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Abstract Robots operating in the open world encounter various different environments

that can substantially differ from each other. This domain gap also poses a challenge for

Simultaneous Localization and Mapping (SLAM) being one of the fundamental tasks for

navigation. In particular, learning-based SLAM methods are known to generalize poorly

to unseen environments hindering their general adoption. In this work, we introduce the

novel task of continual SLAM extending the concept of lifelong SLAM from a single

dynamically changing environment to sequential deployments in several drastically differ-

ing environments. To address this task, we propose CL-SLAM leveraging a dual-network

architecture to both adapt to new environments and retain knowledge with respect to previ-

ously visited environments. We compare CL-SLAM to learning-based as well as classical

SLAM methods and show the advantages of leveraging online data. We extensively eval-

uate CL-SLAM on three different datasets and demonstrate that it outperforms several

baselines inspired by existing continual learning-based visual odometry methods. We

make the code of our work publicly available at httpȷ//continual-slam.cs.uni-freiburg.de.

1 Introduction

An essential task for an autonomous robot deployed in the open world without prior

knowledge about its environment is to perform Simultaneous Localization and Mapping

(SLAM) to facilitate planning and navigation [11, 27]. To address this task, various

SLAM algorithms based on different sensors have been proposed, including classical

methods [28] and learning-based approaches [3, 18]. Classical methods typically rely

on handcrafted low-level features that tend to fail under challenging conditions, e.g.,

textureless regions. Deep learning-based approaches mitigate such problems due to their

ability to learn high-level features. However, they lack the ability to generalize to out-
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Fig. 1ȷ While lifelong SLAM considers the long-term operation of a robot in a single dynamically

changing environment, domain adaptation techniques aim toward transferring knowledge gained in one

environment to another environment. The newly defined task of continual SLAM extends both settings

by requiring omnidirectional adaptation involving multiple environments. Agents have to both quickly

adapt to new environments and effectively recall knowledge from previously visited environments.

of-distribution data, with respect to the training set. For visual SLAM, such out-of-

distribution data can correspond to images sourced from cities in different countries or

under substantially different conditions. In the following, we use the term environment

to refer to a bounded geographical area. While different environments can share the

same fundamental structure, e.g., urban areas, their specific characteristics prevent the

seamless transfer of learned features, resulting in a domain gap between cities [1].

In the context of this work, lifelong SLAM considers the long-term operation of a robot

in a single environment (see Fig. 1). Although this environment can be subject to temporal

changes, the robot is constrained to stay within the area borders [14], e.g., to obtain

continuous map updates [15] within a city. Recent works attempt to relax this assumption

by leveraging domain adaptation techniques for deep neural networks, including both

regularization [33] and online adaptation of the employed model [19, 20, 23]. While

a naive solution for adapting to a new environment is to source additional data, this

is not feasible when the goal is to ensure the uninterrupted operation of the robot.

Moreover, changes within an environment can be sudden, e.g., rapid weather changes,

and data collection and annotation often come at a high cost. Therefore, adaptation

methods should be trainable in an unsupervised or self-supervised manner without the

need for ground truth data. As illustrated in Fig. 1, the setting addressed in domain

adaptation only considers unidirectional knowledge transfer from a single known to a

single unknown environment [1] and thus does not represent the open world, where the

number of new environments that a robot can encounter is infinite and previously seen

environments can be revisited. To address this gap, we take the next step by considering

more complex sequences of environments and formulate the novel task of continual

SLAM that leverages insights from both continual learning (CL) and lifelong SLAM.

We propose a dual-network architecture called CL-SLAM to balance adaptation to new

environments and memory retention of preceding environments. To assess its efficacy,
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we define two metrics, adaptation quality and retention quality, and compare CL-SLAM

to several baselines inspired by existing CL-based VO methods involving three different

environments. We make the code of this work publicly available at httpȷ//continual-slam.

cs.uni-freiburg.de. The supplementary material can be found at httpsȷ//arxiv.org/abs/

2203.01578.

2 Related Work

Visual Odometry / SLAM: Visual odometry (VO) and vision-based SLAM estimate

camera motion from a video. Allowing for self-supervised training, monocular VO can be

tackled jointly with depth estimation based on photometric consistency. SfMLearner [34]

uses an end-to-end approach consisting of two networks to predict depth from a single

image and camera motion from two consecutive images. The networks are trained in

parallel by synthesizing novel views of the target image. Monodepth2 [6] extends the

loss function to account for occluded and static pixels. Other works such as DF-VO [32]

eliminate the need for a pose network by leveraging feature matching based on optical

flow. While these methods show superior performance [20], computing a gradient of the

predicted pose with respect to the input image is not possible using classic point matching

algorithms. To reduce drift, DeepSLAM [18] combines unsupervised learning-based VO

with a pose graph backend taking global loop closures into account. In this work, we use

a trainable pose network with velocity supervision [8] to resolve scale ambiguity. Similar

to DeepSLAM, we detect loop closures and perform graph optimization.

Continual Learning: Traditionally, a learning-based model is trained for a specific task

on a dedicated training set and then evaluated on a hold-out test set sampled from the

same distribution. However, in many real-world applications, the data distributions can

differ or even change over time. Additionally, the initial task objective might be altered.

