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Abstract— The majority of learning-based semantic segmen-
tation methods are optimized for daytime scenarios and favor-
able lighting conditions. Real-world driving scenarios, however,
entail adverse environmental conditions such as nighttime
illumination or glare which remain a challenge for existing
approaches. In this work, we propose a multimodal semantic
segmentation model that can be applied during daytime and
nighttime. To this end, besides RGB images, we leverage
thermal images, making our network significantly more robust.
We avoid the expensive annotation of nighttime images by
leveraging an existing daytime RGB-dataset and propose a
teacher-student training approach that transfers the dataset’s
knowledge to the nighttime domain. We further adopt a domain
adaptation method to align the learned feature spaces across
the domains and propose a novel two-stage training scheme.
Furthermore, due to a lack of thermal data for autonomous
driving, we present a new dataset comprising over 20,000
time-synchronized and aligned RGB-thermal image pairs. In
this context, we also present a novel target-less calibration
method that allows for automatic robust extrinsic and intrinsic
thermal camera calibration. Among others, we use our new
dataset to show state-of-the-art results for nighttime semantic
segmentation.

I. INTRODUCTION
Robust and accurate semantic segmentation of urban

scenes is one of the enabling technologies for autonomous
driving in complex and cluttered driving scenarios. Recent
years have shown great progress in RGB image segmentation
for autonomous driving [36], [5], which were predominantly
demonstrated in favorable daytime illumination conditions.
While the reported results demonstrate high accuracies on
benchmark datasets [5], [18], these models tend to generalize
poorly to adverse weather conditions and low illumination
levels present at nighttime as no large-scale nighttime dataset
for image-segmentation is publicly available. This constraint
becomes especially apparent in rural areas where artificial
lighting is weak or scarce. In autonomous driving, to ensure
safety and situation awareness, robust perception in these
conditions is a vital prerequisite.

Transfer learning and domain adaptation approaches aim
at narrowing the domain gap between a source domain,
where supervised learning from labelled data is possible, to
a target domain, where labelled data is either sparse or not
available. Such approaches, as demonstrated in [28] or [35],
allow to adapt a given segmentation model to a different
domain. These approaches, however, do not leverage a com-
plementary modality such as thermal infrared images that
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Fig. 1. Our multimodal segmentation network leverages both nighttime
and daytime images. We transfer relevant knowledge from a large-scale
unimodal daytime dataset for semantic segmentation with a teacher model
to our multimodal HeatNet and simultaneously adapt our model to the
nighttime domain by unsupervised domain adaptation.

can contain more relevant information to solve a given task
in certain environmental conditions than a single modality
would provide.

In order to perform similarly well in challenging illumi-
nation conditions, it is beneficial for autonomous vehicles
to leverage modalities complementary to RGB images [29],
[30]. Encouraged by prior work in thermal image processing
for object detection [31], object tracking [14], and semantic
segmentation [9], [25], we investigate leveraging thermal
images for nighttime semantic segmentation of urban scenes.
Thermal images contain accurate thermal radiation mea-
surements with a high spatial density. Furthermore, thermal
radiation is much less influenced by sunlight illumination
changes and is less sensitive to adversary conditions. Existing
RGB-thermal datasets for semantic image segmentation such
as [9] are not as large-scale as their RGB-only counterparts.
Thus, models trained on such datasets generalize poorly to
challenging real-world scenarios.

In contrast to previous works, we utilize a semantic
segmentation network for RGB daytime images as a teacher
model to provide labels for the RGB daytime images in our
dataset. We project the thermal images into the viewpoint
of the RGB camera images using extrinsic and intrinsic
camera parameters that we determine using our novel target-
less camera calibration approach. Afterwards, we can reuse
labels from this teacher model to train a multimodal semantic
segmentation network on our daytime RGB-thermal image
pairs. In order to encourage day-night invariant segmentation



of scenes, we simultaneously train a feature discriminator
that aims at classifying features in the semantic segmentation
network to belong either to daytime or nighttime images.

Furthermore, we propose a novel training schedule for
our multimodal network that helps aligning the feature
representations between day and night. Finally, we propose
a new way of training a nighttime-daytime RGB-only se-
mantic segmentation network by using thermal images as a
bridge modality. In our baseline comparison and our ablation
studies, we show that our model achieves comparable perfor-
mance to fully supervised multimodal models. Additionally,
we demonstrate that our first-of-its-kind method significantly
reduces the domain gap between daytime and nighttime.

