared representations as linear combinations. They demonstrate that cross-
stitched networks acheive better performance than networks found by brute-force search.
For combining different loss functions in a multitask model, Kendall et al. [302] propose
a loss function based on maximizing the Gaussian likelihood using homoscedastic task
uncertainty. Rouhollah et al. propose an architecture that takes raw images as input and
generates arm trajectories for the robot to perform different manipulation actions [303].
Their work demonstrates that sharing weights across different tasks and using VAE-GAN-
based reconstruction improves the generalization capability. Most of these approaches have
shared sections of the network (encoders in some cases) that learn low-level representations,
followed by individual task-specific branches that learn specialized features for a particular
task. In this work, we proposed a novel multitask learning framework that incorporates our
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weighted fusion layer at multiple network stages between different task-specific streams to
learn the optimal weightings for the fusion of feature maps based on region activations for
the mutual benefit of the tasks.

Visual Localization approaches can be broadly classified into metric and appearance-
based techniques. Metric approaches [307, 308] estimate the 6-DoF pose of an image
by computing local image features to establish correspondences and use the matches to
estimate the geometric relationship with a 3D model built using SfM or SLAM. Whereas,
appearance-based localization techniques [309, 310] provide a coarse location estimate by
employing image retrieval techniques to find the closest match against a database of images.
The approach that we present in this chapter tackles the problem of metric localization.
Sparse feature-based localization approaches learn a set of feature descriptors from training
images which are then employed to learn a codebook of 3D descriptors against which
a query image can be matched [274, 311]. Some approaches terminate the matching
procedure as soon as a fixed threshold has been reached [312, 313], while other approaches
reduce the number of full codebook searches using bidirectional matching [310, 314, 315]
or employ a two-stage matching technique [316]. Relying on bidirectional information
or multiple matching stages also helps to improve the accuracy by eliminating incorrect
matches before the pose estimation stage. Recent methods [275, 284] that efficiently find
feature correspondences within the codebook train regression forests on 3D scene data
and use RANSAC to infer the final location of the query image. Donoser et al. propose a
discriminative classification approach using random ferns which demonstrates improved
pose accuracy while allowing for faster run-time [317]. Despite the accurate pose estimates
provided by these methods, they still require a cumbersome feature selection step for
building a codebook and the overall run-time depends on the size of the 3D model as well
as the number of feature correspondences that are found. This in turn results in suboptimal
performance when employed in large environments and scenes that contain textureless or
repetitive structures.

Recently, pre-trained CNNs designed for classification tasks have been successfully
adapted for pose regression. 6-DoF pose regression models can also be considered as
multitask models as they regress for both translation and rotation components individually.
Kendall et al. proposed the first end-to-end approach for directly regressing the 6-DoF
camera pose from a monocular image using a CNN called PoseNet [276]. Since then sev-
eral improvements have been proposed in terms of estimating the uncertainty of the poses
using Bayesian CNNs [287], incorporating Long-Short Term Memory (LSTM) units for di-
mensionality reduction [277], symmetric encoder-decoder architecture for regression [291]
and an improved loss function based on scene geometry [282]. Laskar et al. [286] propose
a hybrid approach in which first a convolutional neural network trained on relative camera
pose estimation is employed for feature extraction. Subsequently, the extracted features
are then used to identify the nearest neighbors of the query image from a set of database
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images.
Deep learning approaches require large amounts of training data, however most existing

visual localization datasets have sparse pose information. In order to alleviate this problem,
Naseer et al. [285] and Wu et al. [283] propose augmentation strategies to increase
the 3D pose coverage of images. Additionally, Wu et al. propose to use the Euler6
representation to counteract ambiguities of quaternions in representing angles. Recently,
Brachmann et al. proposed a differentiable version of RANSAC termed DSAC [292] for
camera localization. DSAC introduces two methods to make RANSAC differentiable;
by replacing the deterministic hypothesis section using soft argmax selection or with a
probabilistic selection. Subsequently, Brachmann et al.[293] propose DSAC2 in which they
introduce an entropy controlled soft inlier count to score the hypotheses produced by the
neural network. Most of the aforementioned end-to-end approaches append branches with
inner-product layers to a pre-trained classification network and utilize naive loss functions
for pose regression that yield a substantially lower performance than state-of-the-art local
feature-based approaches. In this chapter, we introduced our Geometric Consistency
loss function that constricts the search space with the relative motion information during
training to obtain pose estimates that are globally consistent. Furthermore, we proposed a
weighted fusion layer that enables aggregation of motion-specific temporal features while
simultaneously encoding semantic features into the pose regression stream.

Visual Odometry: Another closely related problem in robotics is estimating the incre-
mental motion of the robot using only sequential camera images. In one of the initially
proposed methods, Konda et al. [318] adopt a classification approach to this problem,
where a convolutional neural network with a softmax layer is used to infer the relative
transformation between two images using a prior set of discretized velocities and directions.
Nicholai et al. [288] introduce an end-to-end approach in which they combine both image
and LiDAR information to estimate the ego-motion from a consecutive frames. They
project the point cloud onto the 2D image and feed this information to a simple Siamese
architecture with alternating convolution and pooling layers to estimate the visual odom-
etry. Similarly, Mohanty et al. [289] propose a Siamese-type architecture for odometry
estimation called DeepVO in which the translational and rotational components of the pose
are regressed through a Euclidean loss layer with equal weight values. The architecture was
based on the AlexNet model [22] and they also experiment with appending FAST features
along with the images as input to the network. Melekhov et al. [290] add a constant
weighting term to balance both the translational and rotational components of the loss,
thereby yielding an improved ego-motion estimate. Furthermore, they incorporate a spatial
pyramid pooling layer in their architecture which renders their model robust to varying
input image resolutions. Yin et al. [319] addresses the critical problem of recovering
the scale in monocular visual odometry by employing a convolutional neural fields to
simultaneously estimate depth along with the ego-motion.
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More recently, there are a class of methods that formulate structure from motion as
a learning problem. Ummenhofer et al. [320] propose the DeMoN architecture that
learns to estimate depth and camera motion from unconstrained image pairs using an
novel loss function based on spatial relative differences. Their architecture consisting of
multiple stacked encoder-decoder networks and an iterative network that improves its own
predictions. Zhou et al. [321] introduce a unsupervised learning framework that uses the
task of view synthesis for supervision of monocular depth and camera motion estimation
from video sequences. Vijayanarasimhan et al. propose the SfM-Net [322] architecture
that predicts pixel-wise depth, camera motion, object motion and object masks while
learning in a self-supervised fashion from video sequences. Self-supervision is achieved
using gradients from pixel matching across consecutive frames, constrained by forward-
backward consistency on the computed motion and 3D structure. While the aforementioned
techniques focus on learning supervised and unsupervised specialized models for ego-
motion estimation, our goal in this work is to learn a joint multitask model for three diverse
tasks and achieve superior performance compared to its single-task counterparts. Inspired
by the success of residual networks in various visual recognition tasks, we proposed a
Siamese-type dual stream architecture built upon the full pre-activation ResNet-50 [27]
model for visual odometry estimation.

Contrary to the aforementioned task-specific methods that train individual models for a
specific task, we proposed a joint end-to-end trainable multitask architecture for 6-DoF
visual localization, odometry estimation and semantic segmentation from consecutive
monocular images. In order to exploit the inherent interdependencies between the three
tasks and to enable inductive transfer of information, we structure our multitask learning
framework to be interdependent on the outputs as well as the intermediate representations
of the task-specific network streams. Our approach enables a competitive and collaborative
action that regularizes the network and substantially improves the performance of the
joint model in comparison to individual specialized models as well as state-of-the-art
techniques.

7.6 Conclusions

In this chapter, we introduced two novel end-to-end trainable multitask convolutional
neural network architectures for 6-DoF visual localization, semantic segmentation and
odometry estimation from consecutive monocular images. The goal of our architecture
is to exploit the complex interdependencies within these tasks for their mutual benefit.
At the lowest level, our architecture incorporates a hard parameter sharing scheme and
employs a joint optimization strategy with multitask learnable loss weightings for learning
inter-task correlations. We presented a new strategy for simultaneously encoding geometric
and structural constraints into the the pose regression network by temporally aggregat-
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ing learned motion-specific information and effectively fusing semantically meaningful
representations. To this end, we proposed a weighted fusion layer that learns the most
optimal weightings for fusion based on region activations. Furthermore, we presented
a self-supervised warping technique that fuses feature maps from multiple views and
resolutions using the representational warping concept from multi-view geometry, for
scene-level context aggregation. This enables our model to be robust to camera angle
deviations, object scale and frame-level distortions, while implicitly introducing feature
augmentation which facilitates faster convergence. More importantly, we introduced the
novel Geometric Consistency loss function that constricts the search space of the global
pose regression stream while training by leveraging the relative motion information from
the shared auxiliary odometry stream and by exploiting the aggregated motion-specific
information to learn a model that is geometrically consistent.

In order to facilitate learning of joint multitask models for visual localization, odometry
estimation and semantic segmentation, we introduced a first-of-a-kind large-scale urban
outdoor localization dataset with multiple loops captured at different times of the day. We
made our dataset consisting of 6-DoF camera poses and manually annotated pixel-level
semantic groundtruth labels, publicly available to encourage future progress. The dataset
can be utilized for benchmarking a number of perception and localization tasks as it
contains challenging scenarios such as varying lighting conditions, reflective glare from
the sun, shadows, motion-blur, buildings with similar facades, repetitive structures and
translucent as well as reflective buildings made of glass. We presented comprehensive
benchmarking results on the indoor Microsoft 7-Scenes and outdoor DeepLoc datasets.
Extensive experimental evaluations demonstrate that both our single-task and multitask
models achieve state-of-the-art performance on each of the tasks, compared to existing
deep learning-based approaches as well as their single-task counterparts. Our proposed
VLocNet++ architecture outperforms the state-of-the-art end-to-end learning model for
visual localization on the Microsoft 7-Scenes benchmark by 93.81% and 91.72% in the
translational and rotational components of the pose respectively. More importantly, our
VLocNet++ architecture exceeds the overall state-of-the-art on the benchmark by 67.5%
in the translational and 25.9% in the rotational components of the pose, while being 60.5%
faster and simultaneously performing multiple tasks. The approach presented in this
chapter is the first to close the performance gap between local feature-based and deep
learning-based methods for visual localization. Additionally, VLocNet++ outperforms
the previous state-of-the-art semantic segmentation architecture by 6.94% in the mIoU
score, and demonstrates an improvement of 40.80% in the orientation for visual odometry
estimation. We also presented detailed ablation studies, intuitive visual explanations and
comprehensive qualitative results that demonstrate the capabilities our models. Our results
indicate the feasibility of learning deep multitask models for critical robotic tasks beyond
the visual perception domain. Overall, our findings are an encouraging sign that learning
multitask models for various robotic tasks is a promising research direction.



Chapter 8

Conclusions and Discussion

This thesis addresses a number of problems related to robot perception and localization
by learning to leverage the inherent structure from various modalities and across different
tasks. We presented multiple innovative end-to-end convolutional neural network archi-
tectures for classifying terrains using proprioceptive sensor data, learning to semantically
classify various objects present in scenes at the pixel-level, learning to dynamically fuse
information from multiple modalities in a self-supervised manner, learning to jointly esti-
mate the semantics as well the motion of objects in scenes at the pixel-level, and finally
learning to visually localize, semantically segment scenes and estimate the visual odometry
in a multitask framework. Using extensive experiments on standard benchmark datasets
and in different real-world environments, we demonstrated that our proposed architec-
tures substantially exceed the state-of-the-art while enabling efficient deployment on real
robot systems. Additionally, we also addressed several important fundamental scientific
questions in deep learning while tackling these complex problems. We believe that these
techniques play a crucial role in enabling our contributions to be practical solutions for
real robot systems.

We first tackled the challenge of learning to classify terrains from vehicle-terrain inter-
action sounds in an end-to-end manner. Typically, handcrafted audio features were used
along with specialized preprocessing steps that do not generalize due to the unstructured
nature of the vehicle-terrain interaction sounds. We proposed two novel convolutional
neural network architectures that incorporate our new global statistical pooling strategy to
achieve the time-series representation learning. Furthermore, we also proposed a recurrent
architecture that exploits the temporal dynamics of the signal to further improve upon the
performance. In order to enable our model to be robust to different ambient environmental
noises, we proposed a noise-aware training scheme that randomly injects ambient noise
samples during training to regularize the network and to learn more generalizable models.
Our contribution is the first approach to address the problem using an end-to-end learning
technique. We extensively evaluated our networks on over six hours of vehicle-terrain
interaction data that contains nine different indoor and outdoor terrains. The results
demonstrate that both our networks significantly outperform existing techniques thereby
achieving state-of-the-art performance with a substantially faster inference time. We also
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presented experiments with an inexpensive low-quality microphone in a new environment
that demonstrates the significant noise robustness and the hardware independence of our
approach.

As accurate scene understanding is precursor for autonomous navigation, our second
contribution enables a robot to efficiently understand the semantics of the environment
from visual images. We proposed two fully-convolutional neural network architectures
that are based on the encoder-decoder design topology. These architectures incorporate
our multiscale residual units that are effectively better at learning multiscale features than
the commonly employed multigrid method. We also proposed the efficient atrous spatial
pyramid pooling module that has a large effective receptive field to capture long-range
context and to aggregate multiscale representations. This module substantially improves
the performance over the standard atrous spatial pyramid pooling while consuming less
than ten-times the amount of parameters. In order to obtain a high resolution segmentation
output, we proposed a new decoder with skip refinement stages, complemented with a
multi-resolution supervision scheme to deeply supervise the training. Our proposed decoder
substantially improves the segmentation along object boundaries and effectively recovers
the structure of thin pole-like objects. In order to enable efficient deployment on embedded
GPUs, we proposed a network-wide holistic pruning approach that compresses our models
without leading to a drop in the performance. Comprehensive benchmarking results on
Cityscapes, Synthia, SUN RGB-D, ScanNet and Freiburg Forest datasets demonstrate that
our architectures achieve state-of-the-art performance while consuming lesser number of
parameters and having a faster inference time than existing methods. We also presented
real-world experiments using our AIS perception car that demonstrates the generalization
ability of our models.

