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Abstract— Geometric representations of the environment
play an important role in mobile robotics as they support
various tasks such as motion control and accurate localization.
Popular approaches to represent the geometric features of an
environment are occupancy grids or line models. Whereas
occupancy grids require a huge amount of memory and
therefore do not scale well with the size of the environment,
line models are unable to correctly represent corners or
connections between objects. In this paper we present an
algorithm that learns sets of polylines from laser range
scans. Starting with an initial set of polylines generated from
the range scans it iteratively optimizes these polylines using
the Bayesian Information Criterion. During the optimization
process our algorithm utilizes information about the angles
between line segments extracted from the original range
scans. We present experiments illustrating that our algorithm
is able to learn accurate and highly compact polyline maps
from laser range data obtained with mobile robots.

I. I NTRODUCTION

Geometric maps play an important role in mobile
robotics since they support various tasks such as path
planning and accurate localization. One of the most popular
ways to represent the environment of a robot are occupancy
grids. Their advantage is that they can easily be updated
upon sensory input. Their disadvantages, however, lie in the
huge memory requirements, the assumption that neighbor-
ing cells are independent of each other, and the discretiza-
tion problems. To overcome these limitations, many authors
studied the generation of more compact representations
such as line models from range scan data. Line maps are
based on the assumption that most indoor environments
consist of planar structures corresponding to walls, doors,
cupboards etc. They require much less space since planar
objects often can be represented by a small number of
lines whereas thousands of grid cells might be required by
an occupancy grid. They also overcome the independence
assumption since a change of the parameters of a line
influences the whole area covered by that line. Finally, they
are also more accurate since they provide floating point
resolution and do not suffer from discretization problems.

Line maps, however, have the disadvantage that the lines,
in contrast to the objects in the environment, are infinite.
One solution to this problem is to consider line segments
instead of infinite lines. However, even this approach lacks
the ability to represent corners or connections between
objects and to incorporate these features during the ap-
proximation process.

In this paper we consider the problem of learning
polyline maps from data gathered with a mobile robot
equipped with a laser range scanner. A polyline map
consists of a set of polylines which are composed of
a sequence of line segments that are connected at their
endpoints. This representation clearly is more general than
line segments, since every line segment can be represented
by a polyline of length one. Additionally, polylines allow
the representation of corners that connect individual line
segments. The major questions in the task of finding a
polyline that best fits a given contour or set of points are
where the individual endpoints of the polylines should be
placed and how many line segments should be used to
approximate the given data.

We present an algorithm that generates polyline maps
from raw laser range scans. This algorithm first extracts
a set of contours out of the range measurements. It then
generates an initial polyline set from these contours. After
this initialization it optimizes the polylines using various
operators for splitting, joining and adjusting line segment
sequences in order to determine the best fit to the given
data. Simultaneously it utilizes information about the rel-
ative angles between line segments extracted from the
individual range scans. To evaluate the models it applies
the Bayesian Information Criterion which trades off the
approximation error, the number of vertices in the map,
and the size of the data set.

This paper is organized as follows. After discussing
related work in the next section, we describe how to
extract an initial polyline map from raw laser range data
acquired with a mobile robot. We then present the different
operations used to optimize this map. Finally, we present
experiments illustrating that our approach generates highly
accurate polyline maps from data gathered in various
environments.

II. RELATED WORK

The most popular approach to fit geometric primitives
to range data acquired with mobile robots is the extraction
of lines. One of the first attempts has been presented by
Crowley [4] who computes line segments from range mea-
surements and combines these segments using a Kalman
filter. Pfister et al. [18] extend this approach and also
consider the accuracy of the measurements when updating
the line model. Arras and Siegwart [1] use a clustering