In summary, the contributions of this work are:
• A novel multimodal approach for daytime and nighttime

image segmentation, leveraging both RGB and thermal
images while not requiring annotations for nighttime
RGB or thermal infrared images.

• The Freiburg Thermal dataset containing more than
20,000 time-synchronized RGB and thermal images
recorded in urban and rural environments both in day-
time and in nighttime conditions. We also provide
LiDAR pointclouds, accurate GPS data and IMU read-
ings.

• A novel target-less thermal camera calibration approach.
• Extensive qualitative and quantitative evaluation of our

approach, including ablation studies.

II. RELATED WORKS
A. Multimodal RGB-Thermal Datasets and Calibration

While unimodal datasets with images in the visible domain
are prevalent in computer vision research, some datasets have
been proposed that entail aligned RGB-thermal image pairs.
Berg et al. [1] propose a dataset that consists of thermal
infrared images which is mainly targeted towards object
tracking. Similarly, Li et al. [14], propose a RGB-thermal
dataset for multimodal object tracking in varying outdoor
settings and conditions. The authors of CATS [26] present a
general outdoor dataset for color and thermal stereo disparity
estimation. Besides RGB-thermal image pairs, LiDAR-based
ground-truth disparity maps are available. Furthermore, the
work of Shivakumar et al. [23] targets the scenarios of
the DARPA Subterranean Challenge providing 894 RGB-
thermal image pairs with pixel-wise semantic annotations
for underground rescue scenarios. There exist only a few
datasets that contain thermal infrared imagery in the context
of autonomous driving. In the work of Hwang et al. [11],
a dataset is proposed that consists of more than 95k RGB-
thermal image pairs. Each pair is annotated with bounding
boxes for persons and is hence aimed towards pedestrian de-
tection research. The KAIST multispectral dataset [4] entails
multiple modalities such as RGB, thermal infrared, LiDAR,
GNSS and IMU for a total of 7512 frames. They also provide
annotations/ground-truth for 2D bounding boxes, drivable
region, image enhancement, depth, and colorization. The
authors of MFNet [9] present the first urban scene dataset for
multimodal semantic segmentation, comprising 1569 pixel-
wise annotated RGB-thermal image pairs. Approximately

half of the recorded images were captured during nighttime.
However, many of the most common classes in the context
of semantic segmentation for autonomous driving such as
road, sidewalk, pole, sign, building or sky are not annotated.

Due to the lack of large-scale RGB-thermal datasets for
urban semantic segmentation, we propose the Freiburg Ther-
mal dataset comprising over 20000 high-resolution RGB-
thermal image pairs in particularly challenging environments.
We additionally provide semantic annotations for a distinct
test set.

For most previously proposed datasets, distinct RGB and
thermal cameras were used and calibrated leveraging hand-
made patterns such as checkerboards [26], [23] or lines on
printed circuit boards [4]. A different approach was presented
by Lussier et al. [17] in which an edge response map between
depth and thermal images is minimized using grid search
over the calibration parameter space.

In contrast to prior work, we propose a method to cal-
ibrate the intrinsic, extrinsic and distortion parameters of
the thermal infrared camera in a purely target-less fashion,
leveraging spatial transformer networks [12] and stochastic
gradient descent over a large number of images.

B. Semantic Segmentation of Thermal Images

Recently, semantic segmentation of thermal images began
to attract more attention in the computer vision community.
Qiao et al. [20] use a level set method to detect pedestrians
in thermal images. More recently, Li et al. [15] proposed an
edge-conditioned segmentation network for thermal images,
trained supervised on a dataset containing various indoor and
outdoor scenes. The works closest to our work are [9] and
[25]. In the work of Ha et al. [9], the authors propose a
multimodal fusion network architecture for RGB and thermal
images. They evaluate their approach on their own dataset
MF [9]. Similarly, Sun et al. [25] propose an RGB-thermal
fusion network and show their results on the MF dataset.

In contrast to the works mentioned above, we train an
RGB-thermal semantic segmentation model without requir-
ing any manual labeling efforts. We instead use a teacher
model trained solely on RGB images to provide supervision
for the daytime image pairs. We further present an extended
multimodal domain adaptation method that enables robust
nighttime segmentation.