Subsequently, we addressed the problem of multimodal semantic segmentation in an
effort to adaptively exploit complementary features to improve the robustness of the model.
Existing techniques for multimodal perception, naively concatenate features from multiple
individual modality streams, however this does not enable the model to leverage the
features according to critical factors that influence the fusion. We tackled this problem
from two perspectives. Our first architecture probabilistically fuses semantically mature
complementary features according to the object classes present in the scene. While
our second architecture dynamically fuses multimodal features at different intermediate
network stages according to the semantic objects, their spatial location in the world and the
scene context. In order to enable the network to optimally exploit complementary features,
we adopt a self-supervised learning approach to train the fusion model. Our proposed
fusion schemes are independent of the base architecture and can be easily employed
with any semantic segmentation framework. We evaluated our fusion approaches using
multiple modalities including visual images, depth and near-infrared on the Cityscapes,
Synthia, SUN RGB-D, ScanNet and Freiburg Forest datasets. We demonstrated that both
our fusion models exceed the performance of unimodal segmentation as well as existing
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multimodal fusion techniques and achieve state-of-the-art performance on each of the
aforementioned datasets. More importantly, we presented results in adverse perceptual
conditions including snow, rain, fog, night-time, motion blur and optical glare that shows
the exceptional robustness of our models. Furthermore, we presented real-world navigation
experiments using our Viona robot that employs only our multimodal fusion model as a
perception module while autonomously navigating several kilometers of an unstructured
forested environment.

In an effort to learn a more informative scene understanding model, we further tackled
the problem of joint semantic motion segmentation with the additional goal of exploiting
representations from both tasks for their mutual benefit. Most existing semantic seg-
mentation networks do not exploit motion information and existing motion segmentation
networks do not exploit semantics of the scene. However, both motion and semantics can
provide complementary information that we exploit in our proposed architectures. Our
first contribution for this problem is a two-stream fully-convolutional architecture that
simultaneously learns semantic features using an encoder-decoder network and motion
features from self-generated optical flow maps. The network then fuses semantic features
into the motion segmentation stream to yield the pixel-wise segmentation output in which
each pixel is assigned to a semantic object class as well as a static or moving motion
label. As the ego-motion of the robot itself creates spurious optical flow magnitudes that
do not represent the motion of moving objects in the scene, we proposed an ego-flow
suppression technique that we incorporated in our architectures to compensate for this
effect. Our second architecture that we introduced simultaneously exploits motion cues
to improve leaning of semantics and adaptively fuses semantic features into the motion
segmentation stream to further improve motion segmentation. Our temporal warping
scheme first transforms the ego-flow suppressed optical flow maps into an edge-enhanced
flow representation which is then used to warp and dynamically fuse intermediate network
representations in the semantic stream across the temporal dimension. Our warping scheme
substantially improves the semantic segmentation performance along the boundaries of
the objects. Using extensive experiments on the Cityscapes-Motion, KITTI-Motion and
ApolloScape-Motion datasets, we demonstrated that our architectures outperform existing
semantic motion segmentation techniques, as well as specialized task-specific networks,
thereby achieving state-of-the-art performance. Our experiments show that fusing semantic
features into the motion segmentation network makes the model more robust to segmenting
multiple moving objects in extremely cluttered scenes and the adaptive fusion prevents
over-segmentation of the moving objects. Additionally, we presented real-world experi-
ments using our AIS perception car that demonstrates the effectiveness of our model in
challenging scenarios and the generalization ability to previously unseen environments.

Furthermore, a key contribution of this thesis is the multitask learning architectures that
we proposed for geometrically consistent semantic visual localization. These architectures
enable robots to simultaneously localize, understand the semantics of the scene and esti-
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mate their ego-motion using a single coherent framework. Thus far, most existing networks
that learn to regress the 6-DoF global pose employ the standard Euclidean loss function
that does enable the network to exploit geometric information about the environment. In
order to address this problem, we proposed two novel architectures complemented with a
new Geometric Consistency loss function. Our first architecture consists of a single stream
for learning the global pose and a Siamese-type double stream architecture for odometry
estimation. Our proposed Geometric consistency loss function exploits the relative motion
information from the auxiliary odometry stream to constrict the search space of the global
pose regression stream to learn a model that is globally consistent. In order to conserve the
amount of parameters consumed by the network and enable inter-task learning, our network
streams employ hard parameter sharing that enables exploiting the complex interdepen-
dencies between the tasks. We additionally proposed an improved architecture that fuses
semantically meaningful representations into the global pose regression stream to encode
structural constraints and simultaneously aggregates motion-specific information using our
weighted fusion layer to enable our Geometric Consistency loss to effectively leverage this
information. Our proposed weighted fusion layer enables learning of optimal weightings
for the fusion based on region activations. Furthermore, we proposed a self-supervised
warping technique that exploits the estimated relative motion from the odometry stream
to warp semantic features from the previous frame with the representations of the current
frame to implicitly introduce feature augmentation that accelerates the training and im-
proves the semantic segmentation performance. We presented comprehensive experimental
evaluations on the indoor Microsoft 7-Scenes dataset and the outdoor DeepLoc dataset that
demonstrate that our networks outperform their single-task counterparts as well as existing
multitask methods, thereby setting the new state-of-the-art on both these benchmarks while
simultaneously performing multiple tasks. The results highlight that our network is the first
deep learning approach to outperform local-feature based techniques in visual localization,
in addition to being more robust in situations that contain textureless regions and glass
constructs. Overall, our results demonstrate the benefit in learning these three diverse tasks
in a multitask learning framework to obtain a more accurate and compact model.

In summary, we proposed several contributions in this thesis that enable robots to
reliably perceive and understand our complex dynamic world using multiple modalities,
and robustly localize themselves in the environment using only visual images. Our
proposed models generalize effectively to different challenging scenarios and adverse
perceptual conditions by dynamically adapting their weights as well as by learning in a
self-supervised manner. Moreover, our architectures outperform the state-of-the-art in
each of the addressed tasks with a faster inference time while consuming substantially
lesser number of parameters. These factors are critical enablers for efficient real world
deployment. We believe that our proposed methods have brought us closer to deploying
intelligent robots in increasingly complex environments and we hope that this thesis
inspires future work that will lead to revolutionary new applications.
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Future Work

There are several avenues for future research as well as straightforward extension of
the work that we presented in this thesis. We presented highly accurate approaches for
terrain classification using proprioceptive sensors that enables a robot to classify the terrain
underneath its wheels. However, robots also need to estimate the traversability of distant
terrains that are in front of it, in order to plan trajectories that are more efficient for
traversal. We can leverage our proprioceptive terrain classifier to provide labels for training
an exteroceptive classifier in a self-supervised manner. This technique will alleviate the
need of requiring annotated groundtruth labels. For example, consider a patch of terrain
in front of the robot that an exteroceptive sensor such as a camera is used to capture and
assume that the robot is equipped with a microphone as well as our audio-based vehicle-
terrain interaction classifier. The robot can acquire terrain labels for the previously observed
visual patch captured by the camera by traversing to that location and assigning the output
of the audio classifier as the label for the visual patch. A similar technique [323] was
previously explored for planetary rovers where an SVM was trained to classify the terrain
using handcrafted features. However, in the previous work, the exteroceptive classifier
was trained in a supervised manner once enough data was gathered. For future work, we
propose to utilize our CNN-based proprioceptive classifier to train an unsupervised visual
classifier using a deep clustering approach [324] in a self-supervised manner. Furthermore,
an exploration planner with a suitable cost function can be employed in conjunction with
this system to enable the robot to traverse to locations consisting of terrains that the
exteroceptive classifier is more uncertain about. This would enable the robot to traverse the
environment and learn in a self-supervised manner from experience leading to a life-long
learning framework.

Semantic scene understanding is one of the fundamental problems in robotics and
computer vision for which there are numerous challenges to overcome. Recently, more
light-weight classification networks have been proposed than the residual network architec-
ture that we build upon for the encoder of our semantic segmentation models. Architectures
such as ShuffleNet v2 [325] and MobileNet v2 [326] utilize group convolutions and depth-
wise separable convolutions to keep the number of FLOPS low, thereby demonstrating
faster inference time. This also enables building deeper architectures with the number of pa-
rameters still substantially lower than residual networks. An interesting research direction
would be to employ either ShuffleNet v2 or MobileNet v2 as the base encoder architecture
and build upon it to effectively learn multiscale features. In this thesis, we proposed the
eASPP module to aggregate multiscale features with a large receptive fields. However, we
use the same dilation rate in the consecutive atrous convolutions in a branch of the eASPP.
Using a larger dilation rate in the second atrous convolution is one straightforward solution
to learn larger effective receptive fields and therefore capture larger context. Solutions
to other challenges such as developing an efficient decoder that learns to upsample as
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opposed to simple bilinear upsampling and more aggressive automatic pruning strategies
have to be explored.

In this thesis, we presented robust techniques for multimodal perception that adapts to
the observed scene in order to optimally leverage complementary features. For future work
in this domain, we propose to first extend our SSMA fusion mechanism for multimodal
fusion of more than two modalities. This extension is straightforward as the topology of our
SSMA unit can take multiple tensors as input and it would yield output weights with the
dimensions of the concatenated input tensors correspondingly for suppressing or enhancing
the modality-specific feature maps. Subsequently, we propose to develop a network to first
estimate the usefulness of a particular modality and then act as a switch that activates or
deactivates the modality-specific streams based on this factor. This technique will also
make the perception system more robust to sensor failures as the network would detect that
there is no information from a specific modality and disconnect the corresponding stream.
No such known approach exists to the best of our knowledge.

We addressed the problem of semantic motion segmentation in this thesis where our
network simultaneously predicts the pixel-wise semantic object labels as well as the the
motion status of each pixel in the image. One future direction would be to exploit the
motion cues to infer the instances of the objects which can be utilized by robots for
reasoning about the environment more effectively. Currently, there are several methods that
have been proposed for instance segmentation [327, 328, 329], motion segmentation [54,
269, 330] and semantic segmentation [59, 133, 135] individually, however to the best
of our knowledge there are no approaches that exploit motion information to implicitly
infer instances for semantic segmentation. Instance separation boundaries can be learned
from the motion of moving objects assuming that two objects do not move with the same
velocity adjacent to each other. This problem is significantly more challenging without
making this assumption and therefore poses an interesting research problem. Another
potential research direction relates to how the ego-flow suppression is introduced in the
network and the supervised learning of optical flow. Currently the IMU measurements
are leveraged to compute the relative motion with a predicted depth map of scene from
a CNN and the optical flow maps are learned using the FlowNet3 architecture that we
embed in our network. Recently, several techniques have been proposed for unsupervised
learning of optical flow and ego-motion [331, 332] that demonstrate impressive results
without needing any labeled training data. An interesting research direction would be to
reformulate our semantic motion segmentation problem in the context of multitask learning
of semantics, motion segmentation, instance segmentation, optical flow and ego-motion in
a single coherent framework. In this framework, only the semantic segmentation network
has to be supervised, the other tasks can be learned in an unsupervised manner. This
would also pose an interesting challenge for the optimization of the model as it involves
simultaneously training five different diverse classification and regression tasks.

The VLocNet++ architecture that we presented is the first deep learning approach to
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achieve state-of-the-art performance for visual localization. The effectiveness of our
architecture is primarily due to the efficient aggregation of motion-specific information and
the Geometric Consistency loss function that constricts the search space with respect to
the relative motion. Our architecture only uses two consecutive images as input to learn a
globally consistent model. The performance of the model can be substantially improved by
considering a temporal window of images. This involves incorporating recurrent units such
as Long Short-Term Memory Units (LSTMs) [96] or Gated Recurrent Units (GRUs) [333]
in the end of the global pose regression stream as well as in the odometry stream. Secondly,
our Geometric Consistency loss function has to be adapted to minimize the loss with
respect to a sequence of relative poses. Furthermore, the robustness of the network in
dynamic environments can be substantially improved by additionally feeding the predicted
pixel-wise ephemerality mask [334] as inputs to the odometry network stream. This would
definitely be a fruitful research avenue.

In conclusion, the aforementioned research directions are only a small subset of the
interesting problems that can be solved as an extension of this thesis. There are several
new challenges that are arising every day due to the fast paced development of this field.
This is the most exciting time to be working in this domain of robotics and we believe the
best is yet to come.





Appendices





Appendix A

Detailed Multimodal Semantic
Segmentation Results

In this appendix, we present detailed multimodal semantic segmentation results on the
Cityscapes [143], Synthia [144], SUN RGB-D [145], ScanNet [146] and Freiburg For-
est [50] datasets. We compare the individual object class IoU scores of our proposed
CMoDE and SSMA fusion models that were introduced in Chapter 5 with each of the
unimodal semantic segmentation models (RGB, Depth, HHA, and EVI), baseline fusion
techniques (Average, Maximum, Stacking, and Late Fusion) as well as the state-of-the-art
fusion approaches (LFC [50] and FuseNet [162]). The mIoU scores for these models were
presented in the benchmarking results shown in Section 5.3.2 and the topology of the
baseline architectures are described in Section 5.2.3.

