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A Good Foundation is Worth Many Labels:
Label-Efficient Panoptic Segmentation

Niclas Vödisch1∗, Kürsat Petek1∗, Markus Käppeler1∗, Abhinav Valada1, and Wolfram Burgard2

Abstract—A key challenge for the widespread application of
learning-based models for robotic perception is to significantly
reduce the required amount of annotated training data while
achieving accurate predictions. This is essential not only to
decrease operating costs but also to speed up deployment time. In
this work, we address this challenge for PAnoptic SegmenTation
with fEw Labels (PASTEL) by exploiting the groundwork paved
by visual foundation models. We leverage descriptive image
features from such a model to train two lightweight network
heads for semantic segmentation and object boundary detection,
using very few annotated training samples. We then merge their
predictions via a novel fusion module that yields panoptic maps
based on normalized cut. To further enhance the performance,
we utilize self-training on unlabeled images selected by a feature-
driven similarity scheme. We underline the relevance of our
approach by employing PASTEL to important robot perception
use cases from autonomous driving and agricultural robotics. In
extensive experiments, we demonstrate that PASTEL significantly
outperforms previous methods for label-efficient segmentation
even when using fewer annotations. The code of our work is
publicly available at http://pastel.cs.uni-freiburg.de.

Index Terms—Semantic Scene Understanding; Deep Learning
Methods; Computer Vision for Transportation

I. INTRODUCTION

HOLISTIC scene understanding is a core requirement
for mobile robots to interact autonomously with their

environment. Commonly, this is addressed by visual panoptic
segmentation that assigns a semantic class to each pixel while
separating instances of the same class. Although recent meth-
ods [1], [2], [3] have shown great progress in terms of segmen-
tation performance, they often rely on a vast amount of densely
annotated training data and tend to generalize poorly to new
domains. Since creating panoptic labels is a highly laborious
task [4], collecting large-scale training data for every new
area of operation would drastically increase the cost of robot
deployment. This particularly hinders the widespread applica-
tion in continuously changing environments, e.g., agricultural
robotics. To reduce training costs, some recent segmentation
techniques employ various kinds of limited supervision. For
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Fig. 1. We propose PASTEL for label-efficient panoptic segmentation.
Our method combines a DINOv2 [15] backbone, creating descriptive image
features, with labels from only k images, e.g., k = 10 on Citycapes [4]. A
novel fusion module then merges semantic predictions with estimated object
boundaries to yield the panoptic output.

instance, by learning from sparse annotations [5], [6], in semi-
[7], [8], [9] or unsupervised manners [10], [11], and more re-
cently by leveraging foundation models [12], [13]. Since these
models can be adapted to various downstream tasks [14], [15],
we argue that they offer a powerful pretraining strategy for
addressing robotic perception tasks in a label-efficient manner.

In this work, we employ this paradigm shift to panoptic
segmentation to substantially reduce the number of annotated
images required for training. In particular, we propose a
novel approach for PAnoptic SegmenTation with fEw La-
bels (PASTEL) and illustrate the key idea in Fig. 1. First,
the vision foundation model DINOv2 [15] and a small set
of k densely annotated images form the basis of PASTEL.
Second, the descriptive image features of DINOv2 [15] allow
for highly label-efficient training of two lightweight heads
for semantic segmentation and object boundary estimation.
Third, at inference time, a novel panoptic fusion module
then merges the task-specific predictions and further refines
their quality. Finally, PASTEL bootstraps selectively sampled
unlabeled images for an additional performance boost via
self-training. In extensive experiments, we demonstrate that
PASTEL creates high-quality panoptic predictions from as few
as 10 labeled images on Cityscapes [4], Pascal VOC [16], and
PhenoBench [17]. Notably, PASTEL can hence be trained with
labels produced by a single annotator in 11⁄2 days [4] while
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outperforming previous label-efficient methods that require
five to ten times as much data. We further show that the
predictions of PASTEL can be used as pseudo-labels to
train densely supervised models, i.e., rendering them label-
efficient. To encourage future research, we release our code at
http://pastel.cs.uni-freiburg.de.

II. RELATED WORK

We provide an overview of visual foundation models and
previous methods for label-efficient image segmentation.
Visual Foundation Models. The term “foundation model”
defines models that are trained on large amounts of data
for adaptation to a variety of downstream tasks [14]. First
applied in natural language processing, e.g., GPT-3 [18],
similar approaches have since also been proposed for computer
vision (CV). For instance, CLIP [19] allows for zero-shot
image classification that can be leveraged in open-vocabulary
methods [20]. Florence [21] represents a general-purpose CV
foundation model by extending the textual-visual shared repre-
sentation to the space and time domains. Similarly, Painter [22]
addresses common CV tasks such as image segmentation
or depth estimation without task-specific heads. The recent
SAM [23] enables zero-shot semantic and instance segmenta-
tion while lacking the ability to assign classes to the segmented
areas. Finally, DINO [24] and DINOv2 [15] represent a new
paradigm of visual foundation models relying on a completely
unsupervised training scheme with neither cross-modal nor
iterative human annotations. Nonetheless, these models have
been shown to learn semantically descriptive features for
downstream tasks [15], [13]. In this work, we exploit such
image representations as a strong prior to enable label-efficient
panoptic segmentation.
Label-Efficient Image Segmentation. Classical deep image
segmentation methods require a large amount of annotated
training data [1], [2], [3]. Therefore, many recent works
employ different strategies of weak supervision [25] to reduce
the labeling cost. For instance, unsupervised semantic seg-
mentation is commonly addressed using contrastive learning
techniques [10], [26] to find similar clusters in the feature
space. Recent methods have leveraged descriptive image rep-
resentations from large-scale task-agnostic pretraining [24]
for both semantic [12] and instance segmentation [11]. With
respect to the more challenging task of panoptic segmentation,
CoDEPS [27] distills knowledge from a labeled source domain
to a new unlabeled target domain. Sparse annotations offer
an intermediate approach with limited pixel-based supervision
generated by an inexpensive labeling scheme, e.g., point
annotations [5], [6]. Semi-supervised training bootstraps a few
densely annotated examples with a large set of unlabeled
images and is commonly based on auxiliary tasks [7], self-
training [8], or uncertainty estimation [9]. In this work, we
add to the promising line of research that exploits visual
foundation models for label-efficient dense supervision. The
concurrent SPINO [13] approach combines a DINOv2 [15]
backbone with separate heads for semantic segmentation and
object boundary estimation. Inspired by these recent insights,
we follow a similar design scheme but exploit further syner-