approach to learn line models from laser data. Their ap-
proach also considers the uncertainty in the measurements
when clustering points into linear segments. The approach
developed by Gonzales et al. [8] computes point clusters
from each range scan based on the distance between
consecutive points. They apply linear regression to fit
lines to these clusters and iteratively combine lines to a
global map. Leonard et al. [13] use a Hough transform to
extract linear features from sequences consecutive sonar
measurements. These features are then maintained using
a Kalman filter. Several approaches apply the well-known
iterative end-point fit or split and merge algorithm [5] for
fitting lines to scans. The approach of Schröter et al. [21] is
to cluster scans using the split and merge algorithm, which
is also used by Gutmann et al. [10], and combine nearby
segments using a weighted variant of linear regression.
Also Newmann et al. [17] use this approach in combination
with the Ransac algorithm [6] to extract linear models from
laser data. Baltzakis and Trahanias [3] propose an approach
for simultaneous localization and mapping in which the
features are extracted using the split-and-merge algorithm.
MacKenzie and Dudek [15] use a clustering strategy to
associate measurements that arise from the same object and
then recursively subdivide these clusters to obtain subsets
with good linear approximations. Liu et al. [14] apply the
EM-algorithm to extract planar structures from 3d data.
An online variant of this approach has been presented by
Thrun et al. [16]. Austin and McCarragher [2] describe a
technique to match geometric primitives like line segments
and arcs to range data. The algorithm described in this
paper differs from these techniques in that it computes
sets of polylines and this way considers the connections
between the line segments during the optimization process.

Unfortunately, the transition from infinite lines or fixed
types of geometric primitives to polylines is not an easy
endeavor. This is due to the high dimensionality of the
search problem and since one needs to check various
other parameters like connections between line segments,
whether or not a polyline can be converted into a polygon,
whether a polyline is simple etc. Some approaches for
approximating range data with polylines therefore rely
on simplifying assumptions. For example, González-Bãnos
and Latombe [9] extract polylines from range scans by
exploiting the order of the individual beams given by the
range scanner and applying a variant of iterative end-
point fit algorithm. Our approach presented in this paper
in contrast operates on arbitrary point sets and does not
assume any order at all on these points.

The problem of learning polylines has been studied
extensively in the field of computer graphics and related
areas where the goal is to find good approximations of
digitized curves or to optimize meshes. Many of these
approaches assume that the vertices of the resulting poly-
gons or meshes are a subset of the given data points [19],
[7], [20]. Recently Kreylos and Hamann [12] proposed
an approach that uses a simulated annealing scheme to
compute positions on a given contour that minimize the
distance between the contour and the resulting polylines.

They do, however, constrain the resulting polylines to lie on
the contour. The approach presented here, however, allows
arbitrary positions for the vertices of the polylines and does
not require the vertices to lie on a given contour or to be a
subset of the data points. Additionally, it uses information
about the relative alignment of consecutive line segments
in the individual scans.

III. POLYLINE EXTRACTION FROM RANGE DATA

Our approach to learn polylines from a set of data
acquired with a mobile robot assumes that an accurate pose
estimate is given for all laser scans acquired with the robot.
Our current system applies the scan-matching technique
developed by Ḧahnel et al. [11] to determine the pose of
the robot during mapping. The input to our algorithm is a
set of aligned laser range scans each consisting of 180–361
beams depending on the type of the range scanner used.

One of the key problems when computing polyline
approximations is to find a good initial estimate for the
polylines. Due to the high dimensionality of the search
problem it is of utmost importance to limit the number
of necessary operations during the optimization phase
described in the next section. To determine an initial set
of polylines we proceed in three steps. In the first step we
generate a grid map given the laser range scans. The next
phase is to compute the contours of that grid map, i.e.,
the list of cells that correspond to surfaces of the objects.
In a third step we compute the initial polylines from the
contours.

The grid map generated in the first step stores in every
cell the probability that a laser beam is reflected by this cell.
To compute this map we perform a ray-casting operation
for all laser beams given the locations of the robot and
count for each cell how often a laser beam was reflected
by that cell (hits) and how often it intercepted a cell without
being reflected (misses). The value of a cellmij that has
been intercepted at least once is then given by

mij =
hitsij

hitsij + missesij
. (1)

Note that the ray-casting operation carried out when using
this approach allows to cope with a limited amount of
spurious measurements reflected by dynamic objects such
as people.