C. Domain Adaptation for Semantic Segmentation

Many works in transfer learning explore unsupervised
domain adaptation from synthetic data to real environments
[27], [3], [33]. Other recent works explore model adaptation
from daytime to nighttime via an intermediate twilight do-
main [6], [22]. Following a different approach, works were
proposed that conduct unpaired image-to-image translation
using generative models to create synthetic nighttime training
data [19], [24], [21]. Most similar to our work, in [32], the
authors investigate adversarial domain adaptation, where they
use a binary classifier to discriminate between daytime and
nighttime image features produced by an encoder network.
A domain confusion loss penalizes features that can easily



be classified as originating from the daytime or nighttime
domain.

In contrast to the above works, our approach leverages
additional modalities such as thermal images that provide
complementary inputs for semantic segmentation in chal-
lenging illumination conditions, significantly narrowing the
daytime-nighttime domain gap.

III. TECHNICAL APPROACH

In the following, we describe our approach to multimodal
semantic segmentation for daytime and nighttime scenes,
leveraging RGB and thermal images. In our approach, we
first train a semantic segmentation teacher model in a
supervised fashion on the Mapillary Vistas dataset [18].
Subsequently, we use this teacher network to infer labels of
daytime RGB images on our multimodal Freiburg Thermal
dataset. We then train a student network supervised on the
daytime image annotations provided by the teacher model,
using both RGB and thermal infrared images. While the
thermal modality is mostly invariant to lighting changes,
the RGB modality differs significantly between daytime and
nighttime and thus exhibits a significant domain gap. We thus
further utilize a domain adaptation technique that aligns the
internal feature distributions of the multimodal segmentation
network, enabling the network to perform similarly well for
nighttime images as for daytime images. Note that we do not
use any hand-annotated nighttime image labels for training
at any time. As thermal cameras are not yet available in
most autonomous platforms, we further propose to distill the
knowledge from the domain-adapted multimodal model back
into a unimodal segmentation network that exclusively uses
RGB images. We distinguish between daytime and nighttime
in a binary manner, neglecting images taken in twilight.

In the following we detail our approach.

A. RGB-T Semantic Segmentation

We initially train a PSPNet model [36] for semantic RGB
image segmentation on the Mapillary Vistas dataset [18],
which contains 20,000 RGB images and semantic annota-
tions from highly diverse and challenging urban scenes. We
use this model as a teacher model MD for daytime images,
providing pixel-wise semantic annotations for all daytime
RGB images in our Freiburg Thermal dataset. Since we
project each thermal image into the viewpoint of the RGB
camera using the extrinsic and intrinsic camera calibration
parameters, described in Sec. IV-A, we can use the same
annotations for each respective thermal image. Given the
labels produced by MD, we subsequently train our multi-
modal RGB-T model MM by minimizing the cross-entropy
loss between the network and the teacher model prediction.
Note that the teacher model can only provide supervision for
the daytime domain since we can assume that MD does not
generalize to nighttime images as it is not trained on data
from this domain. We formulate the daytime segmentation
loss as:

LD
s = − 1

HW

∑
h,w

MD(IDRGB) logMM (IDRGB, I
D
T ), (1)

where MD(IDRGB) denotes the teacher model prediction
and MM (IDRGB, I

D
T ) denotes the prediction of our multi-

modal RGB-T model for daytime thermal images IDT and
RGB images IDRGB. H and W denote the height and width
of the output, respectively. For simplicity, we omit the class
index i in Eq. 1. By supervised training using the labels
from MD, the student model MM does not generalize well
to nighttime scenes because of the large domain shift in the
RGB domain, in contrast to the thermal domain. In order to
adapt the model to the nighttime domain in an unsupervised
manner, we utilize a domain adaptation approach similar to
[27] and insert a domain discriminator C after the softmax
prediction layer of MM . The domain discriminator has as
inputs the softmax activations SD or SN of our segmentation
model for daytime or nighttime inputs, respectively, and is
trained to differentiate between both domains. We thus define
the discriminator loss Ld as

Ld =
1

HW

∑
h,w

{
[0− C(SX)]2, if X = D

[1− C(SX)]2, if X = N
(2)