gies between semantic classes and leverage unlabeled images
via self-training. Importantly, unlike most prior label-efficient
techniques, in this work we aim to enable panoptic segmen-
tation from only as few labeled images as a single annotator
can produce within a reasonable time frame, thus facilitating
deployment in custom domains.

III. TECHNICAL APPROACH

In this section, we present our PASTEL approach for label-
efficient panoptic segmentation including its network architec-
ture, the training scheme, the novel panoptic fusion module,
and the feature-driven iterative self-training.

A. Model Architecture and Training

The key insight of our PASTEL is to exploit the semanti-
cally rich image features from a foundation model to enable
label-efficient segmentation and instance delineation.
Network Design. As illustrated in Fig. 2, we design our
network according to the multi-task paradigm with a shared
backbone. Inspired by the approaches Point2Mask [5] and
SPINO [13], we separately perform pixel-based semantic
segmentation and object boundary detection while using a
shared backbone. In detail, we employ the pretrained ViT-B/14
variant of DINOv2 [15] as the frozen backbone. In the n-class
segmentation head, we first upsample the patch-wise features
of DINOv2 to the input image size, i.e., 14×-upsampling. We
then feed the output to four 1×1 convolution layers of feature
sizes 300, 300, 200, and n. In the object boundary head, we
operate on a smaller feature map using a 4×-upsampling layer,
again followed by four 1×1 convolution layers of output sizes
600, 600, 400, and 1. We frame the boundary detection task as
binary classification with labels 0 and 1 denoting boundary and
background pixels, respectively. During test-time, the output
of both heads is merged by our novel panoptic fusion module
as detailed in Sec. III-B.
Network Training. Due to the descriptive image features of the
DINOv2 [15] backbone, we can train both heads with a min-
imum number k of annotated images. In practice, k can be as
small as ten samples as shown in Sec. IV. To train the semantic
segmentation head, we employ the bootstrapped cross-entropy
loss [28] to compensate for an imbalanced class distribution:

Lsem =
−1

K

N∑
i=1

1 [pi,yi
< tK ] · log(pi,yi

) , (1)

where N denotes the number of pixels. Furthermore, pi,yi

refers to the posterior probability of pixel i for the true class
yi ∈ {1, . . . , n}. Note that n corresponds to the number of
semantic classes. The indicator function 1(·) returns 1 if pi,yi

is smaller than the threshold tK and 0 otherwise. To bootstrap
pixels with yet uncertain predictions, i.e., a high loss, we set
tK = 0.2. Since we formulate the boundary detection as a
2-class classification task, we supervise this head with the
binary cross entropy loss:

Lbnd =
−1

N

N∑
i=1

yi · log(pi) + (1− yi) · log(1− pi) , (2)
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Fig. 2. Test-time overview of PASTEL illustrating the panoptic fusion scheme. For simplicity, we focus on car and road classes after step (1). The overall
module is comprised of the following steps: (1) Overlapping multi-scale predictions; (2) Conversion of soft boundary map to an affinity matrix; (3) Boundary
denoising; (4) Extraction of “stuff” to “thing” boundaries; (5) Class majority voting within enclosed areas; (6) Connected component analysis (CCA); (7) Filters
on “thing” classes; (8) Filters on “stuff” classes; (9) Recursive two-way normalized cut (NCut) to separate connected instances; (10) Nearest neighbors-based
hole filling of pixels with the ignore class.

upsample upsample

upsample

Fig. 3. We perform multi-scale test-time augmentation with overlapping
image crops to mitigate visual artifacts at the borders. Before feeding the
crops to the task-specific networks, we upsample them to the original image
size. In this figure, we illustrate the approach for scale s = 2 and an image
crop overlap of z = 2.

where N is the number of pixels, yi ∈ {0, 1} denotes the
binary boundary label, and pi refers to the pixel probability
of being a boundary. During training, we set the true yi to 0
if the instance identifier of a “thing” pixel differs from the
identifier of any of its eight neighbors. Otherwise, we assign 1.
If the pixel i belongs to a “stuff” class, we set yi = 1.

In order to increase the variety of the small training set
of only k samples, we employ extensive data augmentation.
In particular, we perform randomized horizontal flipping and
cropping with consecutive resizing to the input image size. We
further augment various visual properties including brightness,
contrast, saturation, and hue value.