Continual learning (CL) and lifelong learning [31] address this problem by defining a

paradigm where a model is required to continuously readjust to new tasks and/or data

distributions without sacrificing the capability to solve previously learned tasks, thus

avoiding catastrophic forgetting. Most CL approaches employ one of three strategies.

First, experience replay includes rehearsal and generative replay. Rehearsal refers to

reusing data samples of previous tasks during adaptation to new tasks, e.g., the replay

buffer in CoMoDA [16]. Minimizing the required memory size, the most representative

samples should be carefully chosen or replaced by more abstract representations [7]. Sim-

ilarly, generative replay constructs artificial samples by training generative models [30].

Second, regularization [21] prevents a CL algorithm from overfitting to the new tasks

to mitigate forgetting, e.g., knowledge distillation. Third, architectural methods [13] pre-

serve knowledge by adding, duplicating, freezing, or storing parts of the internal model

parameters. They further include dual architectures that are inspired by mammalian

brains [25], where one model learns the novel task and a second model memorizes previ-

ous experience. In this work, we combine architectural and replay strategies by leveraging

a dual-network architecture with online adaptation incorporating data rehearsal.

http://continual-slam.cs.uni-freiburg.de
http://continual-slam.cs.uni-freiburg.de
https://arxiv.org/abs/2203.01578
https://arxiv.org/abs/2203.01578
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Online Adaptation for Visual Odometry and Depth Estimation: Recently, Luo et al. [23]

employed a subtask of CL for self-supervised VO and depth estimation, opening a new

avenue of research. Online adaptation enables these methods to enhance the trajectory and

depth prediction on a test set sourced from a different data distribution than the originally

used training set. Both Zhang et al. [33] and CoMoDA [16] primarily target the depth

estimation task. While Zhang et al. propose to learn an adapter to map the distribution of

the online data to the one of the training data, CoMoDA updates the internal parameters

of the depth and pose networks based on online data and a replay buffer. The work in

spirit most similar to ours is done by Li et al. [19]. They propose to substitute the standard

convolutional layers in the depth and pose networks with convolutional LSTM variants.

Then, the model parameters are continuously updated using only the online data. In

subsequent work, Li et al. [20] replace the learnable pose network by point matching

from optical flow. Note that all existing works purely focus on one-step adaptation, i.e.,

transferring knowledge gained in one environment to a single new environment. In this

paper, we introduce continual SLAM to take the next step by considering more complex

deployment scenarios comprising more than two environments and further alternating

between them.

3 Continual SLAM

Problem Setting: Deploying a SLAM system in the open world substantially differs

from an experimental setting, in which parameter initialization and system deployment

are often performed in the same environment. To overcome this gap, we propose a new

task called Continual SLAM, illustrated in Fig. 1, where the robot is deployed on a

sequence of diverse scenes from different environments.

Ideally, a method addressing the continual SLAM problem should be able to achieve

the following goalsȷ 1) quickly adapt to unseen environments while deployment, 2) lever-

age knowledge from previously seen environments to speed up the adaptation, and

3) effectively memorize knowledge from previously seen environments to minimize the

required adaptation when revisiting them, while mitigating overfitting to any of the en-

vironments. Formally, continual SLAM can be defined as a potentially infinite sequence

of scenes S = (𝑠1 → 𝑠2 → . . . ) from a set of different environments 𝑠𝑖 ∈ {𝐸𝑎, 𝐸𝑏, . . . },

where 𝑠 denotes a scene and 𝐸 denotes an environment. In particular, S can contain

multiple scenes from the same environment and the scenes in S can occur in any possible

fixed order. A continual SLAM algorithm A can be defined as

A : < 𝜃𝑖−1, (𝑠1, . . . , 𝑠𝑖) > ↦→ < 𝜃𝑖 >, (1)

where (𝑠1, . . . , 𝑠𝑖) refers to the seen scenes in the specified order and 𝜃𝑖 denotes the

corresponding state of the learnable parameters of the algorithm. During deployment,

the algorithm A has to update 𝜃𝑖−1 based on the newly encountered scene 𝑠𝑖 . For instance,

given two environments 𝐸𝑎 = {𝑠1
𝑎, 𝑠

2
𝑎} and 𝐸𝑏 = {𝑠1

𝑏
}, which comprise two and one

scenes, respectively, examples of feasible sequences are

S1 = (𝑠1

𝑎 → 𝑠1

𝑏 → 𝑠2

𝑎), S2 = (𝑠2

𝑎 → 𝑠1

𝑎 → 𝑠1

𝑏), S3 = (𝑠1

𝑏 → 𝑠2

𝑎 → 𝑠1

𝑎), (2)
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where the scene subscripts denote the corresponding environment and the superscripts

refer to the scene ID in this environment. As described in Sec. 1, the task of continual

SLAM is substantially different from lifelong SLAM or unidirectional domain adaptation

as previously addressed by Luo et al. [23] and Li et al. [19, 20].

To conclude, we identify the following main challengesȷ 1) large number of different

environments, 2) huge number of chained scenes, 3) scenes can occur in any possible

order, and 4) environments can contain multiple scenes. Therefore, following the spirit of

continual learning (CL), a continual SLAM algorithm has to balance between short-term

adaptation to the current scene and long-term knowledge retention. This trade-off is also

commonly referred to as avoiding catastrophic forgetting with respect to previous tasks

without sacrificing performance on the new task at hand.