The second step is to compute a contour that corresponds
to the surfaces of the objects in the environment of the
robot. To determine this contour we again perform a ray-
casting operation using all beams and label only those cells
as contour where the beam for the first time intercepts a
cell whose valuemij exceeds a threshold of0.5.

The final step is the computation of a set of polylines
from the contours inm. To achieve this, we repeatedly
extract an endpoint of a contour which becomes a starting
point of a new polyline and traverse the contour starting
with its neighbor. Thereby we add the traversed cells as
new polygon points to the current polyline. If no starting
points can be found any more, we process the remaining



Fig. 1. Endpoints of the aligned range scans acquired with a SICK LMS
laser range scanner installed on an Active Media Pioneer II robot.

Fig. 2. High-resolution grid map computed from the range data depicted
in Figure 1.

cyclic contours by selecting arbitrary points on these con-
tours as starting points. To reduce the size of the initial
polyline set we also remove points if their extraction does
not change the length of the corresponding polyline.

Figures 1 to 3 show a typical example of this preprocess-
ing phase. The original data shown in Figure 1 depicts the
90,176 endpoints of the laser range scans obtained with
a Active Media Pioneer II robot equipped with a laser
range scanner after the application of the scan alignment
procedure. The size of this environment is 25m times 2.6m.
Figure 2 shows the grid map computed from this data.
The spatial resolution of this grid map is2.5cm and the
overall number of contour cells is 1735. The polyline map
computed from these contours is depicted in Figure 3. It
contains 11 polylines with a total of 622 points.

To enhance readability we display the polylines dashed
and dotted so that the individual polylines can be distin-
guished. During the contour generation process we only
create contours for the first cell whose value exceeds a
threshold of0.2.

IV. POLYLINE OPTIMIZATION

After generating an initial set of polylines the optimiza-
tion process starts. The goal of this process is to compute
a polyline map that minimizes a Bayesian score function
based on the Bayesian Information Criterion. We start with
a description of the error of a given model.

Supposed = d1, . . . , dn are the range data andP is a
polyline map. Then the errorE(d | P) of the datad given

Fig. 3. Resulting initial set of polylines.

P is defined as

E(d | P) =
n∑

i=1

dist(l∗(i), di)2

+γ
k∑

i=1

1− p(αi | xi, yi), (2)

where

l∗(i) = argmin
l∈P

dist(l, di). (3)

Herel∗(i) is the line segmentl in P that has the minimum
distancedist(l, di) to the scan pointdi.

Whereask is the number of vertices in the current
polyline, the quantityp(αi | xi, yi) specifies the probability
of the angleαi at the positionxi and yi of vertex i in
the scan data. This probability is obtained according to
a statistics about the angles between lines fitted to point
clusters in the individual input range scans. The termγ is
a weighing factor that computes the tradeoff between the
distance of the data points from the polyline and the angle
error.

Unfortunately, there is no closed-form solution to com-
pute the polyline mapP∗ with a fixed number of line
segments that minimizesE(d | P):

P∗ = argmin
P

E(d | P) (4)

Therefore, we start with the initial polyline map and use
local search to minimize Eq. (2). During this search we
apply several operators on the endpoints of the line seg-
ments and on the polylines themselves. These operations,
which are described in more detail in the remainder of this
section, are also depicted in Figure 4.

A. Overlaps

The first operation deals with polylines that overlap at
their ends (see Figure 4). Such overlaps mostly appear in
the initial map where they are caused by slight alignment
errors of the scan matching procedure. In the computer
graphics literature this operation is also know as mesh-
zippering.

B. Merging Polylines

The second operation connects two polylines when their
endpoints are closer than15cm to each other. In our current
system this operation is also able to convert a polyline into
a closed polygon.