B. Panoptic Fusion Module

Our proposed panoptic fusion module comprises three key
steps: generating multi-scale predictions, a variety of heuristic-
driven refinements, and the final instance delineation. We
illustrate the overall methodology in Fig. 2.
Multi-Scale Prediction. During test-time, we perform both
semantic segmentation and object boundary detection on mul-
tiple scales enabling our method to create more fine-grained
predictions. In particular, we partition the input image of size
(w, h) into smaller areas of size

ws = w/s , hs = h/s , (3)

where s denotes the scale. Importantly, we propose to utilize
overlapping image crops with strides

rw,s =
ws

z
, rh,s =

hs

z
. (4)

Unlike non-overlapping ensembles [13], our approach prevents
sharp borders within the merged prediction that can result
in visual artifacts. The parameter z defines the extent of the
overlap, e.g., z = 2 indicates that half of an image crop is
overlapped by another crop. We depict this method in Fig. 3
for scale s = 2 and overlap z = 2, yielding nine image crops.
We upsample each crop to the input image size (w, h) using
bilinear interpolation and feed them through the respective
head. Then, we downsample the generated feature maps to
(ws, hs) and place them in a combined feature map at the
position corresponding to the input image crop. We repeat this
procedure for each scale and average features of overlapping
pixels. Finally, we merge the features from multiple scales
using the mean value per pixel.
Panoptic Fusion and Refinement. We visualize the individual
steps of our proposed panoptic fusion module in Fig. 2, starting
with the previously described multi-scale prediction (1). First,
we compute an affinity matrix A from the predicted soft
boundary B̂soft (2) to be used for instance delineation (9).
We detail these steps in the next paragraph. In step (3), we
obtain the binary boundary B̂ after thresholding the class
probabilities of each element bsoftij ∈ B̂soft with λb:

bij =

{
1 if bsoftij > λb

0 otherwise
, bij ∈ B̂ (5)

We further denoise B̂ by removing small boundaries. Next,
we extract boundaries between any two “stuff” and “thing”
classes (4) and add them to B̂. This enables us to find
disconnected segments in the predicted semantic map Ŝ. In
detail, in step (5) we perform connected component analysis
(CCA) on B̂, followed by majority voting to update the pixel-
wise predicted semantic classes ŷi of a segment seg :

ŷi = argmax
y∈{1,...,n}

∑
ŷj∈seg

1 [ŷj = y] (6)

In Fig. 2, this changes the burgundy colored pixels in the left
vehicles to the car class. In step (6), we again perform CCA
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but use the semantic predictions, i.e., we obtain a segment
for each area in the image whose neighbors belong to a
different semantic category. In the following, we separate these
segments into “stuff” and “thing” segments. First, we iterate
over the “thing” segments (7) and set the semantic label to
the ignore class if the segment size is below a threshold, the
boundary head does not predict a boundary for any of the
segments’ pixels, or the segment is fully surrounded by another
thing class. While the second filter is inspired by ensemble
learning, the third filter targets infeasible objects flying in
the scene. In Fig. 2, these filters remove the red pixels in
the rear window of the center vehicle as well as the smaller
car segments. Then, we iterate over the “stuff” segments (8)
and apply the same filters except for the boundary-based
removal. In step (9), we fuse the semantic prediction with the
detected object boundaries to obtain a panoptic map. Finally,
in step (10), we propagate labels from the nearest neighbor to
fill all previously created holes, i.e., pixels that were assigned
the ignore label. Note that although we only visualize car and
road classes in Fig. 2, the final panoptic segmentation map P̂
contains all valid categories.
Instance Separation. Here, we further detail steps (2) and (9)
as numbered in Fig. 2. While CCA on the pixels assigned
to the same “thing” class already yields disconnected image
segments, the number and exact location of instances within a
segment remains unknown. To delineate instances, we employ
recursive two-way normalized cut (NCut) [29] to each image
segment of a “thing” class.

In step (2), we first downsample the soft boundary map
B̂soft to size (wb, hb). Then, we compute a sparse affinity
matrix A ∈ Rhb·wb×hb·wb based on the distance matrix Dwith
distances between pixels pi and pj defined as:

dij = max
pl∈line(pi,pj)

B̂soft(pl) , (7)

where where the line(·, ·) operator is provided by the Bresen-
ham algorithm. We convert the distances to affinities by taking
the negative exponential:

aij = e−βdij , (8)

where aij ∈ A and dij ∈ D. The decay rate parameter
β controls the sensitivity of the affinity to changes in the
distance. We interpret A as a weighted radius neighborhood
graph with nodes and edges representing image pixels and
affinities between neighboring pixels, respectively.