In order to adapt our model to the nighttime domain we
aim to predict semantic segmentation maps that fool the
discriminator model. In other words, we want to output
predictions whose origin is classified as the daytime domain.
If this confusion of the discriminator model can be achieved,
it can be assumed that the distribution of the internal feature
representations of our multimodal model are matched and
the model is adapted to the nighttime domain. We train
our model with an alternating training scheme for the two
networks, where we step-wise alternate between adjusting
the parameters of the discriminator model while freezing the
segmentation model parameters and adjusting the parameters
of the segmentation model while freezing the discriminator
model parameters. In each iteration we sample an RGB-T
image pair from the daytime and nighttime domain. In the
first step of an iteration, we train our semantic segmentation
network for the daytime domain while adapting the nighttime
feature representations to daytime. We minimize an overall
loss Lp1 :

Lp1
= LD

s + λ[0− C(SN )]2, (3)

where λ denotes a constant weighting factor between both
losses, which we set to 0.01 during all experiments. In
the second step, we exclusively train the discriminator to
differentiate between day and night segmentation maps with
the overall loss Lp2

:

Lp2 = Ld (4)

Our model architectures and the overall training scheme
are illustrated in Fig. 2. In addition to the described approach,
we propose the following extensions:

1) Two-Stage Training: We argue that the domain gap
between day and night is much smaller for thermal images
than for RGB images. This results in superior nighttime
performance if a network is exclusively trained on thermal
infrared images without any domain adaptation. As our goal
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Fig. 2. Our proposed HeatNet architecture uses both RGB and thermal images and is trained to predict segmentation masks in daytime and nighttime
domains. We train our model with daytime supervision from a pre-trained RGB teacher model and with optional nighttime supervision from a pre-trained
thermal teacher model trained on exclusively thermal daytime images. We simultaneously minimize the cross entropy prediction loss to the teacher model
prediction and minimize a domain confusion loss from a domain discriminator to reduce the domain gap between daytime and nighttime images.

is to train a multimodal network that performs best in both
domains, day and night, we conduct domain adaptation
to compensate for the illumination changes in the RGB
images. We argue, however, that during domain adaptation
the training could converge into local minima due to the
large domain gap within the RGB modality and insufficient
feature distribution overlap. We thus propose to first train our
multimodal network MM with the daytime teacher model
MD and an additional nighttime teacher model MN . This
additional teacher network is trained exclusively on daytime
thermal infrared images and therefore predicts reasonable
nighttime segmentation maps without domain adaptation due
to the small domain gap. However, we argue that the seman-
tic predictions provided by MN can still be improved as MN

does not use complementary RGB data. Therefore, after the
training with both teacher networks, we continue with the
normal training procedure including domain adaptation, but
without the nighttime teacher model, which we explained
in the previous section. Following this training scheme, the
feature representations align reasonably in the first training
stage and the domain adaption in the second training stage
does not need to bridge the full domain gap anymore.

2) RGB-T to RGB Model Distillation: Since thermal
infrared cameras are not always installed on mobile robots,
we propose a simple, yet effective strategy to enable RGB-
only nighttime semantic segmentation using our approach.
As previously mentioned, due to the domain gap in the
visible spectrum, it is challenging to adapt an RGB-only
model to the nighttime domain. Meanwhile, with our previ-
ous multimodal adaption approach we are capable of train-
ing a multimodal network that leverages RGB information
jointly with thermal infrared information which exhibits a
significantly smaller domain gap. We thus propose to first
train a multimodal RGB-T network following the previously
described method. We afterwards distill the knowledge of the
RGB-T network to an RGB-only network. To this end we use
the previously described RGB-only daytime teacher model
to provide supervision in daytime and our best-performing

RGB 1

Thermal
Camera

RGB 2

Fig. 3. Our stereo RGB and thermal camera rig mounted on our data
collection vehicle.

RGB-T network to provide supervision in nighttime and train
this RGB-only model fully supervised in both domains.