C. Splitting Polylines

An important operation is to split a polyline into two
separate sequences of line segments. This operation is
necessary in situations in which there is a sufficiently long
interval on a line segment in which there are no data points.
In our current implementation the threshold for splitting
line segments is20cm.
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Fig. 4. Operators applied to the polylines during the optimization phase.

D. Adjusting the Position of Vertices

One of the most important operations for the optimiza-
tion of the polylines is to determine better positions for
the endpoints of the line segments. To achieve this we
consider each polyline and perform a single hill-climbing
step for each endpoint of its line segments. We repeat
this process until no further improvement is obtained. In
extensive experiments we found that eight directions and
a step-width of 1cm yields an optimal trade-off between
computational requirements and accuracy.

E. Removing Zigzag Lines

Especially during the previously described adjustment
procedure it frequently happens that so-called zigzags lines
are introduced. The operation to detect and remove such
zigzag lines is similar to the removal of overlaps.

F. Adding Noise

During the process described so far we sometimes ob-
served that the overall system gets stuck in local minima.
Reasons for this are the crisp associations in the error func-
tion and the limited step-width in the adjustment process.
To overcome such situations we added an operation that
introduces random noise to the position of the vertices.
The noise is normally distributed with a variance of5cm.
During the overall optimization process this variance is
continuously decreased.

G. Adjusting the Number of Vertices

Another key issue is to choose the appropriate number
of model components. In the context of our problem this
corresponds to estimating the number of points inP.
In previous approaches the number of endpoints of the
polylines is typically controlled by fixed thresholds [19] or
by more complex functions weighing different aspects [7].

Fig. 5. Resulting single closed polyline with 109 points of laser range
scan data depicted in Figure 1.

In the context of computer graphics this approach appears
to be justified since the goal is to determine a model
that provides a mostly accurate impression to the observer.
In our case, however, we are interested in a reasonable
compromise between number of model components and
the quality of the approximation. Obviously, a model that
connects all data points would provide an optimal fit since
the error would be zero. On the other hand, a model
consisting of just one line segment would minimize the
number of model components. In the field of machine
learning a popular measure is theBayesian Information
Criterion also denoted asBIC. In the context of the polyline
fitting problem, the Bayesian information criterion is

EBIC(d | P) = αE(d | P) + k log n (5)

wherek is the number of model components andn is the
number of data points. The constantα is a scaling factor
that depends on the accuracy of the underlying sensor. It
was set to500 in all our experiments. The major advantage
of theBIC is that it incorporates all parameters of a learning
problem, namely the approximation error, the number of
model components and the size of the data set.

After each application of the optimization operators de-
scribed above we use theBIC-value to determine whether
or not to introduce an additional vertex or to remove an



Fig. 6. Scan data and polyline map of the museum in Herakleion. The size of the environment is 38 times 18 m and the input data set contained
268,640 scan points. The resulting polyline map contains 41 polylines with 262 vertices.
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Fig. 7. The density1− p(αi | xi, yi) used for the indoor experiments.

existing one. To add a vertex to a polyline we determine
the line segmentl which has the largest average squared
distance to its associated data points. We then replacel by
two line segments which connect the point furthest from
l with the two endpoints ofl. We then introduce slight
noise to the complete polyline and apply the adjustment
procedure. If theBIC-value decreases we accept the new
polyline, otherwise we keep the old one. Additionally we
check whether there is a vertex that reduces theBIC-value
when we remove it from the map. If this is the case,
we delete the vertex yielding the highest reduction of the
BIC-value. The extension or removal operators are applied
iteratively until no improvement can be achieved any more.

Our algorithm repeatedly runs over the whole data set
and tries to apply these operations. It always stores the
model with the bestBIC-value found so far. The overall
process is stopped until no improvement can be obtained
for five consecutive iterations.