In step (9), we mask those elements in A that are not part of
the current image segment and apply recursive NCut to cut the
segment into instances. The objective of NCut is to minimize
the cost of dividing a graph into two separate sub-graphs. The
continuous solution of NCut is given by the eigenvector v
that corresponds to the second smallest eigenvalue λ of the
generalized eigenvalue problem:

(C−A)x = λCx , (9)

where C is a diagonal matrix with diagonal elements cii =∑
j Aij . The solution v is a continuous bipartition of the

segment. If the cost of a cut, represented by λ, is less than a
threshold and a stability criterion is fulfilled, we apply the cut.
Otherwise, we stop the recursion. The stability criterion [29]

sampling

k labeled images n·k selected images

pseudo-labelsm unlabeled images

PASTEL

Fig. 4. During self-training, we extract feature vectors {l1, l2, . . . , lk} of the
labeled images as well as feature vectors {u1, . . . , um} of unlabeled images.
Since the performance of PASTEL is better on those unlabeled images that
are more similar to the samples in the training set, we leverage the cosine
similarity as distance measure dij for image sampling.

measures the degree of smoothness in v. Formally, if the ratio
between the minimum and the maximum value of a histogram
of v is less than a threshold, the criterion holds. Thus, we
do not cut if there is high uncertainty in the solution v. To
finally apply the cut, we search for the splitting point that
minimizes the NCut cost to bipartition v into two segments.
We then recursively apply this procedure to both segments to
find additional instances. If the size of a segment is below a
threshold, we remove this segment and set its semantic label to
the ignore class. While using CCA [13] fails for non-closed
object boundaries, NCut is robust to small gaps and noise
present in the boundary map.

C. Iterative Self-Training

Due to leveraging multi-scale predictions followed by re-
finements made by our panoptic fusion module, the final
output of PASTEL is of higher quality compared to the initial
single-scale predictions, thus motivating iterative self-training.
Because of the design of the fusion module, this enhancement
mostly applies to the semantic output and is negligible for the
boundary prediction. Therefore, we employ self-training only
for the semantic segmentation head.

In particular, we propose to select unlabeled images in
a feature-driven manner, as illustrated in Fig. 4. First, we
generate feature representations of the selected k images with
ground truth annotations as well as of a set of m unlabeled
images using the DINOv2 [15] backbone. Then, we query the
n nearest neighbors from the unlabeled set for each image
in our training set. Inspired by place recognition in visual
SLAM [30], we utilize the cosine similarity between feature
vectors as a similarity measure for images.

simcos(Ia, Ib) = cos (feat(Ia), feat(Ib)) , (10)

where I denotes an image with corresponding features feat(I).
We observe that the semantic predictions for these similar
images are better than the predictions of a randomly sampled
image and can hence bootstrap the semantic head. Please see
Sec. IV-C for a quantitative argument.

Next, we use PASTEL to create panoptic predictions for
the sampled n · k images and treat them as pseudo-labels.
We continue the training of the semantic segmentation head
by constructing batches that contain both a ground truth
annotation and a pseudo-labeled image. We use the same loss
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TABLE I
IMAGE SEGMENTATION ON CITYSCAPES

Method Backbone Supervision mIoU PQ

1a) Mask2Former [2] Swin-L L 82.9 66.6

2a) PiCIE† [10] ResNet-18 U 13.8 –
2b) STEGO† [12] DINO U 38.0 –

3a) ST++ [8] ResNet-50 L100 + U 61.4 –

4a) ST++ [8] ResNet-50 L100 55.1 –
4b) Hoyer et al. [7] ResNet-101 L∗

100 62.1 –
4c) Hoyer et al.‡ DINOv2 ViT-B L10 46.4 –
4d) ST++‡ DINOv2 ViT-B L10 53.0 –
4e) PanopticDeepLab† [1] DINOv2 ViT-B L10 49.4 20.6
4f) Mask2Former‡ Swin-L L10 50.7 29.2
4g) SPINO [13] DINOv2 ViT-B L10 61.2 36.5

5a) PASTEL (ours) DINOv2 ViT-L L100 75.5 50.7
5b) PASTEL (ours) DINOv2 ViT-S L∗

100 64.2 41.0
5c) PASTEL (ours) DINOv2 ViT-B L10 63.3 41.3
5d) PASTEL (ours) DINOv2 ViT-B L10 + U50 64.8 42.4

Supervision methods L and U denote labeled and unlabeled data. If
a subscript k is specified, only k images were used for training. The
metrics of L∗

100 are averaged over the same three fixed sets [7]. †: Values
are taken from SPINO [13]. ‡: Baselines trained by us.

as in Eq. (1) for the ground truth sample but set tK = 1.0
for the pseudo-labeled image.

IV. EXPERIMENTAL EVALUATION

We demonstrate that our PASTEL method outperforms pre-
vious label-efficient segmentation techniques while requiring
significantly fewer annotations. We further showcase that using
PASTEL as a plugin can render state-of-the-art segmentation
models label-efficient. In extensive ablation studies, we ana-
lyze the various design choices.

A. Datasets and Implementation Details
We present results on three diverse datasets: First, the

Cityscapes dataset [4] provides RGB images and high-quality
panoptic annotations with 19 classes for urban driving. Sec-
ond, the Pascal VOC 2012 dataset [16] was originally proposed
as an object detection benchmark and has been substantially
extended by SBD [31]. Concerning panoptic segmentation,
the dataset comprises 20 “thing” classes and a single “stuff”
class representing the background. Finally, the PhenoBench
dataset [17] comprises several segmentation tasks for the
agricultural domain. We apply our method to the leaf instance
segmentation challenge. In stark contrast to autonomous driv-
ing, agricultural robotics lacks large-scale datasets underlining
the importance of highly label-efficient approaches. In our
experiments, we select k images from the train split of
the respective dataset and report results on the val split. On
PhenoBench, we provide further metrics for the test split.
If not noted otherwise, we train both heads for 150 epochs on
an Nvidia RTX A6000 GPU taking 11.5min and 16.7min
for semantic segmentation and object boundary estimation,
respectively. The inference time with our default settings is
approx. 200 s per image. We discuss real-time deployment in
the last paragraph of Sec. IV-B.

