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Abstract— High-resolution microprobes are used to record
single neuron activity in the brain. This technology is envisaged
to be a central component for brain-controlled computers and
robots. Current neural probes, however, allow for recording
only a small number of the densely spaced electrodes simul-
taneously. Therefore, we address the problem of autonomously
choosing, for a given number, the subset of electrodes with the
corresponding size so as to extract as much information as
possible. We first present an approach for predicting neural
spikes across different channels of the probe. Our method
employs nonparametric sparse Gaussian process regression to
predict the signal of a channel given the signals recorded at
neighboring sites. Second, we utilize the signal predictions for
efficiently seeking for the subset of electrodes that minimizes
the overall prediction error. In experiments carried out using
real neural data, we demonstrate that our selection procedure
provides highly accurate results. Furthermore, the solutions
found in our experiments are close to the optimal solution.

I. INTRODUCTION

The development of microprobes [5], [12], which can
record neural activity with high resolution, opens new per-
spectives in brain research as they allow for recording the
activity of single neurons and thus enable a better under-
standing of neural processes and interactions between brain
regions. They are also envisaged to be central components for
brain-controlled computers and robots. Further applications
include smart energy-autonomous micronodes that provide
closed-loop feedback—recording and stimulation—for neu-
rological diseases such as epilepsy or Parkinson’s disease.

Modern probes [1], [4], [5], [12] are often high-density
probe arrays with a large number of available electrodes.
The advantage of such probes is that they enable scanning
of different brain layers for neural activity as illustrated in
Fig. 1. Each electrode, also denoted as channel, of a probe
can record the activity of neurons in its local vicinity. Due to
hardware and wiring restrictions, probes typically can only
transmit signals from a small subset of electrodes at the
same time. In our probes, 188 closely neighboring electrodes
are available from which we can choose a subset of eight
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Fig. 1. Neural microprobe (top) and schematic sketch of the probe with
different recording sites and typical recorded signals of neural activity
(bottom).

electrodes for simultaneous recording. A typical recording
experiment would first scan through all available electrodes
for interesting signals and select the most informative ones
for long-term observations. Thus, a central question in the
design of an experiment is how to select the channels to
be recorded. Due to the high resolution of the probes,
channels typically measure redundant signals as the activity
of one neuron is often also observable at different close-
by electrodes. At the same time, the varying quality of
the signals and the sheer amount of data recorded by the
individual electrodes make the manual selection of recording
channels a tedious task for a neuroscientist. Hence, our goal
is to provide an efficient algorithm for selecting recording
channels in an unsupervised fashion.

This paper makes two main contributions in the context
of recording and analyzing neural data. First, we present an
approach for predicting the neural signal for a channel that is
not recorded by considering the measured signals on neigh-
boring channels. We address this task using sparse Gaussian
process regression. Second, we present a method to identify,
which of the channels to record in order to get the best
possible neural data prediction on all channels from a global
perspective. The computational complexity of our approach
is O(n2 log n), where n is the number of channels on the
probe. We furthermore present an experimental evaluation



using real neural data, which demonstrates that our method
is effective for recording and predicting neural signals. On
our data, our method always selects near-optimal channels.

II. RELATED WORK

To the best of our knowledge, the problem of automatic
channel selection for neural probes has received little atten-
tion thus far. Seidl et al. [14] propose a semi-supervised
selection approach that computes the signal-to-noise ratio
(SNR) at different recording sites and in this way supports
the user in the manual decision process. Van Dijck et al. [3]
present an approach to automated electrode selection and
electronic depth control, that is, compensating probe shifts by
shifting the recording channels. Similar to Seidl et al. [14],
they compute a quality measure for each electrode. They
iteratively select electrodes based on their SNR but penalize
this measure by taking into account the similarity of a
captured spike train to the spike trains of already selected
electrodes. This leads to an overall better distribution of
recording electrodes, as demonstrated on a simulated neu-
ronal model with five neurons. In contrast to our work, they
only take into account the co-occurrence of spikes at different
channels, while our approach allows for a prediction of the
spike signal at different channels and uses this information
to perform a fully automatic channel selection.

Additionally, different machine learning techniques have
been applied to analyze signals acquired by neural probes,
for instance, to detect and classify observed spikes according
to different neurons in the vicinity of a dense microelectrode
array [7], [9]. Fraser et al. [6] describe an approach to track
neurons over time. Recently, Van Dijck et al. [2] proposed
an approach to recognize cerebellar cortical neurons across
species using Gaussian process regression based on statistics
of measured inter-spike intervals. In this paper, we apply
sparse Gaussian processes for predicting signals of recording
channels based on data recorded at other channels. We
furthermore employ resulting Gaussian process models for
selecting the most informative channels of the entire probe.
Fig. 2 illustrates typical prediction results of our method.