An example polyline map obtained for the initial contour
map depicted in Figure 3 is displayed in Figure 5. The
map consists of a single polygon containing 109 vertices.
It took our system 90 minutes and 9 iterations to compute
this map. Figure 7 depicts the function1 − p(αi | xi, yi)
used to calculate the error of relative angles in the polyline
given the initial range data. This function was used in all
indoor experiments described in this paper.

V. EXPERIMENTAL RESULTS

The algorithm described above has been implemented
and tested successfully using various data sets gathered
with real robots. The experiments presented in this section
are designed to illustrate that our system can learn highly
accurate maps from the range data. They also demonstrate
that our algorithm simultaneously yields a serious compres-
sion of the input data of up to several orders of magnitude.

Fig. 8. Laser range data of a hallway at Stanford University. This data
set contains 70,269 scan points.

Fig. 9. Polyline map for the scan data depicted in Figure 8. This map
contains 7 line sequences and 53 endpoints.

The first experiment described in this section has been
carried out using data recorded in the Herakleion Museum
in Greece. This data set consists of 268,640 laser beams.
The polygon generated for the contour map contained
122 polylines consisting of a total of 1,888 vertices. The
overall optimization took 6,037 seconds. In the end we
obtained 41 line sequences consisting of 262 vertices which
corresponds to a reduction by three orders of magnitude.
The original scan data and the resulting polyline map are
depicted in Figure 6. As can bee seen from the figure, the
approximation is highly accurate.

The second experiment is designed to illustrate the
overall learning process. Here the system was applied to
the laser range data depicted in Figure 8. The resulting
polyline map is depicted in Figure 9. Figure 10 shows the
evolution of theBIC-value over time. As can be seen from
the figure, the accuracy of the model improves seriously
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Fig. 10. Evolution of the value of the Bayesian Information Criterion
over time during the learning of the hallway map shown in 9. The peaks
in the evaluation correspond to situations in which noise was added or
geometric simplifications had been applied.



Fig. 11. Circular range scans with radius 1, 3, and 7m and consisting
of 360 measurements each (left image) as well as polygons computed by
our algorithm (right image).

during the first iterations of our algorithm. This is mainly
due to removals of vertices. After 100 seconds the system
only achieves slight improvements. The peaks in the curve
come from the operation that adds noise. This operation
slightly increases the error which in turn is then corrected
by the procedure optimizing the positions of the vertices.

The goal of the final experiment is to illustrate that our
algorithm can yield accurate approximations of even circu-
lar structures. Figure 11 shows the result of approximating
three circles with our algorithm. The overall number of
data points per circle is 360. During this process the prior
about relative angles between line segments extracted from
the range data was uniformly distributed. The resulting
number of polylines is three with eight, fourteen and
twenty segments each. Note that theBIC results in different
numbers of vertices per circle. In contrast to other criteria,
which add more model components to areas with higher
curvature, theBIC yields more vertices in the larger circles.
This is natural, since theBIC considers the sum of squared
errors. If two circles are approximated by polygons of the
same length, we obtain a greater reduction in the error if we
add a line segment added to the polygon that approximates
the larger circle than if we add it to the polyline fitted to
the smaller polygon.

VI. CONCLUSIONS

In this paper we presented an approach to learn polyline
maps from range data. Our approach first processes the
input data to compute a contour of the objects in the
environment of the robot. Based on this contour it generates
an initial set of polylines which are optimized subsequently.
During the optimization process it utilizes information
about relative angles between line segments in the original
scan data. To control the number of vertices in the model
it applies the Baysian Information Criterion (BIC). The
approach has been implemented and tested on real data
gathered with mobile robots in different environments.
The resulting maps are highly accurate and at the same
time require three orders of magnitude less space than the
original input data.

Despite these encouraging results there are several war-
rants for future research. The current system requires a
huge amount of computational resources and can only be
applied offline after the data has been recorded. In the
future we therefore will investigate how to speed-up the
learning process in order to obtain an on-line variant and
to even further increase the accuracy. Additionally we will

investigate how to learn models that contain more features
than line segments.
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