A.1 Evaluation on the Cityscapes Dataset

Table A.1 shows the results on the Cityscapes dataset. Our SSMA_msf model that per-
forms RGB-HHA fusion outperforms the other techniques in 8 out of the 11 semantic
object classes thereby achieving the state-of-the-art performance. The unimodal models
are outperformed by the multimodal fusion approaches in each of the semantic object
categories, demonstrating the utility of employing multimodal fusion not only for increas-
ing the robustness in challenging perceptual conditions but also improving the overall
performance in terms of the IoU scores. Comparing the multimodal fusion performance of
our proposed SSMA_msf model with the previous state-of-the-art LFC model, we observe
that our model outperforms LFC substantially in each of the semantic object categories
for both RGB-D fusion and RGB-HHA fusion. Analyzing the performance of RGB-HHA
fusion in comparison to RGB-D fusion, we see that the sky and person classes are more
accurately classified using RGB-D data, where all the other classes are more accurately
classified with RGB-HHA fusion. The better performance of the RGB-D fusion for the
sky class can be attributed to the fact that the depth maps have no information for the sky
class and it appears as a homogeneous region as seen in Figure 4.11 (d), whereas the HHA
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image appears noisy in the sky region due to the angle between the gravity and the local
surface normal that is computed in the HHA transformation. The performance difference
between the RGB-D model and the RGB-HHA model for the person class is only 0.02%,
therefore it is within the bounds of being model noise. Another interesting result that can
be seen is that the fence class performs better with the CMoDE approach in comparison to
the SSMA fusion technique by 1.67% in the IoU score. It appears that the probabilistic
class-wise fusion in CMoDE is more beneficial in this case than the dynamic weighting
that is performed by the SSMA module. Furthermore, comparing the performance of the
multimodal SSMA_msf model with the unimodal RGB model for RGB-HHA fusion, we
observe that the largest improvement of 8.87% and 7.06% in the IoU score is achieved by
the fence and pole classes respectively, which are the hardest semantic object classes to
segment due to their thin structure. Subsequently, semantic classes such as sign and person
also demonstrate a notable improvement of 4.02% and 4.49% in the IoU score respectively.

A.2 Evaluation on the Synthia Dataset

Table A.2 shows the detailed multimodal semantic segmentation results on the Synthia
dataset. As the Synthia dataset does not provide camera calibration parameters, it is infea-
sible to compute the HHA encoding, therefore we only report results for the RGB-D fusion.
Unlike the performance on the Cityscapes dataset, it can be seen that our SSMA_msf
model outperforms both the unimodal models, all the baseline fusion techniques and
the state-of-the-art fusion approaches in each of the individual object class IoU scores.
Comparing the individual class IoU scores of our SSMA_msf model with the unimodal
RGB model, once again we observe that the largest improvement in object classes that
have thin structures and irregular geometric shapes. A significant improvement of 10.28%,
9.83% and 7.36% is observed for the sign, pole and fence classes respectively. Object
classes that have irregular geometric shapes such as vegetation, person and cyclist also
show a substantial improvement due to the multimodal fusion. Moreover, as this dataset is
synthetic, the unimodal model trained on the depth modality outperforms the visual RGB
model in each of the object classes. This demonstrates the benefit of employing modalities
that capture the geometry of the environment. Our proposed SSMA_msf model effectively
fuses geometric and appearance features thereby substantially outperforming the existing
fusion techniques.

A.3 Evaluation on the SUN RGB-D Dataset

The SUN RGB-D dataset has 37 semantic object classes making it one of the hardest
datasets to benchmark on. Moreover, object classes such as blinds, desk, shelves, floor mat
and shower curtain, only have a few examples making it even more challenging to learn
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representations of these classes. We present the experimental comparisons on this dataset
in Table A.3 and A.4, for the RGB-D fusion and RGB-HHA fusion respectively. Note that
we compare the performance of the individual semantic object classes across both RGB-D
and RGB-HHA fusion, therefore we only highlight the score of the best performing model
for a specific object class across both tables in bold.

Our SSMA_msf model trained on RGB-HHA images achieves the highest overall
performance by outperforming the other fusion techniques in 25 out of the total 37 semantic
object classes. Our CMoDE fusion approach achieves the highest performance in the other
10 object classes. While our standard SSMA model outperforms the other techniques
for the shower curtain class and the unimodal visual RGB model achieves the highest
performance for the floor mat class. Interestingly, among all the datasets, the floor mat
object class from the SUN RGB-D dataset is the only category for which the unimodal
visual RGB model achieves the highest performance. This is primarily due to two factors.
The first being that the depth images do not have a high enough resolution to capture
the structure of this object class, rather it appears flat as the floor, which makes learning
geometric features of this object from depth or its transformed HHA variant infeasible.
Secondly, there are only a handful of training examples of this class. Even with image
augmentations, there are less than 40 examples in the entire training dataset. It can be
seen that that the unimodal depth model and all the multimodal fusion techniques do not
detect this object, while the unimodal visual RGB model achieves an IoU score of 0.12%.
The results also demonstrate that the previous state-of-the-art LFC model outperforms
our SSMA_msf model for RGB-HHA fusion by 1.45% only for the bed class, while it is
outperformed by the SSMA_msf model for all the other object classes.

Comparing the performance of our multimodal SSMA_msf models with the unimodal
RGB model, we observe the highest improvement of 39.91% in the IoU score for the
tv class. This class often has a substantial amount of reflections on it which causes
the unimodal visual RGB model to perform poorly. However, our SSMA_msf model
exploits the complementary geometric features to more accurately segment this object.
A significant improvement of 21.64%, 21.52% and 15.21% is observed for the mirror,
bathtub and person categories. Both the mirror and bathtub classes also have reflective
surfaces and the person class is often severely occluded due to clutter in this dataset which
contributes to the poor performance of the unimodal visual RGB model. Our CMoDE
model significantly improves the performance of semantic object classes such as shelves,
counter and blinds by 43.81%, 28.37% and 12.09% respectively. Finally, our standard
SSMA model achieves an improvement of 31.15% for the shower curtain class. Note that
we only described the substantially large improvements, the other object classes also show
notable improvements. It can be observed that on this dataset, the improvement due to
multimodal fusion is significantly larger than on the other datasets due to the indoor nature
of the scenes which enables the depth modality to capture rich information of the entire
scene, unlike in outdoor environments where the depth modality does not provide any
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information for distant objects.

A.4 Evaluation on the ScanNet Dataset

Table A.5 presents the multimodal fusion results on the recently introduced ScanNet
dataset. Our proposed SSMA_msf model outperforms the unimodal models as well as
the multimodal fusion approaches in 13 out of the total of 20 semantic object classes
in the dataset. While our standard SSMA model achieves the highest performance for
4 of the other classes and our CMoDE model achieves the highest performance for the
bookshelf and desk classes. Interestingly the previous state-of-the-art LFC fusion technique
outperforms our SSMA_msf model by 4.55% for the toilet class, while our model achieves
a higher performance for all the other semantic object classes. Nevertheless, comparing
the performance of our SSMA_msf model with the unimodal visual RGB model, we
observe a significant improvement of 34.63% and 31.90% for the bathtub and sink classes
respectively. In addition, we observe a substantial improvement of over 20% for several
semantic object classes including sofa, picture and other furniture.

Comparing the performance of our proposed SSMA_msf model with the FuseNet model
for RGB-D fusion, we observe that our model outperforms FuseNet significantly in 19 out
of the total of 20 semantic object categories. Our model is outperformed by FuseNet by
7.46% for the window class. However, our model outperforms FuseNet in the window class
using RGB-HHA fusion. Similar to the performance of our models on the SUN RGB-D
dataset, the large improvement due to multimodal fusion on this dataset can be attributed
to the indoor scenes for which the depth modality contains rich information. The depth
maps in the ScanNet dataset are considerably less noisy than those in the SUN RGB-D
dataset. This correlates to the larger improvement that we obtain due to multimodal fusion
on this dataset. Moreover, this is the first real world dataset in which the unimodal model
trained on depth images outperforms the corresponding visual RGB model. This shows
that geometry information can be more informative for learning semantics of the scene
than visual appearance information as long at it accurately captures the geometry of the
entire scene. Our results demonstrate that the performance of multimodal fusion is largely
limited by the quality of complementary information captured in the modalities as well as
the noise in the sensor data.

A.5 Evaluation on the Freiburg Forest Dataset

Finally, Table A.6 shows the multimodal fusion results on the Freiburg Forest dataset. This
dataset consists of three inherently different modalities that provide appearance, geometry
and reflectance information. It contains scenarios in challenging perceptual conditions
including low lighting, shadows, glare on the optics, motion blur, snow, over exposure and
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under exposure. However the improvement due to multimodal fusion is not significantly
observed in terms of the performance metrics but rather more in the qualitative results
as shown in Section 5.3.5. The results demonstrate that each of our proposed models:
CMoDE, SSMA and the SSMA_msf variant, outperforms the previous state-of-the-art LFC
model in each of the semantic object categories for both RGB-D and RGB-EVI fusion.
Moreover, it can be seen the performance of our SSMA_msf model for RGB-D fusion
and RGB-EVI fusion, both show similar improvement in comparison to the unimodal
visual RGB model. The results also show that our SSMA_msf model outperforms the
unimodal models as well the other multimodal fusion techniques in each of the semantic
object classes in the dataset. For most semantic object categories, a marginally higher
improvement can be seen using RGB-D fusion. However only the obstacle class achieves
a higher performance using RGB-EVI fusion. Overall, we observe that simple fusion
techniques such as direct concatenation of feature maps from individual modality-specific
network streams at different intermediate network stages are significantly outperformed by
more intelligent dynamic approaches that adapt the fusion of the modality-specific feature
maps based on the observed scene. Nevertheless, the results presented in this section
demonstrate the complexity of multimodal perception.





List of Figures

1.1 The Viona and Obelix robots that we use in our experiments. . . . . . . . 13
1.2 The AIS perception car that we use in our experiments. . . . . . . . . . . 14

2.1 The pinhole camera model. . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Depiction of the biological neuron cell. . . . . . . . . . . . . . . . . . . 21
2.3 Depiction of the artificial neuron cell. . . . . . . . . . . . . . . . . . . . 22
2.4 Three-layer neural network with two hidden layers. . . . . . . . . . . . . 23
2.5 Example architectural topology of a CNN. . . . . . . . . . . . . . . . . . 25
2.6 Topology of residual units. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Ambiguous appearances of terrains. . . . . . . . . . . . . . . . . . . . . 34
3.2 The Pioneer P3-DX platform that we use in our experiments. . . . . . . . 36
3.3 Overview of the data preprocessing pipeline. . . . . . . . . . . . . . . . . 38
3.4 Depiction of our proposed TerrainNet architecture. . . . . . . . . . . . . 40
3.5 Depiction of our proposed TerrainNet++ architecture. . . . . . . . . . . . 42
3.6 Depiction of the Long Short-Term Memory (LSTM) unit. . . . . . . . . . 43
3.7 Examples of terrain categories from our dataset. . . . . . . . . . . . . . . 49
3.8 Comparison of classification error rate of TerrainNet and TerrainNet++. . 53
3.9 Comparison of the recall of the various architecture configurations. . . . . 55
3.10 Inference time comparison of TerrainNet and TerrainNet++. . . . . . . . 57
3.11 Performance comparison of TerrainNet with our recurrent TerrainNet++. . 59
3.12 Comparison of the per-class recall of TerrainNet and TerrainNet++. . . . 60
3.13 Evaluation of TerrainNet++ when subject to different ambient noises. . . 61
3.14 Precision of TerrainNet++ when subject to ambient noises. . . . . . . . . 62
3.15 Precision of TerrainNet++ when subject to white Gaussian noise. . . . . . 63
3.16 Classification error of TerrainNet++ and the noise-aware TerrainNet++. . 65
3.17 Classification error due white Gaussian noise. . . . . . . . . . . . . . . . 66
3.18 Trajectory that the robot followed during the classification experiments. . 67
3.19 Predictions made while the robot was traversing the path. . . . . . . . . . 68
3.20 Comparison on audio data collected using a phone microphone. . . . . . 69

4.1 Example segmentation output from our proposed AdapNet++ model. . . . 76
4.2 Depiction of our AdapNet architecture for semantic segmentation. . . . . 82
4.3 Overview of our proposed Adapnet++ architecture. . . . . . . . . . . . . 85



316 List of Figures

4.4 Depiction of our proposed Adapnet++ encoder. . . . . . . . . . . . . . . 86
4.5 Depiction of the ASPP module and our efficient eASPP module. . . . . . 88
4.6 Illustration of pixel sampling in different 1-D convolutions. . . . . . . . . 89
4.7 Depiction of our proposed AdapNet++ decoder. . . . . . . . . . . . . . . 90
4.8 Depiction of our proposed AdapNet++ decoder with auxiliary losses. . . . 90
4.9 The Viona robot platform that we used for data collection . . . . . . . . . 94
4.10 Example images from our Freiburg Forest dataset. . . . . . . . . . . . . . 95
4.11 Example image from the Cityscapes dataset. . . . . . . . . . . . . . . . . 98
4.12 Example image from the Synthia dataset. . . . . . . . . . . . . . . . . . 99
4.13 Example image from the SUN RGB-D dataset. . . . . . . . . . . . . . . 99
4.14 Example image from the ScanNet dataset. . . . . . . . . . . . . . . . . . 100
4.15 Example data augmentation strategies. . . . . . . . . . . . . . . . . . . . 101
4.16 Evaluation of network compression approaches. . . . . . . . . . . . . . . 111
4.17 Comparison of the receptive field of ASPP and our proposed eASPP. . . . 117
4.18 Influence of the proposed decoder in AdapNet++. . . . . . . . . . . . . . 119
4.19 Qualitative segmentation results on Cityscapes and Synthia datasets. . . . 122
4.20 Qualitative segmentation results on SUN RGB-D and ScanNet datasets. . 124
4.21 Qualitative segmentation results on the Freiburg Forest dataset. . . . . . . 125
4.22 Example failure modes of our AdapNet++ model. . . . . . . . . . . . . . 126
4.23 Qualitative results demonstrating the generalization ability. . . . . . . . . 128