B. Panoptic Segmentation Results
For evaluation of PASTEL and other baseline methods, we

report mIoU and PQ metrics [34]. While the mIoU only refers

TABLE II
IMAGE SEGMENTATION ON PASCAL VOC 2012

Method Backbone Supervision mIoU PQ

1a) Panoptic FCN [6] ResNet-50 L 80.2 67.9

2a) MaskContrast [26] ResNet-50 U 35.0 –
2b) MaskDistill [32] ResNet-50 U 48.9 –

3a) U2PL [9] ResNet-101 L92 + U 68.0 –
3c) ST++ [8] ResNet-50 L92 + U 65.2 –

4a) U2PL [9] ResNet-101 L92 45.8 –
4b) ST++ [8] ResNet-50 L92 50.7 –
4c) ST++‡ DINOv2 ViT-B L20 52.8 –

5a) PASTEL (ours) DINOv2 ViT-L L92 71.1 47.3
5b) PASTEL (ours) DINOv2 ViT-B L20 60.6 37.0
5c) PASTEL (ours) DINOv2 ViT-B L20 + U100 62.5 39.5

Supervision methods L and U denote labeled and unlabeled data,
respectively. If a subscript k is specified, only k images were used
for training. ‡: Baseline trained by us.

TABLE III
PHENOBENCH LEAF INSTANCE SEGMENTATION

Method Backbone Supervision PQ (val) PQ (test)

1a) Mask R-CNN [33] ResNet-50 L 61.5 59.7

2a) Mask R-CNN‡ ResNet-50 L15 41.5 38.2
2b) PASTEL (ours) DINOv2 ViT-B L15 51.7 49.0

In 2a) and 2b), we used 15 images for training. ‡: Baseline trained by us.

to semantic segmentation, the PQ measures the quality of
performing panoptic segmentation.
Comparison With Related Works. We evaluate PASTEL with
respect to previous label-efficient methods for semantic and
panoptic segmentation. Additionally, we list metrics of fully
supervised state-of-the-art approaches for panoptic segmen-
tation on the respective dataset. Importantly, most prior
techniques consider a minimum of 100 labeled images on
Cityscapes and 92 on Pascal VOC, which is ten and five times
more than our intended use case. Therefore, we report results
for three different scenarios: First, with a minimum number
of annotated images showcasing the label efficiency of our
method. Second, we extend the setting to semi-supervision
by including a few unlabeled images via our proposed self-
training scheme. Finally, based on the encouraging results
in Sec. IV-C, we investigate the potential performance of
PASTEL when increasing the available compute resources and
the number of annotated images, resembling the setup from
previous label-efficient methods.

In Tab. I, we report results for the Cityscapes dataset. We
first address the main target use case by allowing only ten
annotated images for training. Our PASTEL (5c) achieves
remarkable 63.3% mIoU and 41.3% PQ corresponding to an
increase of +2.1 mIoU and +4.8 PQ to the recent SPINO [13]
(4g). Notably, the state-of-the-art works Mask2Former [2]
(4f) and PanopticDeepLab [1] adapted with a DINOv2 [15]
backbone (4e) perform significantly worse revealing the need
for specifically designed methods for extreme label efficiency.
We further evaluate the work from Hoyer et al. [7] (4c) and
ST++ [8] (4d) but replace the backbones with DINOv2 ViT-B
to eliminate their impact. Besides the lack of instance pre-
dictions, this results in −16.9 and −10.3 mIoU compared to
PASTEL. After employing our proposed self-training strategy
(5d), the improvement over the concurrent SPINO [13] further
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Fig. 5. We provide qualitative results on both Cityscapes (left) and Pascal VOC (right) for examples taken from the respective val split. The depicted results
are generated by PASTEL based on the semi-supervised setup, i.e., Lk + Un·k .

Fig. 6. Qualitative results for the PhenoBench leaf instance segmentation
challenge including different growth stages of the crops.

increases to +3.6 mIoU and +5.9 PQ, also yielding higher
metrics than the semi-supervised ST++ [8] (3a) that is trained
with more labels. For the third case, we use PASTEL with a
DINOv2 ViT-S backbone (86M param.) (5b) and compare it
with the ResNet-101-based [35] Hoyer et al. [7] (45M param.)
(4b) when training on the same 100 annotations. Our approach
yields +2.1 mIoU plus instance predictions. Finally, we show
the potential of PASTEL with a DINOv2 ViT-L backbone
(5a) that expands the increase to +13.4 mIoU. Notably, this
reduces the gap to the fully supervised Mask2Fomer [2] (1a)
to 7.4 mIoU and 15.9 PQ while using 3.4% of the labels.

In Tab. II, we repeat similar experiments on the Pascal VOC
dataset. When using only 20 annotated images, PASTEL (5b)
yields 60.6% mIoU and 37.0% PQ, outperforming previous
densely supervised methods with limited samples. Compared
to ST++ [8] with a DINOv2 ViT-B backbone (4c), the metrics
represent +7.8 mIoU when trained with the same images.
Similar to Cityscapes, self-training further increases the per-
formance of PASTEL (5c). For the third setup, PASTEL (5a)
achieves an increase of +20.4 mIoU versus the supervision-
only baseline reported in ST++ [8] (4b) when using the same
number of annotations. On Pascal VOC, we can reduce the gap
to the fully supervised Panoptic FCN [6] (1a) to 9.1 mIoU and
20.6 PQ while using only 0.8% of the labels.