IV. DATASET

To kindle research in the area of thermal image seg-
mentation and to allow for credible quantitative evalua-
tion, we create the large-scale dataset Freiburg Thermal.
We provide the dataset and the code publicly available
at http://thermal.cs.uni-freiburg.de/ . The Freiburg Thermal
dataset was collected during 5 daytime and 3 nighttime data
collection runs, spanning the seasons summer through winter.
Overall, the dataset contains 12051 daytime and 8596 night-
time time-synchronized images using a stereo RGB camera
rig (FLIR Blackfly 23S3C) and a stereo thermal camera rig
(FLIR ADK) mounted on the roof of our data collection
vehicle. In addition to images, we recorded the GPS/IMU
data and LiDAR point clouds. The Freiburg Thermal dataset

http://thermal.cs.uni-freiburg.de/


contains highly diverse driving scenarios including highways,
densely populated urban areas, residential areas, and rural
districts. We also provide a testing set comprising 32 daytime
and 32 nighttime annotated images. Each image has pixel-
wise semantic labels for 13 different object classes. Annota-
tions are provided for the following classes: Road, Sidewalk,
Building, Curb, Fence, Pole/Signs, Vegetation, Terrain, Sky,
Person/Rider, Car/Truck/Bus/Train, Bicycle/Motorcycle, and
Background. We deliberately selected extremely challenging
urban and rural scenes with many traffic participants and
changing illumination conditions.

A. Camera calibration

For our segmentation approach it is important to perfectly
align RGB and thermal images as otherwise the RGB teacher
model predictions would not be valid as labels for the thermal
modality. Thus, in order to accurately carry out the camera
calibration for the thermal camera, we propose a novel target-
less calibration procedure. While in previous works [23],
[16] different kinds of checkerboards or circleboards have
been leveraged, our method does not require any pattern.
Although, for RGB cameras, these patterns can be produced
and utilized easily, it still remains a challenge to create
patterns that are robustly visible both in RGB and thermal
images. In general, the used modalities infrared and RGB
entail different information. However, we note that the edges
of most common objects in urban scenes are easily observ-
able in both modalities. Thus, in our approach we minimize
the pixel-wise distance between such edges. In the case
of aligning two monocular cameras, targetless calibration
without any prior information results in ambiguities for the
estimation of the intrinsic camera parameters. We therefore
utilize our pre-calibrated RGB stereo rig in order to provide
the missing sense of scale. Due to the target-less nature of
our approach, our thermal camera calibration method can be
easily deployed in an online calibration scenario.

Our aim is to overlay the RGB and thermal images as best
as possible, solving both for the extrinsic and intrinsic pa-
rameters. If this alignment can be achieved, our cameras are
assumed to be fully calibrated. In the following we assume
the RGB image IRGB to be undistorted and rectified. We
formulate the misalignment E as the difference between the
gradients of the calibrated RGB image and the transformed
thermal image as:

E =
∑
u,v

[∇IRGB −∇S(IT , F )] (5)

Here, S(IT, F ) denotes a function that transforms a source
thermal image IT to a target RGB image IRGB while using
a pixel displacement map F that maps from IT to IRGB.
A successful calibration would result in the minimum value
of E and would therefore align the thermal image with the
RGB image. We follow [12] in order to implement S, using
differentiable spatial transformer networks.

We compute F by projecting the pixel coordinates of
the RGB images to 3D, transforming them into the thermal
camera coordinate system and projecting them back to the

thermal image plane. Thus, the displacement map F =
pRGB − pT between the RGB pixel coordinates pRGB and
the thermal image pixel coordinates pT can be found with:

pRGB = φ
(
KT TRGB→Tγ(pRGB | KRGB, DRGB)

)
(6)

where the function γ(p | K,D) = D(p)K−1h(p) back-
projects the RGB pixel coordinate into the 3D camera
coordinate system while h(p) transforms p in the homo-
geneous vector form. The intrinsic calibration of the RGB
camera is denoted as KRGB and DRGB refers to the depth
corresponding to the RGB image IRGB. Further, TRGB→T

and KT refer to the sought extrinsic and intrinsic thermal
camera calibration values, respectively. The function φ(x)
simply divides the vector x by its last element. We infer
DRGB by leveraging a dense stereo depth estimation method
based on a convolutional neural network [2]. Due to the
locality of the edges within the RGB and the thermal image,
the direct minimization of the misalignment E would lead to
vanishing gradients and would prevent fast convergence on
the global minimum. In order to cope with this problem, we
convolve the difference of gradients

(
∇IRGB−∇S(IT, F )

)
with a large Gaussian kernel G(σ) which we empirically
parameterize with zero mean, standard deviation σ = 3, and
51 pixel aperture size, resulting in our loss function:

Lc =
∑
u,v

[
G(σ) ∗

(
∇IRGB −∇U(S(IT, F ), v)

)]2
(7)

We follow [10] to model the distortion of the thermal
image by the function U and optimize its parameters v =
[k1, k2, p1, p2], referring to radial and tangential distortion
respectively, while optimizing the objective function.