5.1 Misclassifications in real-world scenarios. . . . . . . . . . . . . . . . . . 134
5.2 Topology of our proposed CMoDE fusion module. . . . . . . . . . . . . 139
5.3 The late-fusion architecture incorporating the CMoDE module. . . . . . . 141
5.4 The topology of our proposed SSMA fusion module. . . . . . . . . . . . 142
5.5 Topology of our modified AdapNet++ used for multimodal fusion. . . . . 144
5.6 Depiction of the early and late-fusion approaches. . . . . . . . . . . . . . 147
5.7 Evaluation of the SMMA fusion on the Synthia-Sequences dataset. . . . . 153
5.8 Visualization of activation maps on Cityscapes and Synthia datasets. . . . 161
5.9 Visualization of activation maps on SUN RGB-D and ScanNet datasets. . 162
5.10 Visualization of activation maps on Freiburg Forest dataset. . . . . . . . . 163
5.11 Qualitative multimodal fusion on Cityscapes and Synthia datasets. . . . . 165
5.12 Qualitative multimodal fusion results on SUN and ScanNet datasets. . . . 167
5.13 Qualitative multimodal fusion results on the Freiburg Forest dataset. . . . 169
5.14 Qualitative results in summer, fall, winter, and spring. . . . . . . . . . . . 171
5.15 Qualitative results in dawn, sunset, night, and rain. . . . . . . . . . . . . 172
5.16 Qualitative results in soft-rain, fog, night-rain and winter-night. . . . . . . 173
5.17 Our Viona robot autonomously navigating a forested environment. . . . . 174
5.18 Trajectory traversed by our robot using our multimodal network. . . . . . 175



List of Figures 317

6.1 Illustration of semantic motion segmentation using our proposed model. . 182
6.2 Topology of our proposed SMSnet architecture. . . . . . . . . . . . . . . 188
6.3 Motion and semantic encoder streams of our proposed SMSnet++. . . . . 191
6.4 Topology of the flow transformation module used in SMSnet++. . . . . . 193
6.5 Motion and semantic decoder streams of our proposed SMSnet++. . . . . 195
6.6 Example training data from the Cityscapes-Motion dataset. . . . . . . . . 197
6.7 Example training data from the KITTI-Motion dataset. . . . . . . . . . . 198
6.8 Example training data from the ApolloScape-Motion dataset. . . . . . . . 199
6.9 Motion segmentation at different ranges on Cityscapes & KITTI. . . . . . 210
6.10 Motion segmentation at different ranges on ApolloScape. . . . . . . . . . 211
6.11 Comparison of motion segmentation with different flow transformations. . 216
6.12 Examples of the edge-enhanced optical flow transformation. . . . . . . . 218
6.13 Comparison of motion segmentation with movable and full label sets. . . 220
6.14 Qualitative semantic motion segmentation on Cityscapes dataset. . . . . . 222
6.15 Qualitative semantic motion segmentation on KITTI dataset. . . . . . . . 224
6.16 Qualitative semantic motion segmentation on ApolloScape dataset. . . . . 227
6.17 Qualitative semantic motion segmentation on Freiburg dataset. . . . . . . 230

7.1 Output of our multitask VLocNet++ model. . . . . . . . . . . . . . . . . 238
7.2 Topology of our proposed VLocNet architecture . . . . . . . . . . . . . . 245
7.3 Schematic representation of our proposed VLocNet++ architecture. . . . 248
7.4 Example images from our DeepLoc dataset. . . . . . . . . . . . . . . . . 254
7.5 Example images from the Microsoft 7-Scenes benchmark. . . . . . . . . 256
7.6 Benchmarking 6DoF localization on Microsoft 7-Scenes dataset. . . . . . 263
7.7 Influence of previous pose fusion in our VLocNet architecture. . . . . . . 271
7.8 Influence of our proposed weighted fusion layer in VLocNet++MTL. . . . 275
7.9 Evaluation of different weight initializations in VLocNetMTL. . . . . . . . 276
7.10 3D multi-dimensional scaling of features on the DeepLoc dataset. . . . . 279
7.11 Comparison of the regression activation maps of VLocNet++. . . . . . . 280
7.12 Qualitative localization results on Microsoft 7-Scenes dataset. . . . . . . 282
7.13 Qualitative localization results of VLocNet++MTL on DeepLoc. . . . . . . 283
7.14 Qualitative segmentation results on the DeepLoc dataset. . . . . . . . . . 284
7.15 Challenging qualitative segmentation results. . . . . . . . . . . . . . . . 286





List of Tables

3.1 Comparison of classification accuracies of TerrainNet and TerrainNet++. . 51
3.2 Performance comparison of various architecture configurations. . . . . . 54
3.3 Performance for varying audio clip and LSTM window lengths. . . . . . 56
3.4 Performance comparison of TerrainNet and TerrainNet++ model. . . . . . 56
3.5 Influence of ambient noises on the accuracy of TerrainNet++. . . . . . . . 61
3.6 Influence of ambient noises on accuracy of noise-aware TerrainNet++. . . 64

4.1 Comparison of AdapNet and AdapNet++ on the Cityscapes dataset. . . . 104
4.2 Comparison of AdapNet and AdapNet++ on the Synthia dataset. . . . . . 104
4.3 Benchmarking results on the Cityscapes dataset. . . . . . . . . . . . . . . 105
4.4 Comparison of AdapNet and AdapNet++ on the SUN RGB-D dataset. . . 106
4.5 Comparison of AdapNet and AdapNet++ on the ScanNet dataset. . . . . . 108
4.6 Comparison of AdapNet and AdapNet++ on the Freiburg Forest dataset. . 108
4.7 Bechmarking results on the ScanNet dataset. . . . . . . . . . . . . . . . . 109
4.8 Comparison of network compression approaches on AdapNet++. . . . . . 110
4.9 Effect of the contributions proposed in AdapNet and AdapNet++. . . . . 113
4.10 Evaluation of various atrous spatial pyramid pooling configurations. . . . 115
4.11 Effect on varying the number of filters in the skip refinement connection. . 118
4.12 Effect on varying the weighting factor of the auxiliary losses. . . . . . . . 118
4.13 Effect on varying the number of filters in the skip refinement connection. . 119
4.14 Effect on using higher resolution image and multiscale testing. . . . . . . 121

5.1 Comparison of multimodal fusion on the Cityscapes dataset. . . . . . . . 151
5.2 Comparison of multimodal fusion on the Synthia dataset. . . . . . . . . . 152
5.3 Comparison of multimodal fusion on the SUN RGB-D dataset. . . . . . . 154
5.4 Comparison of multimodal fusion on the ScanNet dataset. . . . . . . . . 155
5.5 Comparison of multimodal fusion on the Freiburg Forest dataset. . . . . . 156
5.6 Effect on varying the output units in the inner-product layer of the AGN. . 158
5.7 Effect of the various contributions that we proposed in SMMA. . . . . . . 159
5.8 Effect of varying the SSMA bottleneck downsampling rate. . . . . . . . . 159

6.1 Comparison of semantic motion segmentation on the Cityscapes. . . . . . 203
6.2 Comparison of semantic motion segmentation on the KITTI. . . . . . . . 204
6.3 Comparison of semantic motion segmentation on the ApolloScape. . . . . 205



320 List of Tables

6.4 Comparison of semantic segmentation performance. . . . . . . . . . . . . 207
6.5 Influence of the contributions proposed in SMSnet and SMSnet++. . . . . 213
6.6 Evaluation of ego-flow suppression. . . . . . . . . . . . . . . . . . . . . 216
6.7 Evaluation of warping semantic features using edge-enhanced flow. . . . 217
6.8 Evaluation of network configurations for learning the flow field. . . . . . 219

7.1 Median localization error on the Microsoft 7-Scenes dataset. . . . . . . . 258
7.2 Localization error on the DeepLoc dataset. . . . . . . . . . . . . . . . . . 259
7.3 6DoF visual odometry on the Microsoft 7-Scenes dataset. . . . . . . . . . 260
7.4 6DoF visual odometry on the on the DeepLoc dataset. . . . . . . . . . . . 260
7.5 Benchmarking single-task models on the Microsoft 7-Scenes dataset. . . . 262
7.6 Benchmarking multitask models on the Microsoft 7-Scenes dataset. . . . 262
7.7 Summary of benchmarking on the Microsoft 7-Scenes dataset. . . . . . . 263
7.8 Benchmarking our multitask models on the DeepLoc dataset. . . . . . . . 264
7.9 Benchmarking visual odometry on the Microsoft 7-Scenes dataset. . . . . 265
7.10 Benchmarking visual odometry on the on the DeepLoc dataset. . . . . . . 265
7.11 Semantic segmentation results on the DeepLoc dataset. . . . . . . . . . . 267
7.12 Comparison of the VLocNet++ base architecture topology. . . . . . . . . 268
7.13 Comparative analysis of different loss functions and loss weightings. . . . 269
7.14 Localization performance with varying amounts of sharing. . . . . . . . . 272
7.15 Improvement in segmentation due to fusion of warped feature maps. . . . 273
7.16 Improvement in performance due to fusion of semantic features. . . . . . 274
7.17 Evaluation of different optimization strategies. . . . . . . . . . . . . . . . 278

A.1 Detailed multimodal segmentation results on the Cityscapes dataset. . . . 304
A.2 Detailed multimodal segmentation results on the Synthia dataset. . . . . . 306
A.3 Detailed RGB-D segmentation results on the SUN RGB-D dataset. . . . . 307
A.4 Detailed RGB-HHA segmentation results on the SUN RGB-D dataset. . . 308
A.5 Detailed multimodal segmentation results on the ScanNet dataset. . . . . 310
A.6 Detailed multimodal segmentation results on the Freiburg Forest dataset. . 312



Bibliography

[1] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A proposal for the
dartmouth summer research project on artificial intelligence, august 31, 1955,” AI
magazine, vol. 27, no. 4, p. 12, 2006.

[2] H. Simon, “The shape of automation for men and management,” Harper and Row,
vol. 40, 1965.

[3] D. Crevier, AI: the tumultuous history of the search for artificial intelligence. Basic
Books, 1993.

[4] “Ai expert newsletter: W is for winter archived 9 november 2013 at the wayback
machine.” https://web.archive.org/web/20131109201636/http://www.ainewsletter.
com/newsletters/aix_0501.htm, 2005, accessed: 10-11-2018.

[5] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[6] D. A. Forsyth and J. Ponce, “A modern approach,” Computer vision: a modern
approach, pp. 88–101, 2003.

[7] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[8] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech, and time
series,” The handbook of brain theory and neural networks, vol. 3361, no. 10, p.
1995, 1995.

[9] I. F. of Robotics, “Executive summary world robotics 2018 industrial robots,” Avail-
able online on http://www. ifr. org, pp. 13–22, 2018.

[10] D. Wettergreen, G. Foil, P. M. Furlong, and D. R. Thompson, “Science autonomy
for rover subsurface exploration of the atacama desert,” AI Magazine, vol. 35, no. 4,
October 2014.

[11] A. R. Lanfranco, A. E. Castellanos, J. P. Desai, and W. C. Meyers, “Robotic surgery:
a current perspective,” Annals of surgery, vol. 239, no. 1, p. 14, 2004.

https://web.archive.org/web/20131109201636/http://www.ainewsletter.com/newsletters/aix_0501.htm
https://web.archive.org/web/20131109201636/http://www.ainewsletter.com/newsletters/aix_0501.htm


322 Bibliography

[12] A. D. Bowen, D. R. Yoerger, C. Taylor, R. McCabe, J. Howland, D. Gomez-Ibanez,
J. C. Kinsey, M. Heintz, G. McDonald, D. B. Peters et al., “The nereus hybrid
underwater robotic vehicle for global ocean science operations to 11,000 m depth,”
in OCEANS 2008, 2008, pp. 1–10.

[13] “irobot corp. irobot: Our history,” http://www.irobot.com/us/Company/About/Our_
History.aspx, 2018, accessed: 10-11-2018.

[14] I. F. of Robotics, “Executive summary world robotics 2018 service robots,” Available
online on http://www. ifr. org, pp. 13–16, 2018.

[15] “Fetch robotics,” http://fetchrobotics.com, 2018, accessed: 10-11-2018.

[16] “Beam robot, suitable technologies,” https://www.suitabletech.com/, 2018, accessed:
10-11-2018.

[17] A. K. Singh and G. Nandi, “Nao humanoid robot,” Robotics Autonomous Systems,
vol. 79, no. C, pp. 108–121, 2016.

[18] T. Shibata, “Development and spread of therapeutic medical robot, paro: Innova-
tion of non-pharmacological therapy for dementia and mental health,” Journal of
Information Processing and Management, vol. 60, no. 4, pp. 217–228, 2017.

[19] “Mars science laboratory curiosity rover,” https://mars.jpl.nasa.gov/msl, 2018, ac-
cessed: 10-11-2018.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p.
436, 2015.

[21] M. Minsky, “Neural nets and the brain-model problem,” Doctoral dissertation,
Princeton University, NJ, 1954.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems, 2012, pp. 1097–1105.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition chal-
lenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,
2015.