Performance Metrics: To address the aforementioned challenges, we propose two novel

metrics, namely adaptation quality (AQ), which measures the short-term adaptation

capability when being deployed in a new environment, and retention quality (RQ),

which captures the long-term memory retention when revisiting a previously encountered

environment. In principle, these metrics can be applied to any given base metric 𝑀𝑑

that can be mapped to the interval [0, 1], where 0 and 1 are the lowest and highest

performances, respectively. The subscript 𝑑 denotes the given sequence, where the error

is computed on the final scene.

Base Metrics: For continual SLAM, we leverage the translation error 𝑡err (in %) and

the rotation error 𝑟err (in °/m), proposed by Geiger et al. [5], that evaluate the error as

a function of the trajectory length. To obtain scores in the interval [0, 1], we apply the

following remappingȷ

𝑡̂err = max

(
0, 1 −

𝑡err

100

)
, 𝑟̂err = 1 −

𝑟err

180
, (3)

where we clamp 𝑡̂err to 0 for 𝑡err > 100%. The resulting 𝑡̂err and 𝑟̂err are then used as the

base metric 𝑀 to compute AQtrans / RQtrans and AQrot / RQrot, respectively.

Adaptation Quality: The adaptation quality (AQ) measures the ability of a method to

effectively adapt to a new environment based on experiences from previously seen envi-

ronments. It is inspired by the concept of forward transfer (FWT) [22] in traditional CL,

which describes how learning a current task influences the performance of a future task.

Particularly, positive FWT enables zero-shot learning, i.e., performing well on a future

task without explicit training on it. On the other hand, negative FWT refers to sacrificing

performance on a future task by learning the current task. In our context, a task refers

to performing SLAM in a given environment. Consequently, the AQ is intended to re-

port how well a continual SLAM algorithm is able to minimize negative FWT, e.g., by

performing online adaptation.

To illustrate the AQ, we consider the simplified example of a set of two environments

{𝐸𝑎, 𝐸𝑏} consisting of different numbers of scenes. We further assume that the algorithm

has been initialized in a separate environment 𝐸𝑝 . Since the AQ focuses on the cross-

environment adaptation, we sample one random scene from each environment 𝑠𝑎 ∈ 𝐸𝑎

and 𝑠𝑏 ∈ 𝐸𝑏 and hold them fixed. Now, we construct the set of all possible deployment
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sequences D =

{
(𝑠𝑝 → 𝑠𝑎), (𝑠𝑝 → 𝑠𝑏), (𝑠𝑝 → 𝑠𝑎 → 𝑠𝑏), (𝑠𝑝 → 𝑠𝑏 → 𝑠𝑎)

}
, where

𝑠𝑝 ∈ 𝐸𝑝 is the data used for initialization. The AQ is then defined asȷ

AQ =

1

|D|

∑︁

𝑑∈D

𝑀𝑑 . (4)

Retention Quality: To further account for the opposing challenge of the continual SLAM

setting, we propose the retention quality (RQ) metric. It measures the ability of an

algorithm to preserve long-term knowledge when being redeployed in a previously en-

countered environment. It is inspired by the concept of backward transfer (BWT) [22] in

CL settings, which describes how learning a current task influences the performance on

a previously learned task. While positive BWT refers to improving the performance on

prior tasks, negative BWT indicates a decrease in the performance of the preceding task.

The extreme case of a large negative BWT is often referred to as catastrophic forgetting.

Different from classical BWT, we further allow renewed online adaptation when revisit-

ing a previously seen environment, i.e., performing a previous task, as such a setting is

more sensible for a robotic setup. It further avoids the necessity to differentiate between

new and already seen environments, which would require the concept of environment

classification in the open world.

To illustrate the RQ, we consider a set of two environments {𝐸𝑎, 𝐸𝑏} consisting of

different numbers of scenes. We further assume that the algorithm has been initialized

on data 𝑠𝑝 of a separate environment 𝐸𝑝 . We sample two random scenes from each envi-

ronment, i.e., 𝑠1
𝑎, 𝑠2

𝑎, 𝑠1

𝑏
, and 𝑠2

𝑏
. To evaluate the RQ, we need to construct a deployment

sequence 𝑆 that consists of alternating scenes from the two considered environments. In

this example, we consider the following fixed sequenceȷ

𝑆 = (𝑠𝑝 → 𝑠1

𝑎 → 𝑠1

𝑏 → 𝑠2

𝑎 → 𝑠2

𝑏). (5)

We then consider all the subsequences D of 𝑆 in which the last scene comes from an

environment already visited prior to a deployment in a scene of a different environment.

In this example, D =

{
(𝑠𝑝 → 𝑠1

𝑎 → 𝑠1

𝑏
→ 𝑠2

𝑎), (𝑠𝑝 → 𝑠1
𝑎 → 𝑠1

𝑏
→ 𝑠2

𝑎 → 𝑠2

𝑏
)
}
.