We define the extrinsic calibration TRGB→T as a rigid

body transformation TRGB→T =

(
R t
0 1

)
∈ SE (3) where

R ∈ SO(3) and t ∈ R3. In order to ease the optimization
we optimize the transformation in Lie-algebraic exponential
coordinates ξ = (vT ωT ) ∈ se(3) and use the exponential
map with small-angle approximations [7] to map from se(3)
to SE (3).

In our implementation we use Adam [13] for stochastic
gradient descent to minimize Eq. 7 which yields the opti-
mal extrinsic calibration T ∗RGB→T, thermal camera intrinsic
matrix K∗T, and undistortion parameters v∗.

We take 600 random image-pairs for the optimization
process and set a batch size of 10. Furthermore, we set the
number of iterations to 8000 and halve the step size every
500 steps. We initialize KT as:

KT =

fm/l 0 rw/2
0 fm/l rh/2
0 0 1

 , (8)

where fm denotes the ideal manufactured focal-length of
the lens, l the size of a single square pixel in mm, rw
the horizontal resolution and rh the vertical resolution. All
other parameters such as extrinsic calibration and distortion
parameters are set to 10−4 to prevent vanishing gradients.



RGB Cam Thermal Cam

Fig. 4. Our calibration board placed in front of a heating panel is visible in
the RGB and thermal domain. We record multiple image-pairs covering the
whole camera frustum and obtain the calibration parameters with Kalibr [8].
This method is used as a baseline for our target-less calibration approach.

GradientsOurs

Kalibr Kalibr Ours

Fig. 5. Qualitative result of our target-less RGB-T calibration approach.
In the left column, we show the RGB and thermal image alignment overlay
with calibration parameters as obtained with Kalibr and our approach,
respectively. The magnified view in the top-right corner demonstrates that
our approach yields superior alignment of object edges. The bottom-right
corner illustrates the magnitude of gradient difference between RGB and
thermal image after the optimization process with our approach.

We qualitatively compare the RGB-thermal image align-
ment obtained with our target-less approach to a circleboard-
based calibration procedure carried out using the publicly
available tool Kalibr [8]. We manufactured a circleboard
and placed it in front of a heating panel. Fig. 4 shows
our calibration board as recorded by the RGB and thermal
camera. The recorded image-pairs were used to obtain the
extrinsic and intrinsic calibration parameters with Kalibr.

Fig. 5 qualitatively compares the RGB-thermal alignment
obtained with our target-less approach to the alignment
obtained with calibration parameters produced by Kalibr.
Despite our approach not requiring any calibration targets,
we observe that our approach yields qualitatively better
alignment of RGB and thermal images.

V. EXPERIMENTAL RESULTS

In the following we present the experimental results of
our proposed multimodal semantic segmentation method.
We evaluate our model on our proposed Freiburg Thermal
dataset and on MF [9]. Furthermore, we present results on
the 30 nighttime images of the Berkeley Deep Drive dataset
[34], using the unimodal RGB version of HeatNet, leveraging
our proposed knowledge distillation approach described in
Sec. III-A.2. We also present various ablation studies and
provide a discussion of all results. Qualitative semantic seg-
mentation predictions of the RGB-Teacher, HeatNet RGB-T
and the RGB-only variant can be seen in Fig. 6.

A. Network Architecture

As our unimodal architecture for the teacher networks
MD and MN we use the PSPNet architecture [36]. For our

multimodal network we again adopt the PSPNet architec-
ture but replicate the first two blocks of the corresponding
ResNet-50 encoder. After passing the individual modalities
through the replicated blocks we concatenate the feature
maps and proceed with the remaining blocks of the encoder.
For the discriminator architecture we follow the described
architecture in [27].