[24] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

http://www.irobot.com/us/Company/ About/Our_History.aspx
http://www.irobot.com/us/Company/ About/Our_History.aspx
http://fetchrobotics.com
https://www.suitabletech.com/
https://mars.jpl.nasa.gov/msl


Bibliography 323

[25] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR),
2014, pp. 580–587.

[26] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent
neural networks,” in Proceedings of the 31st International Conference on Machine
Learning (ICML-14), T. Jebara and E. P. Xing, Eds., 2014, pp. 1764–1772.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

[28] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[29] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for
machine comprehension of text,” arXiv preprint arXiv:1606.05250, 2016.

[30] “Waymo,” https://waymo.com, 2018, accessed: 10-11-2018.

[31] “Uber,” https://uber.com, 2018, accessed: 10-11-2018.

[32] “Navya,” https://navya.tech, 2018, accessed: 10-11-2018.

[33] P. Gao, H.-W. Kaas, D. Mohr, and D. Wee, “Automotive revolution–perspective
towards 2030 how the convergence of disruptive technology-driven trends could
transform the auto industry,” Advanced Industries, McKinsey & Company, 2016.

[34] N. Radwan, A. Valada, and W. Burgard, “Vlocnet++: Deep multitask learning for
semantic visual localization and odometry,” IEEE Robotics And Automation Letters
(RA-L), vol. 3, no. 4, pp. 4407–4414, 2018.

[35] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J.-A. Fernandez-Madrigal, and
J. González, “Multi-hierarchical semantic maps for mobile robotics,” in Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2005, pp. 2278–2283.

[36] R. Drouilly, P. Rives, and B. Morisset, “Semantic representation for navigation in
large-scale environments,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2015, pp. 1106–1111.

[37] M. Johnson-Roberson, J. Bohg, G. Skantze, J. Gustafson, R. Carlson, B. Rasolzadeh,
and D. Kragic, “Enhanced visual scene understanding through human-robot dialog,”

https://waymo.com
https://uber.com
https://navya.tech


324 Bibliography

in International Conference on Intelligent Robots and Systems (IROS), 2011, pp.
3342–3348.

[38] “Marble - urban last-mile robots,” https://angel.co/marble-1l, 2018, accessed: 10-
11-2018.

[39] M. Joerss, J. Schröder, F. Neuhaus, C. Klink, and F. Mann, “Parcel delivery: The
future of last mile,” McKinsey & Company, 2016.

[40] S. S. Srinivasa, D. Ferguson, C. J. Helfrich, D. Berenson, A. Collet, R. Diankov,
G. Gallagher, G. Hollinger, J. Kuffner, and M. V. Weghe, “Herb: a home exploring
robotic butler,” Autonomous Robots, vol. 28, no. 1, p. 5, 2010.

[41] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-time.” in
Robotics: Science and Systems, vol. 2, 2014, p. 9.

[42] T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Stenborg, D. Safari,
M. Okutomi, M. Pollefeys, J. Sivic et al., “Benchmarking 6dof outdoor visual
localization in changing conditions,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, 2018.

[43] W. Winterhalter, F. Fleckenstein, B. Steder, L. Spinello, and W. Burgard, “Accurate
indoor localization for RGB-D smartphones and tablets given 2D floor plans,” in
International Conference on Intelligent Robots and Systems (IROS), 2015.

[44] T. Naseer, G. Oliveira, T. Brox, and W. Burgard, “Semantics-aware visual lo-
calization under challenging perceptual conditions,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2017.

[45] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard, “Autonomous
robot navigation in highly populated pedestrian zones,” Journal of Field Robotics,
vol. 32, no. 4, pp. 565–589, 2015.

[46] J. Maye, P. Furgale, and R. Siegwart, “Self-supervised calibration for robotic sys-
tems,” in 2013 IEEE Intelligent Vehicles Symposium (IV), 2013, pp. 473–480.

[47] A. Valada, L. Spinello, and W. Burgard, “Deep feature learning for acoustics-based
terrain classification,” in Proceedings of the International Symposium of Robotics
Research, 2015.

[48] G. Oliveira, A. Valada, C. Bollen, W. Burgard, and T. Brox, “Deep learning for hu-
man part discovery in images,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2016.

https://angel.co/marble-1l


Bibliography 325

[49] A. Valada, G. L. Olivera, T. Brox, and W. Burgard, “Towards robust semantic
segmentation using deep fusion,” in In Proceedings of the Workshop on Limits and
Potentials of Deep Learning in Robotics at Robotics: Science and Systems (RSS),
2016.

[50] A. Valada, G. Oliveira, T. Brox, and W. Burgard, “Deep multispectral semantic scene
understanding of forested environments using multimodal fusion,” in Proceedings
of the International Symposium for Experimental Robotics, 2016.

[51] A. Valada, A. Dhall, and W. Burgard, “Convoluted mixture of deep experts for
robust semantic segmentation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) Workshop, State Estimation and Terrain Perception for
All Terrain Mobile Robots, 2016.

[52] A. Valada and W. Burgard, “Deep spatiotemporal models for robust proprioceptive
terrain classification,” International Journal of Robotics Research, vol. 36, no. 13-14,
pp. 1521i–1539, 2017.

[53] A. Valada, J. Vertens, A. Dhall, and W. Burgard, “Adapnet: Adaptive semantic
segmentation in adverse environmental conditions,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2017.

[54] J. Vertens, A. Valada, and W. Burgard, “Smsnet: Semantic motion segmentation
using deep convolutional neural networks,” in International Conference on Intelli-
gent Robots and Systems (IROS), 2017.

[55] W. Burgard, A. Valada, N. Radwan, T. Naseer, J. Zhang, J. Vertens, O. Mees,
A. Eitel, and G. Oliveira, “Perspectives on deep multimodel robot learning,” in
Proceedings of the International Symposium of Robotics Research, 2017.

[56] A. Valada, N. Radwan, and W. Burgard, “Deep auxiliary learning for visual local-
ization and odometry,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[57] A. Valada and W. Burgard, “Learning reliable and scalable representations using
multimodal multitask deep learning,” in In Proceedings of RSS Pioneers at Robotics:
Science and Systems (RSS), 2018.

[58] A. Valada, N. Radwan, and W. Burgard, “Incorporating semantic and geometric
priors in deep pose regression,” in In Proceedings of the Workshop on Learning
and Inference in Robotics: Integrating Structure, Priors and Models at Robotics:
Science and Systems (RSS), 2018.



326 Bibliography

[59] A. Valada, R. Mohan, and W. Burgard, “Self-supervised model adaptation for
multimodal semantic segmentation,” arXiv preprint arXiv:1808.03833, 2018.

[60] F. Boniardi, A. Valada, W. Burgard, and G. D. Tipaldi, “Autonomous indoor robot
navigation using sketched maps and routes,” in RSS Workshop on Model Learning
for Human-Robot Communication, 2015.

[61] ——, “Autonomous indoor robot navigation using a sketch interface for drawning
maps and routes,” in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2016.

[62] N. Radwan, A. Valada, and W. Burgard, “Multimodal interaction-aware motion
prediction for autonomous street crossing,” arXiv preprint arXiv:1808.06887, 2018.

[63] M. Mittal, A. Valada, and W. Burgard, “Vision-based autonomous landing in
catastrophe-struck environments,” in In Proceedings of the Workshop on Vision-
based Drones: What’s Next? at the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2018.

[64] B. Blaus, “Medical gallery of blausen medical 2014,” WikiJournal of Medicine,
vol. 1, no. 2, 2014.

[65] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the International Conference in Machine Learning
(ICML), 2010, pp. 807–814.

[66] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.

[67] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” in
International Conference on Learning Representations (ICLR), 2016.

[68] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing
model uncertainty in deep learning,” in Proceedings of the International Conference
in Machine Learning (ICML), 2016, pp. 1050–1059.

[69] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400,
2013.

[70] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” arXiv preprint
arXiv:1409.4842, 2014.

[71] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected
convolutional networks,” arXiv preprint arXiv:1608.06993, 2016.



Bibliography 327

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,”
in The European Conference on Computer Vision (ECCV), 2016, pp. 630–645.

[73] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt,
P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rum-
mel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney, “Stanley: The robot that won the darpa
grand challenge,” Journal of Field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[74] B. Suger, B. Steder, and W. Burgard, “Traversability analysis for mobile robots in
outdoor environments: A semi-supervised learning approach based on 3d-lidar data,”
in Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2015.

[75] C. A. Brooks and K. Iagnemma, “Vibration-based terrain classification for planetary
exploration rovers,” IEEE Transactions on Robotics, vol. 21, no. 6, pp. 1185–1191,
Dec 2005.

[76] J. Libby and A. T. Stentz, “Using sound to classify vehicle-terrain interactions in
outdoor environments,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), May 2012.

[77] J. Christe and N. Kottege, “Acoustics based terrain classification for legged robots,”
in Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2016.

[78] M. C. Ozkul, A. Saranli, and Y. Yazicioglu, “Acoustic surface perception from
naturally occurring step sounds of a dexterous hexapod robot,” Mechanical Systems
and Signal Processing, vol. 40, no. 1, pp. 178–193, 2013.

[79] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan, “The
pothole patrol: Using a mobile sensor network for road surface monitoring,” in
The Sixth Annual International conference on Mobile Systems, Applications and
Services (MobiSys 2008), Breckenridge, U.S.A., June 2008.

[80] C. Weiss, H. Frohlich, and A. Zell, “Vibration-based terrain classification using
support vector machines,” in International Conference on Intelligent Robots and
Systems (IROS), Oct 2006, pp. 4429–4434.

[81] G.-Y. Sung, D.-M. Kwak, and J. Lyou, “Neural network based terrain classification
using wavelet features,” Journal of Intelligent & Robotic Systems, vol. 59, no. 3, pp.
269–281, 2010.



328 Bibliography

[82] X. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition under
difficult lighting conditions,” IEEE Transactions on Image Processing, vol. 19, no. 6,
pp. 1635–1650, 2010.

[83] S. Otte, S. Laible, R. Hanten, M. Liwicki, and A. Zell, “Robust visual terrain
classification with recurrent neural networks,” in In Proc. of European Symposium
on Artificial Neural Networks, 2015.

[84] A. Santamaria-Navarro, E. H. Teniente, M. Morta, and J. Andrade-Cetto, “Terrain
classification in complex three-dimensional outdoor environments,” Journal of Field
Robotics, vol. 32, no. 1, pp. 42–60, 2015.

[85] S. T. Namin, M. Najafi, and L. Petersson, “Multi-view terrain classification using
panoramic imagery and lidar,” in International Conference on Intelligent Robots
and Systems (IROS), Sept 2014, pp. 4936–4943.

[86] I. Posner, M. Cummins, and P. Newman, “Fast probabilistic labeling of city maps,”
Proceedings of Robotics: Science and Systems IV, Zurich, Switzerland, 2008.

[87] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu, U. Muller,
and Y. LeCun, “Learning long-range vision for autonomous off-road driving,” Jour-
nal of Field Robotics, vol. 26, no. 2, pp. 120–144, Feb. 2009.

[88] U. A. Muller, L. D. Jackel, Y. LeCun, and B. Flepp, “Real-time adaptive off-road
vehicle navigation and terrain classification,” Proc. SPIE, vol. 8741, pp. 87 410A–
87 410A–19, 2013.

[89] P. A. Plonski, P. Tokekar, and V. Isler, “Energy-efficient path planning for solar-
powered mobile robots,” Journal of Field Robotics, vol. 30, no. 4, pp. 583–601,
2013.

[90] J. Thiemann, N. Ito, and E. Vincent, “The diverse environments multi-channel
acoustic noise database (demand): A database of multichannel environmental noise
recordings,” in 21st International Congress on Acoustics, 2013.

[91] P. Khunarsal, C. Lursinsap, and T. Raicharoen, “Very short time environmental
sound classification based on spectrogram pattern matching,” Information Sciences,
vol. 243, pp. 57 – 74, 2013.

[92] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors,” arXiv
preprint arXiv:1207.0580, 2012.



Bibliography 329

[93] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in The IEEE International
Conference on Computer Vision (ICCV), 2015.

[94] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in neural information processing systems, 2014, pp. 3104–
3112.

[95] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for vi-
sual recognition and description,” in CVPR, 2015.

[96] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[97] B. E. Kingsbury, N. Morgan, and S. Greenberg, “Robust speech recognition using
the modulation spectrogram,” Speech communication, vol. 25, no. 1-3, pp. 117–132,
1998.

[98] P. Boersma and D. Weenink, “Praat: doing phonetics by computer [computer
program],” in Version 5.3.51, retrieved 2 June 2013 from http://www.praat.org/,
2013.

[99] T. Giannakopoulos, D. Kosmopoulos, A. Aristidou, and S. Theodoridis, Advances
in Artificial Intelligence: 4th Helenic Conference on AI, SETN 2006, Heraklion,
Crete, Greece, May 18-20, 2006. Proceedings. Springer Berlin Heidelberg, 2006,
ch. Violence Content Classification Using Audio Features, pp. 502–507.

[100] M. C. Wellman, N. Srour, and D. B. Hillis, “Feature extraction and fusion of acoustic
and seismic sensors for target identification,” Proc. SPIE, vol. 3081, pp. 139–145,
1997.

[101] D. P. W. Ellis, “Classifying music audio with timbral and chroma features,” in 8th
International Conference on Music Information Retrieval, 2007.

[102] G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,” IEEE
Transactions on Speech and Audio Processing, vol. 10, no. 5, pp. 293–302, Jul 2002.

[103] B. Verma, Pattern Recognition Technologies and Applications: Recent Advances:
Recent Advances. IGI Global, 2008.