III. PREDICTING NEURAL SIGNALS ACROSS CHANNELS
USING GP REGRESSION

In the remainder of this paper, we first describe our
approach to predict the signals of individual channels based
on measurements at neighboring recording sites. Second,
we present our selection procedure that makes use of these
predictions and determines a subset of recording channels
that minimize the overall prediction error.

We use a neural probe with in general n channels. The
hardware restrictions of the neural probe, however, allow
to record only b channels at the same time. Since we are
interested in monitoring the neural activity on all channels,
we aim at predicting the signal in the channels we cannot
record based on the ones we can record.

Our first goal is to predict the signal of all neural probe
channels that cannot be recorded. We refer to the channels

that are recorded as active and the others as passive chan-
nels. Given neural measurements yc1:t recorded on at least
two channels c′, c1, . . . , cb (b > 0) and acquired at time
indices 1, . . . , t, we learn a predictive model p(yc

′

t′:t′+t |
yc
′

1:t, y
c1:b
1:t , y

c1:b
t′:t′+t) for estimating the neural signals yc

′

t′:t′+t

on the passive channel c′ given the neural signals yc1:bt′:t′+t

from the active channels c1, . . . , cb at time t′, . . . , t′+ t with
t′ > t.

We approach this problem in a nonparametric way, i.e.,
not assuming a parametric form of the underlying function
f(·) in yc

′

i = f(yc1:bi )+ ε. In particular, we use the Gaussian
process model [10], which is a Bayesian approach to the
non-linear regression problem. In this approach, one places
a prior p(f) on the space of functions by assuming that
a Gaussian process is a collection of random variables,
any subset of which having a joint Gaussian distribution.
More formally, if we assume that {(yc1:bi , fi)}ti=1 with fi =
f(yc1:bi ) are samples from a Gaussian process and define
f = (f1, . . . , ft)

>, we have

f ∼ N (µ,K) , µ ∈ Rt,K ∈ Rt×t. (1)

For simplicity of notation, we assume µ = 0, since the
expectation is a linear operator and, thus, for any deter-
ministic mean function m(x), the Gaussian process over
f ′(x) = f(x)−m(x) has zero mean.

The more interesting part of the model is indeed the
covariance matrix K. It is specified by [K]ij = cov(fi, fj) =
k(yc1:bi , yc1:bj ) using a covariance function k which defines
the covariance of two function values. Intuitively, the co-
variance function specifies how similar the two function
values are depending only on the corresponding inputs. The
standard choice for k is the squared exponential covariance
function

kSE (yc1:bi , yc1:bj ) = σ2
f exp

(
−1

2

|yc1:bi − yc1:bj |2

`2

)
, (2)

where the so-called length-scale parameter ` defines the
global smoothness of the function f and σ2

f denotes the
amplitude (or signal variance) parameter. These parameters,
along with the global noise variance σ2

n that is assumed for
the noise component, are known as the hyperparameters of
the process. They are denoted as θSE = 〈σf , `, σn〉.

In our approach, we use a variant of the squared ex-
ponential covariance function that additionally performs an
automatic relevance determination [8]. In contrast to kSE , it
uses a characteristic length-scale parameter for each of the
b dimensions of the input space, i.e., the hyperparameters
θSEARD = 〈σf , `1:b, σn〉. The separate length-scale param-
eters are an important tool to identify which of the b input
dimensions are important for the prediction. As a result of
that, if we find largely irrelevant signals in one of the input
channels, they will not impact the prediction.

Given a set D = {(yc1:bi , yc
′

i )}ti=1 of training data where
yc1:bi are the b-dimensional inputs resulting from the b active
channels and yc

′

i are the targets, the goal in regression is
to predict target values yc

′

t′ at a new input point yc1:bt′ based
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Fig. 2. Examples for the across-channel prediction of neural signals for different time series using Gaussian processes.

on the time index t′ > t. Let X = [yc1:bt′ ; . . . ; yc1:bt′+t−1]> be
the matrix of the inputs and X∗ be defined analogously for
multiple test data points. In the GP model, any finite set of
samples is jointly Gaussian distributed[

y
f(X∗)

]
∼ N

(
0,

[
k(X,X) + σ2

nI k(X,X∗)
k(X∗,X) k(X∗,X∗)

])
,

where k(X,X) refers to the covariance matrix built by
evaluating the covariance function k(·, ·) for all pairs of all
row vectors of X. To make predictions at X∗, we obtain the
predictive mean

f̄(X∗) = E[f(X∗)]

= k(X∗,X)
[
k(X,X) + σ2

nI
]−1

y (3)

and the (noise-free) predictive variance

V[f(X∗)] = [k(X∗,X∗)− k(X∗,X)][
k(X,X) + σ2

nI
]−1

k(X,X∗) , (4)

where I is the identity matrix. The corresponding (noisy)
predictive variance for an observation can be obtained by
adding the noise term σ2

n to the individual components of
V[f(X∗)].