B. Training Details
We train our HeatNet segmentation model for 100 epochs

with the RMSprop optimizer and with an initial learning rate
of 10−4. We use learning rate halving every 30 epochs. In
each training batch, using our alternating training scheme,
we forward the RGB-T image pair and minimize Eq. 3. We
set the batch size to 8 for all our experiments.

C. Baseline Comparison
We report the performance of HeatNet trained on Freiburg

Thermal and tested on Freiburg Thermal, MF, and on the
BDD night test split. All results are listed in Tab. I. We
observe that our RGB Teacher model MD, which is trained
on the Vistas dataset [18], has a high mIoU score of 69.4 in
the day domain and an expected low score of 35.7, as the
network is neither trained nor adapted to the night domain.
Our thermal teacher model MN achieves a mIoU score of
57.0, which shows that the domain gap is much smaller for
this domain as for RGB. Our final RGB-T HeatNet model
achieves with 64.9 the overall best score on our test set.
Furthermore the RGB-only HeatNet reaches a comparable
score to our RGB-T variant, proving the efficiency of our
distillation approach which leverages the thermal images as
a bridge modality.

We deploy the same distilled RGB network to publish
results on the night BDD split. It can be observed that our
method boosts the mIoU by 50%.

In order to compare the performance of our network with
the recent RGB-T semantic segmentation approaches MFNet
[9] and RTFNet-50 [25], we also fine-tune our model on the
784-image MF [9] training set and report scores on the cor-
responding test set. We select all classes that are compatible
between MF and Freiburg Thermal for evaluation which are
the classes Car, Person, and Bike. We train our method only
with labels provided by the teacher model MD, while not
requiring any nighttime labels or labels from MF in general.
Thus, it is expected that MFNet and RTFNet outperform
HeatNet as they are trained supervisedly. However, it can
be observed that HeatNet achieves comparable numbers to
MFNet.

We further evaluate the generalization properties of the
models trained on MF and tested on our FR-T dataset.
We observe that the model performance deteriorates when
evaluating MFNet or RTFNet on our FR-T dataset. We
conclude that the diversity and complexity of the MF dataset
does not suffice to train robust and accurate models for
daytime or nighttime semantic segmentation of urban scenes.

D. Ablation Studies
In order to evaluate the various components of our HeatNet

approach, we perform ablation studies with different variants



Dataset RGB Image Thermal Image RGB-Teacher HeatNet RGB HeatNet RGB-T Ground Truth

FR-T

FR-T

RGB Image N/A RGB Teacher HeatNet RGB N/A Ground Truth

BDD

Fig. 6. Qualitative semantic segmentation results of our model variants. We compare segmentation masks of our RGB-only teacher model, HeatNet
RGB-only, and HeatNet RGB-T to ground truth. In the first two rows, we show segmentation masks obtained on the Freiburg Thermal dataset. The bottom
row illustrates results obtained on the RGB-only BDD dataset. The multimodal approaches cannot be evaluated on BDD and the corresponding images are
left blank.

TABLE I
COMPARISON OF RGB-THERMAL SEMANTIC SEGMENTATION PERFORMANCE WITH STATE-OF-THE-ART APPROACHES ON THE MF DATASET AND ON

THE FREIBURG THERMAL (FR-T) DATASET. WE MARK RESULTS OBTAINED USING FULLY SUPERVISED METHODS WITH A GRAY BACKGROUND.
CLASSES AVAILABLE FOR EVALUATION DUE TO INCOMPATIBLE OR MISSING ANNOTATIONS ARE MARKED WITH A DASH (-).
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Train On Test On Model RGB T Mean

MF MF MFNet [9] 3 3 - - - - - - - - - 58.9 65.9 42.9 55.9
RTFNet-50 [25] 3 3 - - - - - - - - - 67.8 86.3 58.2 70.7
HeatNet 3 3 - - - - - - - - - 56.4 68.8 33.9 53.0

FR-T Day/Night MFNet [9] 3 3 - - - - - - - - - 42.8 27.0 24.5 31.4
RTFNet-50 [25] 3 3 - - - - - - - - - 63.2 61.5 51.3 58.6
HeatNet 3 3 86.7 57.5 67.7 46.4 41.5 43.8 57.9 44.1 63.7 63.1 85.6 58.2 59.7