The RQ is then defined as the sum over all differences of the base metric in a known

environment before and after deployment in a new environment, divided by the size of

D. For instance, given the sequence in Eq. 5ȷ

RQ =

1

2

(
𝑀𝑠𝑝�𝑠1

𝑎�𝑠1

𝑏
�𝑠2

𝑎
− 𝑀𝑠𝑝�𝑠1

𝑎�𝑠2
𝑎
+ 𝑀𝑠𝑝�𝑠1

𝑎�𝑠1

𝑏
�𝑠2

𝑎�𝑠2

𝑏
− 𝑀𝑠𝑝�𝑠1

𝑎�𝑠1

𝑏
�𝑠2

𝑏

)
. (6)

4 Technical Approach

Framework Overview: The core of CL-SLAM is the dual-network architecture of the

visual odometry (VO) model that consists of an expert that produces myopic online

odometry estimates and a generalizer that focuses on the long-term learning across

environments (see Fig. 2). We train both networks in a self-supervised manner where

the weights of the expert are updated only based on online data, whereas the weights of

the generalizer are updated based on a combination of data from both the online stream
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Fig. 2ȷ Online adaptation scheme of our proposed CL-SLAM that is constructed as a dual-network

architecture including a generalizer (left) and an expert (right). While the expert focuses on the short-

term adaptation to the current scene, the generalizer avoids catastrophic forgetting by employing a replay

buffer comprising samples from the past and the present. Note that both subnetworks contain a single

PoseNet, shown twice to reflect pose estimation at different steps. The predicted odometry 𝑂𝑡−1�𝑡 is

sent to the SLAM framework as shown in Fig. 3.

and a replay buffer. We use the VO estimates of the expert to construct a pose graph (see

Fig. 3). To reduce drift, we detect global loop closures and add them to the graph, which

is then optimized. Finally, we can create a dense 3D map using the depth predicted by

the expert and the optimized path.

Visual Odometry: We generate VO estimates following the commonly used approach

of using a trainable pose network [2, 6, 8, 18] for self-supervised depth estimation with a

stream of monocular images. The basic idea behind this approach is to synthesize a novel

view of an input image using image warping as reviewed in the supplementary material.

In this work, we use Monodepth2 [6] to jointly predict the depth map of an image and

the camera motion from the previous timestep to the current. To recover metric scaling of

both depth and the odometry estimates, we adapt the original loss function with a velocity

supervision term as proposed by Guizilini et al. [8]. As scalar velocity measurements are

commonly available in robotic systems, e.g., by wheel odometry, this does not pose an

additional burden. Our total loss is composed of the photometric reprojection loss L𝑝𝑟 ,

the image smoothness loss L𝑠𝑚, and the velocity supervision loss L𝑣𝑒𝑙ȷ

L = L𝑝𝑟 + 𝛾L𝑠𝑚 + 𝜆L𝑣𝑒𝑙 . (7)

Following the common methodology, we compute the loss based on an image triplet

{It−2, It−1, It} using depth and odometry predictions Dt−1, Ot−2�t−1, and Ot−1�t. We

provide more details on the individual losses in the supplementary material.

Loop Closure Detection and Pose Graph Optimization: In order to reduce drift over

time, we include global loop closure detection and pose graph optimization (see Fig. 3).

We perform place recognition using a pre-trained and frozen CNN, referred to as LoopNet.

In particular, we map every frame to a feature vector using MobileNetV3 small [10],

trained on ImageNet, and store them in a dedicated memory. Then, we compute the
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Time

Loop closure
detection

Pose graph
optimization

Dense 3D map
Expert

LoopNet

PoseNet

DepthNet

Fig. 3ȷ Full SLAM framework of our proposed CL-SLAM. Global loop closures are detected with a

pre-trained CNN. Visual odometry estimates between both consecutive frames and loop closure frames

are generated by the PoseNet and added to a pose graph, which is optimized upon the detection of a new

loop closure. Finally, a dense 3D map can be created using the predicted depth and the optimized path.

cosine similarity of the current feature map with all preceding feature mapsȷ

simcos = cos( 𝑓current, 𝑓previous). (8)

If simcos is above a given threshold, we use the PoseNet to compute the transformation

between the corresponding images. During deployment, we continuously build a pose

graph [17] consisting of both local and global connections, i.e., consecutive VO estimates

and loop closures. Whenever a new loop closure is detected, the pose graph is optimized.

Online Adaptation: In this section, we describe the dual-network architecture of the VO

predictor in CL-SLAM that effectively addresses the trade-off between short-term adap-

tation and long-term memory retention, a problem also known as catastrophic forgetting.

Subsequently, we detail the training scheme including the utilized replay buffer.

Architecture: The dual-network architecture consists of two instances of both the Depth-

Net and the PoseNet. In the following, we refer to these instances as expert and generalizer.

We build upon the architecture of Monodepth2 [6]. The DepthNet has an encoder-decoder

topology, comprising a ResNet-18 [9] encoder and a CNN-based decoder with skip con-

nections, and predicts disparity values for each pixel in the input image. The PoseNet

consists of a similar structure using a separate ResNet-18 encoder followed by additional

convolutional layers to generate the final output that represents translation and rotation

between two input images. Further implementation details are provided in Sec. 5.