In Tab. III, we report results for the PhenoBench leaf
instance segmentation task. Separating leaves is essential to

TABLE IV
EVALUATION OF MASK2FORMER WITH RESNET-50

Training data Split mIoU PQ SQ RQ

Ground truth train 75.2 59.2 81.0 71.9
Pseudo-labels train 63.2 44.0 76.5 54.6
Pseudo-labels train_extra 64.6 44.8 76.5 55.8

assess the growth stage of crops and to detect diseases.
However, annotating a conventional training set with hun-
dreds of images is infeasible. Thus, we demonstrate that
PASTEL (2b) significantly outperforms the best-performing
baseline Mask R-CNN [33] from the dataset’s benchmark,
when only 1.1% of the labeled images are available (2a).

Finally, we provide qualitative results in Fig. 5 and Fig. 6.
Albeit the complexity of the Cityscapes scenes, we observe
that PASTEL segments most car instances correctly. Fur-
ther, the more challenging pedestrians are generally assigned
the correct semantic class with minor over-segmentation of
smaller body parts. The images of Pascal VOC are usually
less complex and contain a smaller variety of classes within
a single image. In the depicted results, PASTEL successfully
separates instances of the same semantic class even in diffi-
cult scenes. For the PhenoBench leaf instance segmentation
challenge, the predictions of PASTEL remain stable over the
different growth stages of the crops.
Usage as Pseudo-Label Generator. In this experiment, we
leverage the panoptic predictions of PASTEL as pseudo-labels
to train a densely supervised panoptic segmentation model.
In detail, we train Mask2Former [2] with a ResNet-50 [35]
backbone using the official code for three different settings.
First, we use the ground truth annotations of the train
split of Cityscapes. Second, we generate panoptic pseudo-
labels for the same data using PASTEL with the L10 + U50

setting. Finally, we add pseudo-labels on the train_extra
split showing how to leverage large unlabeled datasets with
our method. On all pseudo-labels, we mask the static hood
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TABLE V
COMPONENTS ANALYSIS

Method mIoU PQ SQ RQ

Scale 1 w. CCA inst. segm. 57.3 30.0 70.7 38.8
+ Multi-scale augmentation 62.4 36.8 73.9 46.8
+ Normalized cut 62.7 38.5 73.9 49.0
+ Refinement steps 63.3 41.3 74.5 52.1
+ Self-training (1 iteration) 64.8 42.4 75.7 53.1

Each row also includes the components of all rows above.

TABLE VI
NUMBER AND SELECTION OF LABELS

Count mIoU PQ SQ RQ

5 57.2 36.6 69.4 46.3
10 63.3 41.3 74.5 52.1
25 67.1 43.9 75.6 55.1
50 69.2 46.0 76.3 57.6

100 70.7 47.2 76.7 59.0

10 (study) 64.0±3.3 40.8±1.4 74.3±1.7 51.6±2.1

of the ego vehicle following previous works [36], [13]. We
report the performance on val data in Tab. IV. Note that
the numbers from the authors are slightly greater than our
reproduced results, +2.3 mIoU and +2.9 PQ [2], but do not
include SQ and RQ metrics. Importantly, the panoptic metrics
with train pseudo-labels exceed the results obtained directly
with PASTEL, i.e., training Mask2Former further bootstraps
the panoptic segmentation performance without increasing
the utilized number of human annotations. When adding
the train_extra pseudo-labels, the panoptic segmentation
scores can be further improved, achieving +2.4 PQ compared
to the results of PASTEL. In summary, this experiment not
only demonstrates that PASTEL can serve as a plugin render-
ing existing densely supervised segmentation models label-
efficient but also enables real-time inference [2].

C. Ablations and Analysis

We conduct extensive ablation studies on Cityscapes [4] to
analyze the effect of various components and hyperparameters.
Throughout the tables, we highlight the parameters used in
Sec. IV-B in gray. Except for the components analysis and the
study on iterative self-training, we omit self-training to isolate
the effect of a parameter. For further studies, e.g., image size,
please refer to the supplementary material.
Components Analysis. We report the impact of the components
of PASTEL in Tab. V. The largest effect can be observed
for multi-scale test-time augmentation, enabling our method
to produce more detailed predictions. Next, we substitute
instance delineation via CCA [13] with recursive two-way
normalized cut, improving the panoptic metrics. Employing
the post-processing of our proposed panoptic fusion module
increases both semantic and panoptic performance. Finally, we
demonstrate that one iteration of self-training further boosts
the performance by +1.5 mIoU and +1.1 PQ. In Tab. IX,
we further show that our proposed feature-driven similarity
sampling performs significantly better than self-training with
50 randomly sampled images.
Choice of Labeled Images. To measure the effect of the
selected images, we conduct a user study with four participants
tasked to select ten RGB images covering all semantic classes

TABLE VII
VARIANTS OF THE BACKBONE

DINOv2 mIoU PQ SQ RQ

ViT-S/14 53.2 34.1 73.9 42.6
ViT-B/14 63.3 41.3 74.5 52.1
ViT-L/14 66.2 44.2 75.0 55.9
ViT-g/14 65.8 44.7 75.2 56.2