[104] F. Zheng, G. Zhang, and Z. Song, “Comparison of different implementations of
mfcc,” Journal of Computer science and Technology, vol. 16, no. 6, pp. 582–589,
2001.



330 Bibliography

[105] M. A. Bartsch and G. H. Wakefield, “Audio thumbnailing of popular music using
chroma-based representations,” IEEE Transactions on multimedia, vol. 7, no. 1, pp.
96–104, 2005.

[106] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv
preprint arXiv:1408.5093, 2014.

[107] W. Zaremba and I. Sutskever, “Learning to execute,” arxiv preprint arxiv: 1410.4615,
2014.

[108] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS’10). Society for Artificial Intelligence and
Statistics, 2010.

[109] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of
machine learning algorithms,” in Advances in neural information processing systems,
2012, pp. 2951–2959.

[110] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[111] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,” ACM
transactions on intelligent systems and technology (TIST), vol. 2, no. 3, p. 27, 2011.

[112] P. C. Loizou, Speech Enhancement: Theory and Practice, ser. Signal processing
and communications. CRC press, 2007.

[113] L. Ojeda, J. Borenstein, G. Witus, and R. Karlsen, “Terrain characterization and
classification with a mobile robot,” Journal of Field Robotics, vol. 23, no. 2, pp.
103–122, 2006.

[114] E. Trautmann and L. Ray, “Mobility characterization for autonomous mobile robots
using machine learning,” Autonomous Robots, vol. 30, no. 4, pp. 369–383, 2011.

[115] M. A. Hoepflinger, C. D. Remy, M. Hutter, L. Spinello, and R. Siegwart, “Haptic
terrain classification for legged robots,” in 2010 IEEE International Conference on
Robotics and Automation, May 2010, pp. 2828–2833.

[116] G. Best, P. Moghadam, N. Kottege, and L. Kleeman, “Terrain classification using a
hexapod robot,” in Australasian Conference on Robotics and Automation, 2013.



Bibliography 331

[117] C. A. Brooks and K. D. Iagnemma, “Self-supervised classification for planetary
rover terrain sensing,” in Aerospace Conference, 2007 IEEE, March 2007, pp. 1–9.

[118] R. S. Durst and E. P. Krotkov, “Object classification from analysis of impact acous-
tics,” in Intelligent Robots and Systems 95.’Human Robot Interaction and Cooper-
ative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol. 1,
1995, pp. 90–95.

[119] L. Fei-Fei, C. Koch, A. Iyer, and P. Perona, “What do we see when we glance at a
scene?” Journal of Vision, vol. 4, no. 8, pp. 863–863, 2004.

[120] Y. Xiang and D. Fox, “Da-rnn: Semantic mapping with data associated recurrent
neural networks,” arXiv preprint arXiv:1703.03098, 2017.

[121] N. Audebert, B. Le Saux, and S. Lefèvre, “Beyond rgb: Very high resolution urban
remote sensing with multimodal deep networks,” ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 140, pp. 20–32, 2018.

[122] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in International Conference on Medical image
computing and computer-assisted intervention, 2015, pp. 234–241.

[123] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, “Largescale image retrieval with
attentive deep local features,” in The IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 3456–3465.

[124] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and support
inference from rgbd images,” in The European Conference on Computer Vision
(ECCV), 2012, pp. 746–760.

[125] Y. Zhu, R. Urtasun, R. Salakhutdinov, and S. Fidler, “segdeepm: Exploiting seg-
mentation and context in deep neural networks for object detection,” in Proceedings
of the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 4703–4711.

[126] A. Ošep, A. Hermans, F. Engelmann, D. Klostermann, M. Mathias, and B. Leibe,
“Multi-scale object candidates for generic object tracking in street scenes,” in Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 3180–3187.

[127] H. Zhang, A. Geiger, and R. Urtasun, “Understanding high-level semantics by
modeling traffic patterns,” in The IEEE International Conference on Computer
Vision (ICCV), 2013, pp. 3056–3063.



332 Bibliography

[128] A. Kundu, Y. Li, F. Dellaert, F. Li, and J. M. Rehg, “Joint semantic segmentation
and 3d reconstruction from monocular video,” in The European Conference on
Computer Vision (ECCV), 2014, pp. 703–718.

[129] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost for image understand-
ing: Multi-class object recognition and segmentation by jointly modeling texture,
layout, and context,” International Journal of Computer Vision, vol. 81, no. 1, pp.
2–23, 2009.

[130] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr, “Associative hierarchical crfs
for object class image segmentation,” in The IEEE International Conference on
Computer Vision (ICCV), 2009, pp. 739–746.

[131] S. Gould, R. Fulton, and D. Koller, “Decomposing a scene into geometric and se-
mantically consistent regions,” in The IEEE International Conference on Computer
Vision (ICCV), 2009, pp. 1–8.

[132] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolu-
tion for semantic image segmentation,” arXiv preprint arXiv:1706.05587, 2017.

[133] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to scale: Scale-
aware semantic image segmentation,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 3640–
3649.

[134] G. Papandreou, I. Kokkinos, and P.-A. Savalle, “Modeling local and global defor-
mations in deep learning: Epitomic convolution, multiple instance learning, and
sliding window detection,” in Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 390–399.

[135] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in
Proceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[136] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” arXiv preprint arXiv:
1511.00561, 2015.

[137] G. L. Oliveira, C. Bollen, W. Burgard, and T. Brox, “Efficient and robust deep
networks for semantic segmentation,” International Journal of Robotics Research,
vol. 37, no. 4-5, pp. 472–491, 2018.



Bibliography 333

[138] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs,” arxiv preprint arXiv: 1606.00915, 2016.

[139] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hypercolumns for object
segmentation and fine-grained localization,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp.
447–456.

[140] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional
neural networks for resource efficient inference,” International Conference on
Learning Representations (ICLR), 2017.

[141] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolu-
tional networks through network slimming,” in The IEEE International Conference
on Computer Vision (ICCV), 2017.

[142] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolutional
neural networks,” ACM Journal on Emerging Technologies in Computing Systems
(JETC), vol. 13, no. 3, p. 32, 2017.

[143] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene under-
standing,” in Proceedings of the IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[144] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The SYNTHIA
Dataset: A large collection of synthetic images for semantic segmentation of urban
scenes,” in Proceedings of the IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[145] S. Song, S. P. Lichtenberg, and J. Xiao, “Sun rgb-d: A rgb-d scene understand-
ing benchmark suite.” in Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), vol. 5, 2015, p. 6.

[146] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, “Scan-
net: Richly-annotated 3d reconstructions of indoor scenes,” in Proceedings of
the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[147] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional
networks for visual recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.



334 Bibliography

[148] C. Liang-Chieh, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, “Semantic
image segmentation with deep convolutional nets and fully connected crfs,” in
International Conference on Learning Representations (ICLR), 2015.

[149] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised nets,” in
Artificial Intelligence and Statistics, 2015, pp. 562–570.

[150] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Advances in
Neural Information Processing Systems, 1990, pp. 598–605.

[151] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep
neural networks,” in Advances in Neural Information Processing Systems, 2016, pp.
2074–2082.

[152] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for
efficient convnets,” International Conference on Learning Representations (ICLR),
2017.

[153] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[154] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-
tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[155] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,” Communi-
cations of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[156] A. Huete, C. Justice, and W. Van Leeuwen, “Modis vegetation index (mod13),”
Algorithm theoretical basis document, vol. 3, p. 213, 1999.

[157] H. Hirschmuller, “Accurate and efficient stereo processing by semi-global matching
and mutual information,” in Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), vol. 2, 2005, pp. 807–814.

[158] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for depth estimation
from a single image,” in Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 5162–5170.

[159] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,



Bibliography 335

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, software available from tensorflow.org.

[160] J. Ku, A. Harakeh, and S. L. Waslander, “In defense of classical image processing:
Fast depth completion on the cpu,” arXiv preprint arXiv:1802.00036, 2018.

[161] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich features from rgb-d
images for object detection and segmentation,” in The European Conference on
Computer Vision (ECCV), 2014.

[162] C. Hazirbas, L. Ma, C. Domokos, and D. Cremers, “Fusenet: incorporating depth
into semantic segmentation via fusion-based cnn architecture,” in Proceedings of
the Asian Conference on Computer Vision, 2016.

[163] A. Eitel, J. T. Springenberg, L. Spinello, M. A. Riedmiller, and W. Burgard, “Multi-
modal deep learning for robust rgb-d object recognition,” in International Confer-
ence on Intelligent Robots and Systems (IROS), 2015.

[164] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and support
inference from rgbd images,” in The European Conference on Computer Vision
(ECCV), 2012.

[165] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and T. Darrell, “A
category-level 3d object dataset: Putting the kinect to work,” in Proceedings of the
IEEE International Conference on Consumer Depth Cameras for Computer Vision,
2013, pp. 141–165.

[166] J. Xiao, A. Owens, and A. Torralba, “Sun3d: A database of big spaces reconstructed
using sfm and object labels,” in The IEEE International Conference on Computer
Vision (ICCV), 2013.

[167] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in Proceedings of the IEEE International Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2009.

[168] W. Liu, A. Rabinovich, and A. C. Berg, “Parsenet: Looking wider to see better,”
arXiv preprint arXiv: 1506.04579, 2015.

[169] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic
segmentation,” in The IEEE International Conference on Computer Vision (ICCV),
2015, pp. 1520–1528.

[170] S. R. Bulò, L. Porzi, and P. Kontschieder, “In-place activated batchnorm for memory-
optimized training of dnns,” in Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.



336 Bibliography

[171] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder
with atrous separable convolution for semantic image segmentation,” arXiv preprint
arXiv:1802.02611, 2018.

[172] L.-C. Chen, M. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H. Adam,
and J. Shlens, “Searching for efficient multi-scale architectures for dense image
prediction,” in Advances in Neural Information Processing Systems, 2018, pp.
8713–8724.

[173] Y. Zhuang, F. Yang, L. Tao, C. Ma, Z. Zhang, Y. Li, H. Jia, X. Xie, and W. Gao,
“Dense relation network: Learning consistent and context-aware representation for
semantic image segmentation,” in 2018 25th IEEE International Conference on
Image Processing (ICIP), 2018, pp. 3698–3702.

[174] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neural network
architecture for real-time semantic segmentation,” arXiv preprint arXiv:1606.02147,
2016.

[175] A. Dai and M. Nießner, “3dmv: Joint 3d-multi-view prediction for 3d semantic
scene segmentation,” arXiv preprint arXiv:1803.10409, 2018.

[176] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Object detectors
emerge in deep scene cnns,” arXiv preprint arXiv:1412.6856, 2014.

[177] P. Kohli, L. Ladicky, and P. H. Torr, “Robust higher order potentials for enforcing
label consistency,” International Journal of Computer Vision, vol. 82, no. 3, pp.
302–324, 2009.

[178] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transforma-
tions for deep neural networks,” in Proceedings of the IEEE International Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5987–5995.

[179] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” arXiv preprint
arXiv:1709.01507, 2017.

[180] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” arXiv
preprint arXiv:1610.02357, 2016.

[181] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class segmentation and object localization
with superpixel neighborhoods,” in The IEEE International Conference on Computer
Vision (ICCV), 2009.

[182] P. Sturgess, K. Alahari, L. Ladicky, and P. H. S. Torr, “Combining Appearance and
Structure from Motion Features for Road Scene Understanding,” in Proceedings of
the British Machine Vision Conference, 2009.



Bibliography 337

[183] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests for image catego-
rization and segmentation,” in Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), 2008.

[184] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation and recog-
nition using structure from motion point clouds,” in The European Conference on
Computer Vision (ECCV), D. Forsyth, P. Torr, and A. Zisserman, Eds., 2008.

[185] C. Zhang, L. Wang, and R. Yang, “Semantic segmentation of urban scenes using
dense depth maps,” in The European Conference on Computer Vision (ECCV),
K. Daniilidis, P. Maragos, and N. Paragios, Eds., 2010.

[186] N. Plath, M. Toussaint, and S. Nakajima, “Multi-class image segmentation using
conditional random fields and global classification,” in Proceedings of the Interna-
tional Conference in Machine Learning (ICML), 2009.

[187] D. Grangier, L. Bottou, and R. Collobert, “Deep convolutional networks for scene
parsing,” in ICML Workshop on Deep Learning, 2009.

[188] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Scene parsing with multiscale
feature learning, purity trees, and optimal covers,” in Proceedings of the Interna-
tional Conference in Machine Learning (ICML), 2012.

[189] P. O. Pinheiro and R. Collobert, “Recurrent convolutional neural networks for scene
labeling,” in Proceedings of the International Conference in Machine Learning
(ICML), 2014.

[190] G. Lin, A. Milan, C. Shen, and I. D. Reid, “RefineNet: Multi-path refinement
networks for high-resolution semantic segmentation,” in Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), Jul.
2017.

[191] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected crfs with
gaussian edge potentials,” in Advances in Neural Information Processing Systems,
2011, pp. 109–117.

[192] G. Lin, C. Shen, A. Van Den Hengel, and I. Reid, “Efficient piecewise training of
deep structured models for semantic segmentation,” in Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 3194–3203.

[193] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,
and P. H. Torr, “Conditional random fields as recurrent neural networks,” in The
IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1529–1537.



338 Bibliography

[194] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang, “Semantic image segmentation via
deep parsing network,” in The IEEE International Conference on Computer Vision
(ICCV), 2015, pp. 1377–1385.

[195] R. Vemulapalli, O. Tuzel, M.-Y. Liu, and R. Chellapa, “Gaussian conditional random
field network for semantic segmentation,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 3224–
3233.

[196] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich, “Feedforward semantic
segmentation with zoom-out features,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3376–
3385.

[197] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture,” in Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 2650–2658.