Training Scheme: Before deployment, i.e., performing continual adaptation, we pre-train

the DepthNet and the PoseNet using the standard self-supervised training procedure

based on the loss functions described in Sec. 4. When deployed in a new environment,

we continuously update the weights of both the expert and the generalizer in an online

manner, following a similar scheme as Kuznietsov et al. [16]ȷ

(1) Create an image triplet composed of the latest frame It and the two previous frames

It−1 and It−2. Similarly, batch the corresponding velocity measurements.

(2) Estimate the camera motion between both pairs of subsequent images, i.e., Ot−2�t−1

and Ot−1�t with the PoseNet.
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(3) Generate the depth estimate Dt−1 of the previous image with the DepthNet.

(4) Compute the loss according to Eq. 7 and use backpropagation to update the weights

of the DepthNet and PoseNet.

(5) Loop over steps (2) to (4) for 𝑐 iterations.

(6) Repeat the previous steps for the next image triplet.

Upon deployment, both the expert and the generalizer are initialized with the same

set of parameter weights, initially obtained from pre-training and later replaced by the

memory of the generalizer. As illustrated in Fig. 2, the weights of the expert are updated

according to the aforementioned algorithm. Additionally, every new frame from the online

image stream is added to a replay buffer along with the corresponding velocity reading.

Using only the online images, the expert will quickly adapt to the current environment.

This behavior can be described as a desired form of overfitting for a myopic increase

in performance. On the other hand, the generalizer acts as the long-term memory of

CL-SLAM circumventing the problem of catastrophic forgetting in continual learning

settings. Here, in step (1), we augment the online data by adding image triplets from

the replay buffer to rehearse experiences made in the past, as depicted in Fig. 2. After

deployment, the weights of the stored parameters used for initialization are replaced

by the weights of the generalizer, thus preserving the continuous learning process of

CL-SLAM. The weights of the expert are then discarded.

5 Experimental Evaluation

Implementation Details: We adopt the Monodepth2 [6] architecture using separate

ResNet-18 [9] encoders for our DepthNet and PoseNet. We implement CL-SLAM in

PyTorch [29] and train on a single NVIDIA TITAN X GPU. We pre-train both sub-

networks in a self-supervised manner on the Cityscapes dataset [4] for 25 epochs with a

batch size of 18. We employ the Adam optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999 and an initial

learning rate of 10
−4, which is reduced to 10

−5 after 15 epochs. Further, we resize all

images during both pre-training and adaptation to 192× 640 pixels. Additionally, during

the pre-training phase, we mask all potentially dynamic objects using bounding boxes

generated by YOLOv5m [12], which was trained on the COCO dataset. We observe

that on Cityscapes this procedure yields a smaller validation loss than without masking.

We set the minimum predictable depth to 0.1 m without specifying an upper bound. To

balance the separate terms in the loss, we set the disparity smoothness weight 𝛾 = 0.001

and the velocity loss weight 𝜆 = 0.05.

During adaptation, we utilize the same hyperparameters as listed above. Inspired by

the findings of McCraith et al. [26], we freeze the weights of the encoders. Based on the

ablation study in Sec. 5.2, we set the number of update cycles 𝑐 = 5. To enhance the

unsupervised guidance, we use the velocity readings to skip new incoming images if the

driven distance is less than 0.2 m. We construct the training batch for the generalizer by

concatenating the online data with a randomly sampled image triplet of each environment

except for the current environment as this is already represented by the online data. Finally,

we add the online data to the replay buffer.
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Table 1ȷ Path accuracy on the KITTI dataset

Online adaptation to KITTI Trained on KITTI seq. {0, 1, 2, 8, 9} No training

KITTI CL-SLAM CL-SLAM DeepSLAM [18] VO+vel [6, 8] ORB-SLAM

sequence (w/o loops) (w/o loops)

𝑡err 𝑟err 𝑡err 𝑟err 𝑡err 𝑟err 𝑡err 𝑟err 𝑡err 𝑟err

4 – – 4.37 0.51 5.22 2.27 10.72 1.69 0.62 0.11

5 4.30 1.01 4.41 1.33 4.04 1.40 34.55 11.88 2.51 0.25

6 2.53 0.63 3.07 0.73 5.99 1.54 15.20 5.62 7.80 0.35

7 2.10 0.83 3.74 1.91 4.88 2.14 12.77 6.80 1.53 0.35

10 – – 2.22 0.34 10.77 4.45 55.27 9.50 2.96 0.52

Translation error 𝑡err in [%] and rotation error 𝑟err in [°/100m]. Sequences 4 and 10 do not contain

loops. CL-SLAM is pre-trained on the Cityscapes dataset. The paths computed by ORB-SLAM

use median scaling [34] as they are not metric scale. The smallest errors among the learning-

based methods are shown in bold.

Datasets: To simulate scenes from a diverse set of environments, we employ our method

on three relevant datasets, namely Cityscapes [4], Oxford RobotCar [24], and KITTI [5],

posing the additional challenge of adapting to changing camera characteristics.

Cityscapes: The Cityscapes Dataset [4] includes images and vehicle metadata recorded

in 50 cities across Germany and bordering regions. Due to the unsupervised training

scheme of our VO method, we can leverage the included 30-frame snippets to pre-train

our networks despite the lack of ground truth poses.