FR-T MF HeatNet 3 3 - - - - - - - - - 51.6 61.8 30.2 47.9
(Vistas) FR-T Day RGB Teacher 3 7 89.7 67.0 73.8 56.9 48.8 53.8 73.8 62.8 84.3 72.0 90.1 60.4 69.4
FR-T HeatNet 3 3 89.4 65.6 74.8 59.7 52.9 54.3 74.1 65.1 84.5 74.0 91.2 64.1 70.8
FR-T FR-T Night Thermal Teacher 7 3 84.9 60.5 65.5 43.1 31.8 38.1 51.8 40.1 72.6 49.6 87.1 56.9 57.0

(Vistas) RGB Teacher 3 7 76.3 22.6 53.4 10.8 14.1 31.6 10.4 13.5 47.7 28.0 74.3 45.2 35.7
FR-T HeatNet 3 3 86.4 60.9 65.4 45.5 35.5 42.0 52.5 52.3 73.9 54.9 85.7 53.3 59.0
FR-T FR-T Day/Night HeatNet 3 3 87.9 63.3 70.1 52.6 44.2 48.2 63.3 58.9 79.2 64.5 88.5 58.7 64.9
FR-T HeatNet RGB-only 3 7 82.7 56.0 66.0 45.3 34.0 37.8 58.4 49.5 71.0 54.4 84.2 57.4 58.0

(Vistas) BDD Night [34] RGB Teacher 3 7 68.8 21.5 32.9 - 0.0 12.3 11.5 6.6 27.2 24.5 40.4 - 24.6
FR-T HeatNet RGB-only 3 7 87.1 40.0 50.2 - 25.9 22.9 12.8 8.5 25.0 27.4 68.3 - 36.8

TABLE II
ABLATION STUDIES FOR VARIANTS OF OUR HEATNET MODEL ON THE

FREIBURG THERMAL DATASET.

mIoU
Variant RGB T Domain

Discrim-
inator

Two-
Stage

Training

Day Night Both

V1 7 3 7 7 68.1 57.0 62.6
V2 3 7 7 7 68.3 25.1 46.7
V3 3 3 7 7 67.9 33.7 50.8
V4 3 7 3 7 70.5 43.2 56.9
V5 3 3 3 7 70.6 56.3 63.5
V6 3 3 3 3 70.8 59.0 64.9

of our model. All ablation studies presented in this section
were performed on our Freiburg Thermal dataset and are
listed in Tab. II.

We first study the impact of the image modalities on the
model performance without using domain adaptation or two-
stage training. We compare a unimodal RGB-only model
(V1) with a unimodal thermal-only model (V2) and the
multimodal variant trained both on RGB and on thermal
images (V3). All variants are trained exclusively on daytime
annotations provided by the RGB daytime teacher model.

We observe that the daytime-nighttime domain gap is the
smallest for V1, while V2 and V3 suffer from a larger domain
gap of the RGB modality, but achieve a higher daytime
performance.

Variants V4 and V5, are similar to variants V2 and V3,
but with an additional domain discriminator, indicating that
adding a domain discriminator loss to the overall training as
described in Sec. III-A greatly helps shrinking the domain
gap within the RGB image modality. Variant V6, with
active domain adaptation and two-stage training procedure
as described in Sec. III-A.1 shows the best performance in
both the daytime and the nighttime domain. We conclude that
our proposed two-stage training scheme by first carrying out
supervised training with two teachers and later fine-tuning
with domain adaptation leads to the best results and helps
aligning the feature representations between day and night
as best as possible.

VI. CONCLUSION

In this work, we presented a novel and robust approach
for daytime and nighttime semantic segmentation of urban
scenes by leveraging both RGB and thermal images. We



showed that our HeatNet approach avoids expensive and
cumbersome annotation of nighttime images by learning
from a pre-trained RGB-only teacher model and by adapt-
ing to the nighttime domain. We further proposed a novel
training initialization scheme by first pre-training our model
with a daytime RGB-only teacher model and a nighttime
thermal-only teacher model and subsequently fine-tuning
the model with a domain confusion loss. We furthermore
introduced a first-of-its-kind large-scale RGB-T semantic
segmentation dataset, including a novel target-less thermal
camera calibration method based on image gradient align-
ment maximization. We presented comprehensive evaluations
on multiple datasets and demonstrated the benefit of the
complementary thermal modality for semantic segmentation
and for learning more robust RGB-only nighttime models.
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