[198] Z. Wu, C. Shen, and A. v. d. Hengel, “Bridging category-level and instance-level
semantic image segmentation,” arXiv preprint arXiv:1605.06885, 2016.

[199] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell, “Under-
standing convolution for semantic segmentation,” arXiv preprint arXiv:1702.08502,
2017.

[200] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable convolu-
tional networks,” arXiv preprint arXiv:1703.06211, 2017.

[201] L. Schneider, M. Jasch, B. Fröhlich, T. Weber, U. Franke, M. Pollefeys, and
M. Rätsch, “Multimodal neural networks: Rgb-d for semantic segmentation and
object detection,” in Image Analysis, P. Sharma and F. M. Bianchi, Eds., Cham,
2017, pp. 98–109.

[202] R. M. Cichy, D. Pantazis, and A. Oliva, “Similarity-based fusion of meg and fmri
reveals spatio-temporal dynamics in human cortex during visual object recognition,”
Cerebral Cortex, vol. 26, no. 8, pp. 3563–3579, 2016.

[203] S. W. Running, R. Nemani, J. M. Glassy, and P. E. Thornton, “Modis daily photo-
synthesis (psn) and annual net primary production (npp) product (mod17) algorithm
theoretical basis document,” University of Montana, SCF At-Launch Algorithm
ATBD Documents, 1999.



Bibliography 339

[204] A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional
networks,” arXiv preprint arXiv:1710.11063, 2017.

[205] X. Ren, L. Bo, and D. Fox, “Rgb-(d) scene labeling: Features and algorithms,” in
Proceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[206] L. Bo, X. Ren, and D. Fox, “Unsupervised feature learning for rgb-d based object
recognition,” in Experimental Robotics, 2013, pp. 387–402.

[207] ——, “Hierarchical matching pursuit for image classification: Architecture and
fast algorithms,” in Advances in Neural Information Processing Systems, 2011, pp.
2115–2123.

[208] D. Munoz, J. A. Bagnell, and M. Hebert, “Co-inference for multi-modal scene
analysis,” in The European Conference on Computer Vision (ECCV), 2012.

[209] A. Hermans, G. Floros, and B. Leibe, “Dense 3d semantic mapping of indoor
scenes from rgb-d images,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2014.

[210] D.-K. Kim, D. Maturana, M. Uenoyama, and S. Scherer, “Season-invariant semantic
segmentation with a deep multimodal network,” in Field and Service Robotics,
2017.

[211] Z. Li, Y. Gan, X. Liang, Y. Yu, H. Cheng, and L. Lin, “Lstm-cf: Unifying con-
text modeling and fusion with lstms for rgb-d scene labeling,” in The European
Conference on Computer Vision (ECCV), 2016.

[212] W. Wang and U. Neumann, “Depth-aware cnn for rgb-d segmentation,” arXiv
preprint arXiv:1803.06791, 2018.

[213] C. Couprie, C. Farabet, L. Najman, and Y. LeCun, “Indoor semantic segmentation
using depth information,” arXiv preprint arXiv:1301.3572, 2013.

[214] J. Jiang, L. Zheng, F. Luo, and Z. Zhang, “Rednet: Residual encoder-decoder
network for indoor rgb-d semantic segmentation,” arXiv preprint arXiv:1806.01054,
2018.

[215] D. Lin, G. Chen, D. Cohen-Or, P.-A. Heng, and H. Huang, “Cascaded feature
network for semantic segmentation of rgb-d images,” in The IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 1320–1328.



340 Bibliography

[216] X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun, “3d graph neural networks for rgbd
semantic segmentation,” in Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5199–5208.

[217] D. Lin, S. Fidler, and R. Urtasun, “Holistic scene understanding for 3d object
detection with rgbd cameras,” in The IEEE International Conference on Computer
Vision (ICCV), 2013, pp. 1417–1424.

[218] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng, “Convolutional-
recursive deep learning for 3d object classification,” in Advances in Neural Informa-
tion Processing Systems, 2012, pp. 656–664.

[219] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of
local experts,” Neural computation, vol. 3, no. 1, pp. 79–87, 1991.

[220] D. Eigen, M. Ranzato, and I. Sutskever, “Learning factored representations in a
deep mixture of experts,” arXiv preprint arXiv:1312.4314, 2013.

[221] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” AT&T
Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, vol. 2, 2010.

[222] Y. Cheng, R. Cai, Z. Li, X. Zhao, and K. Huang, “Locality-sensitive deconvolution
networks with gated fusion for rgb-d indoor semantic segmentation,” in Proceedings
of the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 3, 2017.

[223] O. Mees, A. Eitel, and W. Burgard, “Choosing smartly: Adaptive multimodal fusion
for object detection in changing environments,” in International Conference on
Intelligent Robots and Systems (IROS), 2016, pp. 151–156.

[224] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial intelligence,
vol. 17, no. 1-3, pp. 185–203, 1981.

[225] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet
2.0: Evolution of optical flow estimation with deep networks,” in Proceedings of
the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 2, 2017, p. 6.

[226] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade, “Three-dimensional scene
flow,” in The IEEE International Conference on Computer Vision (ICCV), vol. 2,
1999, pp. 722–729.

[227] E. Ilg, T. Saikia, M. Keuper, and T. Brox, “Occlusions, motion and depth boundaries
with a generic network for disparity, optical flow or scene flow estimation,” arXiv
preprint arXiv:1808.01838, 2018.



Bibliography 341

[228] P. Bideau and E. Learned-Miller, “It’s moving! a probabilistic model for causal mo-
tion segmentation in moving camera videos,” in European Conference on Computer
Vision, 2016, pp. 433–449.

[229] P. H. Torr, “Geometric motion segmentation and model selection,” Philosophi-
cal Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, vol. 356, no. 1740, pp. 1321–1340, 1998.

[230] P. Ochs, J. Malik, and T. Brox, “Segmentation of moving objects by long term video
analysis,” IEEE transactions on pattern analysis and machine intelligence, vol. 36,
no. 6, pp. 1187–1200, 2014.

[231] A. Papazoglou and V. Ferrari, “Fast object segmentation in unconstrained video,” in
The IEEE International Conference on Computer Vision (ICCV), 2013, pp. 1777–
1784.

[232] D. Reddy, P. Singhal, and M. Krishna, “Semantic motion segmentation using dense
crf formulation,” in Proceedings of the 2014 Indian Conference on Computer Vision
Graphics and Image Processing, 2014, p. 56.

[233] Q. Fan, Y. Yi, L. Hao, F. Mengyin, and W. Shunting, “Semantic motion segmentation
for urban dynamic scene understanding,” in Automation Science and Engineering
(CASE), 2016 IEEE International Conference on, 2016, pp. 497–502.

[234] T.-H. Lin and C.-C. Wang, “Deep learning of spatio-temporal features with
geometric-based moving point detection for motion segmentation,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA),
2014, pp. 3058–3065.

[235] P. Tokmakov, K. Alahari, and C. Schmid, “Learning motion patterns in videos,” in
Proceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 531–539.

[236] K. Fragkiadaki, P. Arbelaez, P. Felsen, and J. Malik, “Learning to segment mov-
ing objects in videos,” in Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 4083–4090.

[237] N. Haque, D. Reddy, and M. Krishna, “Joint semantic and motion segmen-
tation for dynamic scenes using deep convolutional networks,” arXiv preprint
arXiv:1704.08331, 2017.

[238] R. Gadde, V. Jampani, and P. V. Gehler, “Semantic video cnns through representation
warping,” in The IEEE International Conference on Computer Vision (ICCV), Oct.
2017.



342 Bibliography

[239] N. Haque, D. Reddy, and M. Krishna, “Kitti semantic ground truth,” https://github.
com/native93/KITTI-Semantic-Ground-Truth/, 2016.

[240] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin, and R. Yang, “The
apolloscape dataset for autonomous driving,” arXiv preprint arXiv: 1803.06184,
2018.

[241] E. Shelhamer, K. Rakelly, J. Hoffman, and T. Darrell, “Clockwork convnets for
video semantic segmentation,” in The European Conference on Computer Vision
(ECCV), 2016, pp. 852–868.

[242] R. Gadde, V. Jampani, M. Kiefel, D. Kappler, and P. V. Gehler, “Superpixel con-
volutional networks using bilateral inceptions,” in The European Conference on
Computer Vision (ECCV), 2016, pp. 597–613.

[243] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox,
“A large dataset to train convolutional networks for disparity, optical flow, and scene
flow estimation,” in Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 4040–4048.

[244] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-
Hornung, “A benchmark dataset and evaluation methodology for video object
segmentation,” in Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[245] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open source
movie for optical flow evaluation,” in The European Conference on Computer Vision
(ECCV), Oct. 2012, pp. 611–625.

[246] T. Brox and J. Malik, “Object segmentation by long term analysis of point trajecto-
ries,” in The European Conference on Computer Vision (ECCV), 2010.

[247] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in Pro-
ceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[248] G. Ros, S. Ramos, M. Granados, A. Bakhtiary, D. Vazquez, and A. M. Lopez,
“Vision-based offline-online perception paradigm for autonomous driving,” in IEEE
Winter Conference on Applications of Computer Vision (WACV), 2015, pp. 231–238.

[249] P. Xu, F. Davoine, J.-B. Bordes, H. Zhao, and T. Denœux, “Multimodal information
fusion for urban scene understanding,” Machine Vision and Applications, vol. 27,
no. 3, pp. 331–349, 2016.

https://github.com/native93/KITTI-Semantic-Ground-Truth/
https://github.com/native93/KITTI-Semantic-Ground-Truth/


Bibliography 343

[250] M. Siam, H. Mahgoub, M. Zahran, S. Yogamani, M. Jagersand, and A. El-Sallab,
“Modnet: Moving object detection network with motion and appearance for au-
tonomous driving,” arXiv preprint arXiv:1709.04821, 2017.

[251] A. Kundu, K. M. Krishna, and J. Sivaswamy, “Moving object detection by multi-
view geometric techniques from a single camera mounted robot,” in International
Conference on Intelligent Robots and Systems (IROS), 2009, pp. 4306–4312.

[252] R. Vidal and S. Sastry, “Optimal segmentation of dynamic scenes from two per-
spective views,” in Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 2, 2003, pp. II–II.

[253] P. Spagnolo, T. Orazio, M. Leo, and A. Distante, “Moving object segmentation
by background subtraction and temporal analysis,” Image and Vision Computing,
vol. 24, no. 5, pp. 411–423, 2006.

[254] P. Gao, X. Sun, and W. Wang, “Moving object detection based on kirsch operator
combined with optical flow,” in International Conference on Image Analysis and
Signal Processing (IASP), 2010, pp. 620–624.

[255] M. P. Patel and S. K. Parmar, “Moving object detection with moving background
using optic flow,” in Recent Advances and Innovations in Engineering (ICRAIE),
2014, pp. 1–6.

[256] C. S. Royden and K. D. Moore, “Use of speed cues in the detection of moving
objects by moving observers,” Vision research, vol. 59, pp. 17–24, 2012.

[257] R. K. Namdev, A. Kundu, K. M. Krishna, and C. Jawahar, “Motion segmentation
of multiple objects from a freely moving monocular camera,” in Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), 2012, pp.
4092–4099.

[258] P. Lenz, J. Ziegler, A. Geiger, and M. Roser, “Sparse scene flow segmentation
for moving object detection in urban environments,” in IEEE Intelligent Vehicles
Symposium (IV), 2011, pp. 926–932.

[259] A. Wedel, A. Meißner, C. Rabe, U. Franke, and D. Cremers, “Detection and seg-
mentation of independently moving objects from dense scene flow,” in International
Workshop on Energy Minimization Methods in Computer Vision and Pattern Recog-
nition, 2009, pp. 14–27.

[260] J.-Y. Kao, D. Tian, H. Mansour, A. Vetro, and A. Ortega, “Moving object segmenta-
tion using depth and optical flow in car driving sequences,” in IEEE International
Conference on Image Processing (ICIP), 2016, pp. 11–15.



344 Bibliography

[261] W. Choi, C. Pantofaru, and S. Savarese, “A general framework for tracking multiple
people from a moving camera,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 7, pp. 1577–1591, 2013.

[262] B. Drayer and T. Brox, “Object detection, tracking, and motion segmentation for
object-level video segmentation,” arXiv preprint arxiv:1608.03066, 2016.

[263] V. Romero-Cano and J. I. Nieto, “Stereo-based motion detection and tracking from a
moving platform,” in IEEE Intelligent Vehicles Symposium (IV), 2013, pp. 499–504.

[264] T.-H. Lin and C.-C. Wang, “Deep learning of spatio-temporal features with
geometric-based moving point detection for motion segmentation,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA),
2014, pp. 3058–3065.

[265] S. Tourani and K. M. Krishna, “Using in-frame shear constraints for monocular
motion segmentation of rigid bodies,” Journal of Intelligent & Robotic Systems,
vol. 82, no. 2, pp. 237–255, 2016.

[266] F. Perazzi, A. Khoreva, R. Benenson, B. Schiele, and A. Sorkine-Hornung, “Learn-
ing video object segmentation from static images,” in Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[267] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and
L. Van Gool, “One-shot video object segmentation,” in Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[268] J. Cheng, Y.-H. Tsai, S. Wang, and M.-H. Yang, “Segflow: Joint learning for video
object segmentation and optical flow,” in The IEEE International Conference on
Computer Vision (ICCV), 2017, pp. 686–695.

[269] S. D. Jain, B. Xiong, and K. Grauman, “Fusionseg: Learning to combine motion
and appearance for fully automatic segmention of generic objects in videos,” in
Proceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[270] T. Chen and S. Lu, “Object-level motion detection from moving cameras,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 27, no. 11, pp.
2333–2343, 2017.