Oxford RobotCar: The Oxford RobotCar Dataset [24] focuses on repeated data recordings

of a consistent route, captured over the period of one year in Oxford, UK. Besides RGB

images, it also contains GNSS and IMU data, which we use for velocity supervision. To

compute the trajectory error, we leverage the released RTK ground truth positions.

KITTI: The KITTI Dataset [5] provides various sensor recordings taken in Karlsruhe,

Germany. We utilize the training data from the odometry benchmark, which includes

images and ground truth poses for multiple routes. We further leverage the corresponding

IMU data from the released raw dataset to obtain the velocity of the vehicle.

5.1 Evaluation of Pose Accuracy of CL-SLAM

Before analyzing how CL-SLAM addresses the task of continual SLAM, we compare

its performance to existing SLAM framework. In particular, in Table 1 we report the

translation and rotation errors on sequences 4, 5, 6, 7, and 10 of the KITTI Odometry

dataset [5] following Li et al. [18]. Since the IMU data of sequence 3 has not been released,

we omit this sequence. We compare CL-SLAM to two learning-based and one feature-

based approach. DeepSLAM [18] uses a similar unsupervised learning-based approach

consisting of VO and graph optimization but does not perform online adaptation. VO+vel

refers to Monodepth2 [6] with velocity supervision [8], i.e., it corresponds to the base VO

estimator of CL-SLAM without adaptation and loop closure detection. Both learning-

based methods produce metric scale paths and are trained on the sequences 0, 1, 2, 8, and

9. Further, we report the results of monocular ORB-SLAM [28] after median scaling [34].
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Table 2ȷ Translation and rotation error for computing the AQ and RQ metrics

Used Previous Current Bfixed Bexpert Bgeneral CL-SLAM

for scenes scene 𝑡err 𝑟err 𝑡err 𝑟err 𝑡err 𝑟err 𝑡err 𝑟err

AQ

𝑐𝑡 𝑘1 130.74 26.35 2.50 0.37 7.21 1.26 2.50 0.37

𝑐𝑡 𝑟1 170.76 13.37 28.94 5.63 29.05 5.49 28.94 5.63

𝑐𝑡 � 𝑟1 𝑘1 – – 3.66 0.73 14.14 1.79 3.24 0.54

𝑐𝑡 � 𝑘1 𝑟1 – – 32.56 6.08 34.79 6.64 30.13 5.87

RQ

𝑐𝑡 � 𝑘1 � 𝑟1 𝑘2 164.77 25.07 45.20 5.62 8.48 1.79 4.85 1.59

𝑐𝑡 � 𝑘1 � 𝑟1 � 𝑘2 𝑟2 200.14 28.94 15.91 4.93 16.02 4.98 20.50 4.77

𝑐𝑡 � 𝑘1 𝑘2 – – 15.82 2.50 9.37 2.21 7.48 1.63

𝑐𝑡 � 𝑘1 � 𝑟1 𝑟2 – – 14.89 4.62 12.24 4.38 16.41 4.58

The previous scenes denote the scenes that have been used for previous training of the algorithm, the

current scene denotes the evaluation scene to compute both errors 𝑡err in [%] and 𝑟err in [°/100m]. 𝑐𝑡
refers to the Cityscapes training set. 𝑟𝑖 and 𝑘𝑖 are sequences from KITTI and the Oxford RobotCar

dataset. Bold and underlined values indicate the best and second best scores on each sequence.

CL-SLAM outperforms DeepSLAM on the majority of sequences highlighting the

advantage of online adaptation. Note that CL-SLAM was not trained on KITTI data but

was only exposed to Cityscapes before deployment. To show the effect of global loop

closure detection, we report the error on sequences 5 to 7 both with and without graph

optimization enabled. Note that sequences 4 and 10 do not contain loops. Compared

to ORB-SLAM, CL-SLAM suffers from a higher rotation error but can improve the

translation error in sequences 6 and 10. The overall results indicate that general SLAM

methods would benefit from leveraging online information to enhance performance.

5.2 Evaluation of Continual SLAM

Experimental Setup: In order to quantitatively evaluate the performance of our proposed

approach, we compute both the adaptation quality (AQ) and the retention quality (RQ)

by deploying CL-SLAM and the baseline methods on a fixed sequence of scenes. In

particular, we use the official training split of the Cityscapes dataset to initialize the

DepthNet and PoseNet, using the parameters detailed in Sec. 5. The pre-training step is

followed by a total of four scenes of the Oxford RobotCar dataset and the KITTI dataset.

(𝑐𝑡 → 𝑘1 → 𝑟1 → 𝑘2 → 𝑟2), (9)

where 𝑐𝑡 refers to the Cityscapes training set.

Following the setup of Li et al. [19], we set 𝑘1 and 𝑘2 to be sequences 9 and 10 of the

KITTI Odometry dataset. Note that we omit loop closure detection for this evaluation to

prevent graph optimization from masking the effect of the respective adaptation technique.