TABLE VIII
NUMBER OF SELF-TRAINING ITERATIONS

Iterations mIoU PQ SQ RQ

0 63.3 41.3 74.5 52.1
1 64.8 42.4 75.7 53.1
2 62.9 41.4 75.2 51.8

We used 50 images and 50 epochs.

while maximizing diversity. We report the mean and standard
deviation in the bottom row of Tab. VI denoted by study. The
study shows that the performance of PASTEL remains stable
for different selections of training data. Next, we evaluate
the potential performance of PASTEL if one would further
increase the number of labeled training images, although this
does not reflect the main goal of our work. Please note that
we use the same images as SPINO [13], allowing for a direct
comparison. In detail, PASTEL achieves +4.5, +5.4, +4.3,
+5.1, and +4.3 PQ compared to SPINO for an increasing
label count from L5 to L100.
Backbone. We present results for different variants of
DINOv2 [15] in Tab. VII. Note that we selected DINOv2
ViT-B/14 for our method as it compromises performance
and computational feasibility. We observe that the larger
backbone DINOv2 ViT-L/14 shows significant performance
improvements, whereas increases due to DINOv2 ViT-g/14 are
marginal. Similar to a study on image classification [15], we
hypothesize that the number of parameters of the ViT-L/14
variant suffices to model the training data.
Iterative Self-Training. Finally, we conduct studies on the num-
ber of self-training iterations (Tab. VIII) and images sampled
by our sampling strategy (Tab. IX). We show that performing
self-training once is sufficient to increase performance [37],
while further iterations decrease the quality, most likely due
to overfitting. For the image count, we sample the n = 5
nearest neighbors for each annotated image in the training
set and continue training the semantic head for 50 epochs.
In Tab. IX, we further report results for n ∈ {0, 1, 10, 20},
where n = 0 corresponds to resuming the training without
pseudo-labeled images. Note that our proposed similarity
sampling yields significantly better results than self-training
on randomly sampled images, shown in the bottom row.

V. CONCLUSION

In this work, we demonstrated that recent visual foundation
models offer a powerful pretraining strategy for solving com-
puter vision tasks in a label-efficient manner. In particular, we
presented PASTEL for label-efficient panoptic segmentation.
Our method combines descriptive image features from a DI-
NOv2 [15] backbone with two lightweight heads for semantic
segmentation and object boundary detection. It can be trained
with as few as ten annotated images. We showed that our
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TABLE IX
NUMBER OF SELF-TRAINING IMAGES

Count mIoU PQ SQ RQ

0 63.7 41.4 74.9 52.1
10 63.5 41.5 75.1 52.1
50 64.8 42.4 75.7 53.1

100 63.7 42.6 75.3 53.4
200 64.8 42.5 75.3 53.4

50 (random) 61.8±1.3 38.5±0.5 73.6±0.3 48.5±0.7

We used one iteration of self-training with 50 epochs. For
the randomly sampled images, we provide mean and standard
deviation over three experiments.

novel panoptic fusion module yields substantial performance
improvements compared to previous works and illustrated how
to further enhance the results using self-training with similar
images. Most notably, we demonstrated that PASTEL sets
the new state of the art for label-efficient segmentation by
improving mIoU scores by +13.4 and +20.4 on Cityscapes
and Pascal VOC datasets, respectively. In future research, we
aim to further close the gap to fully supervised methods paving
the way for widespread application of panoptic segmentation
without requiring large-scale annotated datasets.

REFERENCES

[1] B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam, and
L.-C. Chen, “Panoptic-DeepLab: A simple, strong, and fast baseline for
bottom-up panoptic segmentation,” in Conf. on Comput. Vis. and Pattern
Recog., 2020, pp. 12 472–12 482.

[2] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
“Masked-attention mask transformer for universal image segmentation,”
in Conf. on Comput. Vis. and Pattern Recog., 2022, pp. 1280–1289.

[3] R. Mohan and A. Valada, “Perceiving the invisible: Proposal-free amodal
panoptic segmentation,” Rob. and Autom. Letters, vol. 7, no. 4, pp. 9302–
9309, 2022.

[4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes dataset
for semantic urban scene understanding,” in Conf. on Comput. Vis. and
Pattern Recog., 2016, pp. 3213–3223.

[5] W. Li, Y. Yuan, S. Wang, J. Zhu, J. Li, J. Liu, and L. Zhang,
“Point2Mask: Point-supervised panoptic segmentation via optimal trans-
port,” in Int. Conf. on Comput. Vis., October 2023, pp. 572–581.

[6] Y. Li, H. Zhao, X. Qi, Y. Chen, L. Qi, L. Wang, Z. Li, J. Sun, and J. Jia,
“Fully convolutional networks for panoptic segmentation with point-
based supervision,” Trans. on Pattern Anal. and Mach. Intell., vol. 45,
no. 4, pp. 4552–4568, 2023.

[7] L. Hoyer, D. Dai, Y. Chen, A. Köring, S. Saha, and L. Van Gool,
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In this supplementary material, we provide additional exper-
iments, ablation studies, and qualitative results. We conclude
by discussing some limitations of our proposed PASTEL
approach.