[271] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “Netvlad: Cnn ar-
chitecture for weakly supervised place recognition,” in Proceedings of the IEEE



Bibliography 345

International Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[272] M. Cummins and P. Newman, “Fab-map: Probabilistic localization and mapping in
the space of appearance,” International Journal of Robotics Research, vol. 27, no. 6,
2008.

[273] N. Sünderhauf, S. Shirazi, F. Dayoub, B. Upcroft, and M. Milford, “On the perfor-
mance of convnet features for place recognition,” in International Conference on
Intelligent Robots and Systems (IROS), 2015.

[274] T. Sattler, B. Leibe, and L. Kobbelt, “Efficient & effective prioritized matching for
large-scale image-based localization,” IEEE Transactions on Pattern Analysis &
Machine Intelligence, pp. 1744–1756, 2017.

[275] J. Valentin, M. Nießner, J. Shotton, A. Fitzgibbon, S. Izadi, and P. Torr, “Exploiting
uncertainty in regression forests for accurate camera relocalization,” in Proceedings
of the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[276] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network for
real-time 6-dof camera relocalization,” in The IEEE International Conference on
Computer Vision (ICCV), 2015.

[277] F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and D. Cremers,
“Image-based localization using lstms for structured feature correlation,” in The
IEEE International Conference on Computer Vision (ICCV), 2017.

[278] R. Clark, S. Wang, A. Markham, A. Trigoni, and H. Wen, “Vidloc: 6-dof video-clip
relocalization,” arXiv preprint arXiv:1702.06521, 2017.

[279] N. Kobyshev, H. Riemenschneider, and L. Van Gool, “Matching features correctly
through semantic understanding,” in 2nd International Conference on 3D Vision
(3DV), vol. 1, 2014, pp. 472–479.

[280] G. Singh and J. Košecká, “Semantically guided geo-location and modeling in urban
environments,” Large-Scale Visual Geo-Localization, 2016.

[281] N. Rader, M. Bausano, and J. E. Richards, “On the nature of the visual-cliff-
avoidance response in human infants,” Child Development, pp. 61–68, 1980.

[282] A. Kendall and R. Cipolla, “Geometric loss functions for camera pose regression
with deep learning,” Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.



346 Bibliography

[283] J. Wu, L. Ma, and X. Hu, “Delving deeper into convolutional neural networks for
camera relocalization,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2017.

[284] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon, “Scene
coordinate regression forests for camera relocalization in rgb-d images,” in Pro-
ceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 2013, pp. 2930–2937.

[285] T. Naseer and W. Burgard, “Deep regression for monocular camera-based 6-dof
global localization in outdoor environments,” in International Conference on Intelli-
gent Robots and Systems (IROS), 2017.

[286] Z. Laskar, I. Melekhov, S. Kalia, and J. Kannala, “Camera relocalization by com-
puting pairwise relative poses,” arXiv preprint arXiv:1707.09733, 2017.

[287] A. Kendall and R. Cipolla, “Modelling uncertainty in deep learning for camera
relocalization,” Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2016.

[288] A. Nicolai, R. Skeele, C. Eriksen, and G. A. Hollinger, “Deep learning for laser based
odometry estimation,” in RSS workshop Limits and Potentials of Deep Learning in
Robotics, 2016.

[289] V. Mohanty, S. Agrawal, S. Datta, A. Ghosh, V. D. Sharma, and D. Chakravarty,
“Deepvo: A deep learning approach for monocular visual odometry,” arXiv preprint
arXiv:1611.06069, 2016.

[290] I. Melekhov, J. Ylioinas, J. Kannala, and E. Rahtu, “Relative camera pose estimation
using convolutional neural networks,” arXiv preprint arXiv:1702.01381, 2017.

[291] ——, “Image-based localization using hourglass networks,” arXiv preprint
arXiv:1703.07971, 2017.

[292] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold, and
C. Rother, “DSAC - differentiable RANSAC for camera localization,” in Pro-
ceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[293] E. Brachmann and C. Rother, “Learning less is more - 6d camera localization via 3d
surface regression,” arXiv preprint arXiv:1711.10228, 2017.

[294] A. H. Abdulnabi, G. Wang, J. Lu, and K. Jia, “Multi-task cnn model for attribute
prediction,” IEEE Transactions on Multimedia, vol. 17, no. 11, pp. 1949–1959,
2015.



Bibliography 347

[295] I. Borg and P. Groenen, “Modern multidimensional scaling: theory and applications,”
Journal of Educational Measurement, vol. 40, no. 3, pp. 277–280, 2003.

[296] R. Caruana, “Multitask learning,” Machine Learning, 1997.

[297] B. Yu and I. Lane, “Multi-task deep learning for image understanding,” in 2014 6th
International Conference of Soft Computing and Pattern Recognition (SoCPaR),
2014, pp. 37–42.

[298] H. Bilen and A. Vedaldi, “Universal representations: The missing link between
faces, text, planktons, and cat breeds,” arXiv preprint arXiv:1701.07275, 2017.

[299] B. Jou and S.-F. Chang, “Deep cross residual learning for multitask visual recog-
nition,” in Proceedings of the 2016 ACM on Multimedia Conference, 2016, pp.
998–1007.

[300] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean,
“Outrageously large neural networks: The sparsely-gated mixture-of-experts,” arXiv
preprint arXiv:1701.06538, 2017.

[301] M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun, “Multi-
net: Real-time joint semantic reasoning for autonomous driving,” arXiv preprint
arXiv:1612.07695, 2016.

[302] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics,” arXiv preprint arXiv:1705.07115, 2017.

[303] R. Rahmatizadeh, P. Abolghasemi, L. Bölöni, and S. Levine, “Vision-based multi-
task manipulation for inexpensive robots using end-to-end learning from demonstra-
tion,” arXiv preprint arXiv:1707.02920, 2017.

[304] Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, and R. S. Feris, “Fully-adaptive feature
sharing in multi-task networks with applications in person attribute classification.” in
Proceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[305] R. Kuga, A. Kanezaki, M. Samejima, Y. Sugano, and Y. Matsushita, “Multi-task
learning using multi-modal encoderdecoder networks with shared skip connections,”
in The IEEE International Conference on Computer Vision (ICCV) Workshops,
2017.

[306] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch networks for multi-
task learning,” Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.



348 Bibliography

[307] C. McManus, B. Upcroft, , and P. Newman, “Scene signatures: Localised and
point-less features for localisation,” in Robotics: Science and Systems, 2014.

[308] T. Sattler, B. Leibe, and L. Kobbelt, “Fast image-based localization using direct
2d-to-3d matching,” in The IEEE International Conference on Computer Vision
(ICCV), 2011.

[309] A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pajdla, “24/7 place recogni-
tion by view synthesis,” in Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[310] T. Sattler, M. Havlena, K. Schindler, and M. Pollefeys, “Large-scale location recogni-
tion and the geometric burstiness problem,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[311] Q. Hao, R. Cai, Z. Li, L. Zhang, Y. Pang, and F. Wu, “3d visual phrases for landmark
recognition,” in Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[312] S. Choudhary and P. Narayanan, “Visibility probability structure from sfm datasets
and applications,” in The European Conference on Computer Vision (ECCV), 2012,
pp. 130–143.

[313] Y. Li, N. Snavely, and D. P. Huttenlocher, “Location recognition using prioritized
feature matching,” in The European Conference on Computer Vision (ECCV), 2010,
pp. 791–804.

[314] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua, “Worldwide pose estimation using
3D point clouds,” in The European Conference on Computer Vision (ECCV), 2012.

[315] T. Sattler, M. Havlena, F. Radenovic, K. Schindler, and M. Pollefeys, “Hyperpoints
and fine vocabularies for large-scale location recognition,” in The IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 2102–2110.

[316] J. Wang, H. Zha, and R. Cipolla, “Coarse-to-fine vision-based localization by index-
ing scale-invariant features,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 36, no. 2, pp. 413–422, 2006.

[317] M. Donoser and D. Schmalstieg, “Discriminative feature-to-point matching in
image-based localization,” in Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

[318] K. Konda and R. Memisevic, “Learning visual odometry with a convolutional
network,” in International Conference on Computer Vision Theory and Applications
(VISAPP), 2015.



Bibliography 349

[319] X. Yin, X. Wang, X. Du, and Q. Chen, “Scale recovery for monocular visual
odometry using depth estimated with deep convolutional neural fields,” in The IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 5870–5878.

[320] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, and T. Brox,
“Demon: Depth and motion network for learning monocular stereo,” in Proceedings
of the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[321] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning of depth
and ego-motion from video,” in Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[322] S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar, and K. Fragkiadaki, “Sfm-
net: Learning of structure and motion from video,” arXiv preprint arXiv:1704.07804,
2017.

[323] C. A. Brooks and K. Iagnemma, “Self-supervised terrain classification for planetary
surface exploration rovers,” Journal of Field Robotics, vol. 29, no. 3, pp. 445–468,
2012.

[324] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsuper-
vised learning of visual features,” arXiv preprint arXiv:1807.05520, 2018.

[325] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for
efficient cnn architecture design,” arXiv preprint arXiv:1807.11164, 2018.

[326] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4510–
4520.

[327] L.-C. Chen, A. Hermans, G. Papandreou, F. Schroff, P. Wang, and H. Adam,
“Masklab: Instance segmentation by refining object detection with semantic and
direction features,” arXiv preprint arXiv:1712.04837, 2017.

[328] J. Uhrig, E. Rehder, B. Fröhlich, U. Franke, and T. Brox, “Box2pix: Single-shot
instance segmentation by assigning pixels to object boxes,” in IEEE Intelligent
Vehicles Symposium (IV), 2018.

[329] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance
segmentation,” in Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, pp. 8759–8768.



350 Bibliography

[330] L. Shao, P. Shah, V. Dwaracherla, and J. Bohg, “Motion-based object segmentation
based on dense rgb-d scene flow,” arXiv preprint arXiv:1804.05195, 2018.

[331] Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense depth, optical flow and
camera pose,” in Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 2, 2018.

[332] A. Ranjan, V. Jampani, K. Kim, D. Sun, J. Wulff, and M. J. Black, “Adversarial
collaboration: Joint unsupervised learning of depth, camera motion, optical flow
and motion segmentation,” arXiv preprint arXiv:1805.09806, 2018.

[333] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[334] D. Barnes, W. Maddern, G. Pascoe, and I. Posner, “Driven to distraction: Self-
supervised distractor learning for robust monocular visual odometry in urban envi-
ronments,” in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 1894–1900.






	Table of Contents
	Contents
	Introduction
	Scientific Contributions
	Live Demos
	Dataset Contributions
	Experimental Robot Platforms
	Publications
	Collaborations
	Outline

	Background Theory
	Camera Model
	Feed-Forward Neural Networks
	Convolutional Neural Networks
	Architecture Overview
	Layers
	Architectural Network Design
	Loss Functions


	Proprioceptive Terrain Classification
	Introduction
	Technical Approach
	Spectrogram Transformation and Augmentation
	TerrainNet Architecture
	TerrainNet++ Architecture
	Noise-Aware Training
	Baseline Feature Extraction

	Data Collection and Labelling
	Experimental Evaluation
	Training Protocol
	Comparison with the State-of-the-Art
	Ablation Study
	Performance Evaluation
	Evaluation of Noise Tolerance
	Evaluation of Noise-Aware Training
	Evaluation of Hardware Independence

	Related Work
	Conclusions

	Semantic Scene Segmentation
	Introduction
	Technical Approach
	AdapNet Architecture
	AdapNet++ Architecture
	Network Compression

	Freiburg Forest Dataset
	Experimental Evaluation
	Benchmark Datasets
	Data Augmentation
	Network Training
	Comparison with the State-of-the-Art
	Evaluation of Model Compression
	Ablation Study
	Qualitative Comparison
	Generalization Analysis

	Related Work
	Conclusions

	Multimodal Semantic Segmentation
	Introduction
	Technical Approach
	Convoluted Mixture of Deep Experts
	Self-Supervised Modal Adaptation
	Baseline Fusion Architectures

	Experimental Evaluation
	Network Training
	Comparison with the State-of-the-Art
	Multimodal Fusion Discussion
	Ablation Study
	Qualitative Comparison
	Visualizations Across Seasons and Weather Conditions
	Real-World Navigation Experiment

	Related Work
	Conclusions

	Joint Semantic Motion Segmentation
	Introduction
	Technical Approach
	SMSnet Architecture
	SMSnet++ Architecture
	Ego-Flow Suppression

	Dataset and Augmentation
	Experimental Evaluation
	Network Training
	Comparison with the State-of-the-Art
	Influence of the Motion Parallax Effect
	Ablation Study
	Qualitative Evaluations
	Generalization Evaluations

	Related Work
	Conclusions

	Geometrically Consistent Semantic Visual Localization
	Introduction
	Technical Approach
	The Geometric Consistency Loss Function
	VLocNet Architecture
	VLocNet++ Architecture

	DeepLoc Dataset
	Experimental Evaluation
	Benchmark Datasets
	Network Training
	Comparison with the State-of-the-Art
	Evaluation of Multitask Learning in VLocNet++
	Ablation Study
	Visualization of the Level of Feature Similarity
	Visualization of the Regression Activation Maps
	Qualitative Evaluations

	Related Work
	Conclusions

	Conclusions and Discussion
	Appendices
	Detailed Multimodal Semantic Segmentation Results
	Evaluation on the Cityscapes Dataset
	Evaluation on the Synthia Dataset
	Evaluation on the SUN RGB-D Dataset
	Evaluation on the ScanNet Dataset
	Evaluation on the Freiburg Forest Dataset

	Bibliography