From the Oxford RobotCar dataset, we select the recording of August 12, 2015, at

15ȷ04ȷ18 GMT due to sunny weather and good GNSS signal reception. In detail, we set

𝑟1 to be the scene between frames 750 and 4,750 taking every second frame to increase

the driven distance between two consecutive frames. Analogously, we set 𝑟2 to be the

scene between frames 22,100 and 26,100. We use a scene length of 2,000 frames in order

to be similar to the length of KITTI sequencesȷ 1,584 frames for 𝑘1 and 1,196 for 𝑘2.
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Table 3ȷ Comparison of the

Adaptation Quality (AQ)

↑ AQtrans ↑ AQrot

Bfixed 0.000 0.890

Bexpert 0.831 0.982

Bgeneral 0.787 0.979

CL-SLAM 0.848 0.983

AQtrans refers to adaptation quality

with respect to the translation error,

AQrot is based on the rotation error.

Bold and underlined values denote

the best and second best scores.
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Fig. 4ȷ The translation error on the initial frames of KITTI

sequence 4. Bfixed is trained on the different environments

indicating the domain gap between them. CL-SLAM over-

comes this issue by performing online adaptation.

Baselines: We compare CL-SLAM to three baselines that are inspired by previous works

towards online adaptation to a different environment compared to the environment used

during training. As noted in Sec. 3, continual SLAM differentiates from such a setting

in the sense that it considers a sequence of different environments. First, Bexpert imitates

the strategy employed by Li et al. [19], using a single set of network weights that is

continuously updated based on the current data. This corresponds to only using the

expert network in our architecture without resetting the weights. Second, Bgeneral follows

CoMoDA [16] leveraging a replay buffer built from previously seen environments. This

method corresponds to only using the generalizer network. Finally, we compute the error

without performing any adaptation, i.e., Bfixed utilizes network weights fixed after the

pre-training stage. To further illustrate forward and backward transfer and to close the gap

to classical CL, we provide results on an additional baseline Boffline in the supplementary

material. This baseline is initialized with the same network weights as CL-SLAM but

does not perform online adaptation to avoid masking backward transfer. In reality, it

resembles data collection followed by offline training after every new environment.

Adapting to New Environments: In the initial part of the evaluation sequence (Eq. 9),

the algorithm has to adapt to unseen environments. In accordance to the definition of the

AQ in Sec. 3, we construct four sequences listed in the upper four rows of Table 2. Next,

we deploy CL-SLAM and the baselines, initialized with the same set of model weights

pre-trained on Cityscapes, on each of these sequences and compute the translation and

rotation errors. Note that we do not apply median scaling since the PoseNet in our work

produces metric estimates due to the velocity supervision term. Further note that for

the first deployment after pre-training, Bexpert corresponds to CL-SLAM. We observe

that Bexpert yields smaller errors than Bgeneral. This indicates the importance of online

adaptation without diluting the updates with data from unrelated environments, if a high

performance on the current deployment is the desideratum, and, thus, supports using the

expert network in our approach. To compute the AQ score, after remapping using Eq. 3
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Fig. 5ȷ Comparison of the trajectory on 𝑘2 after

previous deployment on 𝑘1 and 𝑟1 predicted by

CL-SLAM and the baseline methods. The hexagon

indicates the starting point.

Fig. 6ȷ Relative translation error of the first 150

frames along 𝑘2. Compared to Bexpert, CL-SLAM

reduces the error more quickly due to initialization

with the weights of its generalizer network.

we sum the errors and divide by the number of sequencesȷ

AQ =

1

4

(
𝑀𝑐𝑡�𝑘1

+ 𝑀𝑐𝑡�𝑟1
+ 𝑀𝑐𝑡�𝑟1�𝑘1

+ 𝑀𝑐𝑡�𝑘1�𝑟1

)
. (10)

Comparing the AQ (see Table 3) for all experiments further endorses the previous

findings in a single metric. Notably, continual adaptation is strictly necessary to obtain

any meaningful trajectory.

Finally, we discuss the effect of consecutive deployments to different environments.

In Fig. 4, we plot the translation error of the VO estimates on KITTI sequence 4 without

online adaptation, separately trained on the considered datasets, and with adaptation,

pre-trained on Cityscapes. As expected, without adaptation, the error is substantially

higher if the system was trained on a different dataset showing the domain gap between

the environments. By leveraging online adaptation, CL-SLAM reduces the initial error

and yields even smaller errors than training on KITTI without further adaptation. Having

established the existence of a domain gap, we analyze how the deployment to the current

environment effects the future deployment to another environment, resembling the con-

cept of forward transfer (FTW) in continual learning (CL). In detail, Table 2 reveals that

the performances of all adaptation-based methods decrease when deploying them to an

intermediate environment, e.g., (𝑐𝑡 → 𝑘1) versus (𝑐𝑡 → 𝑟1 → 𝑘1), where the effect is

most pronounced for Bgeneral. In CL, such behavior is referred to as negative FWT.