S-I. PSEUDO-LABELS FOR EFFICIENT PRETRAINING

In this section, we extend the evaluation of leveraging
PASTEL as a pseudo-label generator to enable label-efficient
training of any existing panoptic segmentation model. As we
demonstrate in Sec. IV-B, this process upgrades existing mod-
els from the classical dense supervision style, which requires
many annotated images, to label-efficient training. In Tab. S-
I, we provide results from employing the predicted panoptic
maps from both the train and train_extra splits of
Cityscapes [4] as pseudo-labels to train Mask2Former [2] with
a ResNet-50 [35] backbone. In contrast to Tab. IV, we interpret
this step only as pretraining and resume the training with the
ground truth annotations from the train set. In comparison
to the results reported by the authors, who train only on the
ground truth annotations, our label-efficient pretraining results
in an increase of +1.9 mIoU and +1.4 PQ scores.

TABLE S-I
EVALUATION OF MASK2FORMER WITH RESNET-50

Label type Data split mIoU PQ SQ RQ

Ground truth† train 77.5 62.1 – –

Pseudo-labels train_extra 64.6 44.8 76.5 55.8
+ Ground truth train 79.4 63.5 82.2 76.4

(+1.9) (+1.4)

Supervised training results of Mask2Former [2] with a
ResNet-50 [35] backbone. We pretrain the network on pseudo-
labels generated by PASTEL and then continue training on ground
truth annotations. The results denoted by † are reported by the
authors [2].

S-II. ABLATIONS AND ANALYSIS

In this supplementary section, we further extend the ablation
studies provided in Sec. IV-C. We continue to highlight the
parameters used in Sec. IV-B in gray. We further omit self-
training to isolate the effect of the analyzed parameter.
Image Size. In this study, we ablate the effect of the image
size on the overall performance. We report results in Tab. S-II
for the full resolution as well as on scales 1/2 and 1/4. While

∗ Equal contribution.
1 Department of Computer Science, University of Freiburg, Germany.
2 Department of Eng., University of Technology Nuremberg, Germany.

scale 1/2 achieves decent metrics, the performance significantly
decreases for scale 1/4.
Number of Epochs. In Tab. S-III, we evaluate the performance
of PASTEL after different numbers of training epochs showing
a general trend of improvements until the metrics converge.
Please note that we use a loss-based termination strategy
during training, i.e., we explicitly do not select the number of
epochs with the highest metrics in Tab. S-III as we consider
them to represent test data.

TABLE S-II
IMAGE SIZE

Image size mIoU PQ SQ RQ

252 × 504 56.7 31.9 71.4 41.0
504 × 1008 63.5 39.9 73.2 50.8

1022 × 2044 63.3 41.3 74.5 52.1

TABLE S-III
NUMBER OF EPOCHS

Epoch mIoU PQ SQ RQ

50 60.5 39.5 74.6 49.7
100 63.4 41.0 74.8 51.8
150 63.3 41.3 74.5 52.1
200 63.7 41.4 74.9 52.1
250 63.0 41.0 75.1 51.5

S-III. DISCUSSION OF LIMITATIONS

Our label-efficient segmentation approach is subject to two
limitations. First, since PASTEL predicts the boundaries of
objects based on the RGB input, areas that are separated
in the 2D image space but belong to the same real-world
objects cannot be assigned the same instance ID. We visualize
examples of this failure case for occluded objects in Fig. S-3.
In the upper image, the car on the right is cut into two instances
due to occlusion by a traffic light. In the lower image, PASTEL
assigns four different instance IDs to different parts of the bus,
which is occluded by multiple poles. Potential solutions to this
limitation would be to employ amodal panoptic segmentation
or a separate network head to predict the pixel offset similar
to classical bottom-up methods. A key challenge of this future
work will be to enable training with as few labeled images as
utilized by PASTEL. Second, the minimum number of labeled
images is constrained by the necessity for all considered
classes to be present in the selected images. However, this
constraint is not related to the proposed approach but is rather
inherent in the need of the network to learn the notion of
classes.
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Fig. S-1. Object boundaries predicted by PASTEL based on the semi-supervised setup, i.e., L10 + U50.

Fig. S-2. Additional qualitative results on both Cityscapes (left) and Pascal VOC (right) datasets for examples taken from the respective val split. The
depicted results are generated by PASTEL based on the semi-supervised setup, i.e., Lk + Un·k .
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Fig. S-3. A limitation of our method is that occluded objects are separated
into multiple instances.

S-IV. QUALITATIVE RESULTS

In Fig. S-2, we present additional qualitative results for both
Cityscapes [4] and Pascal VOC [16] datasets. In Fig. S-4, we
provide further qualitative results for the PhenoBench [17] leaf
instance segmentation challenge.
Cityscapes. The examples from the Cityscapes dataset include
scenes from all three cities within the val split, i.e., Frank-
furt, Lindau, and Munster. Notably, our employed multi-scale
prediction scheme allows for segmenting also more distanced
details such as traffic signs. In Fig. S-1, we further visualize
the predicted object boundary of the examples shown in Fig. 5
of the main paper. As we observe in the pedestrian scenes,
the over-segmentation of small body parts is caused by the
predicted boundaries.
Pascal VOC. Since the majority of images in the Pascal VOC
dataset contain only a single object, we deliberately show
results on scenes with multiple objects including multiple
instances of the same class as well as compositions of different
“thing” classes.

Fig. S-4. Additional qualitative results for the PhenoBench leaf instance
segmentation challenge including different growth stages of the crops.

PhenoBench. Separating leaves is an important task for es-
timating the growth stage of plants and for detecting leaf
diseases [17]. We provide results for all three stages contained
in the val split of the dataset. Despite a drastic increase in
scene complexity due to overlapping leaves, the prediction
quality remains stable across the different stages.
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