Remembering Previous Environments: In the subsequent phase of the evaluation se-

quence (Eq. 9), the algorithm is redeployed in a new scene taken from a previously en-

countered environment. In accordance to the definition of the RQ in Sec. 3, we construct

four sequences listed in the lower four rows of Table 2. Note that the first two sequences

are part of the original evaluation sequence (Eq. 9) and the other two sequences are used

as a reference to measure the effect of mixed environments.
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Following the same procedure as in the previous section, we compute the translation

and rotation errors. The resulting scores (see Table 2) demonstrate the benefit of em-

ploying a replay buffer to leverage previously learned knowledge, Bgeneral yields smaller

errors than Bexpert on the majority of sequences. To compute the RQ, we follow Eq. 6ȷ

RQ =

1

2

[ (
𝑀𝑐𝑡�𝑘1�𝑟1�𝑘2

− 𝑀𝑐𝑡�𝑘1�𝑘2

)
+
(
𝑀𝑐𝑡�𝑘1�𝑟1�𝑘2�𝑟2

− 𝑀𝑐𝑡�𝑘1�𝑟1�𝑟2

) ]
. (11)

Comparing the RQ scores in Table 4 clearly shows that the drop in performance when

mixing environments is less pronounced for Bgeneral. Our proposed CL-SLAM leverages

this advantage due to its generalizer, while the expert still focuses on the current scene,

achieving the highest RQ across the board.

To bridge the gap to classical CL, we also qualitatively compare the consecutive

deployment to scenes from the same environment with introducing an intermediate scene

from another environment, e.g., (𝑐𝑡 → 𝑘1 → 𝑘2) versus (𝑐𝑡 → 𝑘1 → 𝑟1 → 𝑘2). In

CL, an increase/decrease in performance is known as positive/negative backward transfer

(BWT). Whereas we observe positive BWT for Bgeneral and CL-SLAM on the KITTI

dataset, the sequence with final deployment on RobotCar suffers from negative BWT. A

possible explanation for this inconsistent behavior is structural differences between the

sequences of the same dataset inducing small domain gaps within a dataset that require a

potentially more fine-grained scene classification. However, by always performing online

adaptation independent of previous deployments, CL-SLAM circumvents such issues.

In Fig. 5, we visualize the generated trajectories in 𝑘2 given previous deployment in

𝑘1 and 𝑟1 from our method and the evaluated baselines. Although Bexpert can reproduce

the general shape of the trajectory, it requires a warm-up time causing an initial drift,

visible up to frame 40 in Fig. 6. On the other hand, Bgeneral can leverage the experience

from 𝑘1 due to the rehearsal of the KITTI data from its replay buffer during the pre-

vious deployment in 𝑟1. By following this idea, our proposed CL-SLAM combines the

advantages of both baseline strategies.

Table 4ȷ Comparison of the

Retention Quality (RQ)

↑ RQtrans ×10
−3 ↑ RQrot ×10

−3

Bfixed – –

Bexpert -152.0 -9.5

Bgeneral -14.4 -0.5

CL-SLAM -7.3 -0.4

RQtrans refers to the retention quality with re-

spect to the translation error, RQrot is based

on the rotation error. Bfixed does not perform

adaptation, hence computing the RQ is mean-

ingless. Bold and underlined values denote the

best and second best scores.

Table 5ȷ Ablation study on the number

of adaptation cycles

𝑐𝑡 → 𝑘1 𝑐𝑡 → 𝑘2

Updates Relative FPS 𝑡err 𝑟err 𝑡err 𝑟err

1 1.00 34.37 6.70 86.36 11.71

2 0.56 31.37 5.83 39.72 7.16

3 0.40 24.21 4.21 11.15 4.63

4 0.30 3.24 0.54 13.51 2.03

5 0.24 2.50 0.37 11.18 1.74

6 0.20 2.84 0.40 12.97 1.51

Translation error 𝑡err in [%] and rotation error 𝑟err

in [°/100m] for varying number of weight updates 𝑐

performed during online adaptation. We use 𝑐 = 5

in CL-SLAM. Bold and underlined values denote

the best and second best scores.
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Number of Update Cycles: We perform a brief ablation study on the number of update

cycles performed during online adaptation, i.e., how often steps (2) to (4) are repeated for

a given batch of data (see Sec. 4). For this, we deploy CL-SLAM to both KITTI sequences

𝑘1 and 𝑘2 and compute the translation and rotation error. As shown in Table 5, using

five update cycles yields the most accurate trajectory while resulting in a 75% reduction

in speed compared to a single cycle. However, please note that in this work, we do not

focus on adaptation speed but on showing the efficacy of the proposed dual-network

approach to balance the common continual learning trade-off between quick adaptation

and memory retention.

6 Conclusion

In this paper, we introduced the task of continual SLAM, which requires the SLAM

algorithm to continuously adapt to new environments while retaining the knowledge

learned in previously visited environments. To evaluate the capability of a given model

to meet these opposing objectives, we defined two new metrics based on the commonly

used translation and rotation errors, namely the adaptation quality and the retention

quality. As a potential solution, we propose CL-SLAM, a deep learning-based visual

SLAM approach that predicts metric scale trajectories from monocular videos and de-

tects global loop closures. To balance short-term adaptation and long-term memory

retention, CL-SLAM is designed as a dual-network architecture comprising an expert

and a generalizer, which leverages experience replay. Through extensive experimental

evaluations, we demonstrated the efficacy of our method compared to baselines using

previously proposed continual learning strategies for online adaptation of visual odome-

try. Future work will focus on transferring the proposed design scheme to more advanced

visual odometry methods, e.g., using point matching via optical flow. We further plan

to address the currently infinite replay buffer to mitigate the scaling problem, e.g., by

storing more abstract representations or keeping only the most representative images.
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