One bottleneck of the standard GP model is its cubic
complexity O(t3) in the number of data points t. Different
solutions have been proposed for lowering this upper bound
such as dividing the input space into different regions and
solving these problems individually or by deriving sparse
approximations for the whole space. Sparse GPs [15], [16]
use a reduced set of inputs to approximate the full GP model.
This new set can be either a subset of the original inputs [15]
or a set of r new pseudo-inputs [16] which are determined
using an optimization procedure. This reduces the complexity
from O(t3) to O(tr2) with r � t and typically r = const.
In practice, this results in a nearly linear complexity. In our
work, we rely on sparse GPs with pseudo-inputs as proposed
by [16] with r = 20 as it is the default setting.

IV. SELECTING THE MOST RELEVANT CHANNELS

The goal of our algorithm is to find the best set of b
channels so that knowing these b channels will allow us to
predict the remaining ones with a minimal overall prediction
error. To decide which channels to record (active channels)
and which channels to predict (passive channels), we use a
graph structure that encodes the pairwise prediction errors on
a training set. The training set can be obtained by scanning

the probe for pairwise recordings, which requires at most
n2−n recordings over small time windows. Note that using
only pairwise predictions is an approximation but allows for
an efficient solution to split up the channels in active and
passive ones. To finally obtain a prediction for the selected
passive channels, we use information from all active channels
and combine them into a joint GP model. Using joint GP
models for the final prediction step improves the accuracy
by 3− 25 % in comparison to the pairwise prediction.

In our selection method, we build a complete directed
weighted graph G = (V,E), in which V are the vertices and
E the edges. Each vertex corresponds to a channel on the
neural probe. A directed edge from the node v to w models
the predictability of the channel w given the signal of v.
The weight of the edge (v, w) corresponds to the prediction
error that is obtained when predicting w from v using the
training data set. Our algorithm operates on the adjacency
matrix A of G. Each element av,w of the n × n matrix
A represents the error obtained when predicting channel w
based on channel v. Building up A is a straightforward
task using the GP approach on a pairwise basis and has a
complexity of O(n2 t), where t is the size of the training
set, i.e., the number of data points taken for each channel.
Note that this approach can be realized more efficiently if
we take into account that signals of electrodes far away from
each other typically do not have correlated signals so that the
corresponding prediction error is very likely to be high.

Our algorithm aims at dividing the channels into active
channels, specified by the set R, and passive ones, specified
by the set I so that the prediction error is minimized. Given
our graph representation, we can solve this problem by
computing the optimal graph partitioning. As this is an NP-
hard problem, we derive a greedy approach with a time
complexity of O(n2 log n). As we will demonstrate, our
approach, despite its heuristic nature, leads to near-optimal
solutions in all our experiments.

The assignment of channels to R or I is performed based
on the elements of the adjacency matrix. In the process of
making the assignments, we assume that each channel in R
can predict multiple channels in I . This is reasonable, as
each channel could measure several neurons that might be
observed at different other channels as well. Furthermore, we
assume that each channel in I is predicted based on a single
channel in R. This is an approximation but it allows us to
come up with an efficient algorithm. Initially, all nodes are
labeled as undefined U . In each step, the algorithm assigns at



least one node to one of the two sets R or I . Using a greedy
heuristic, it does so by searching the smallest element in the
matrix A:

(i∗, j∗) = argmin
(i,j)

aij , (5)

where i and j refer to the row and column of the matrix
A, i.e., ai∗j∗ is the smallest element in A. The channel i is
labeled as R and j as I . The matrix A is updated by deleting
the j-th row and column. This deletion prevents the channel
j from being predicted by another channel 6= i and assures
that j will not predict any other channel. We also delete the
i-th column from matrix A, since channel i is already labeled
as R. This prevents channel i from being selected as I later
on. We repeat this procedure until the set of U channels is
empty.

In addition to the greedy selection heuristic, we consider
two alternative heuristics in our experiments.

1) Average heuristic: The main objective of this heuristic
is to find the subset of active channels that have the best
average prediction capabilities. In each iteration, we choose
the channel i with the smallest average prediction error over
all other channels to be active R. Furthermore, the channel
j predicted best by this channel is labeled as passive I:

j∗ = argmin
j

ai∗j , (6)

i∗ = argmin
i

1

n

n∑
j=1

aij (7)

2) Average heuristic with multiple passive
channels (MPC): As in the average heuristic explained
above, the channel with the smallest averaged prediction
error over all channels is chosen to be active. The channel
predicted best by this channel becomes passive. Additionaly,
all channels for which the chosen active channel leads to
the minimum error are labeled as passive. Average (MPC)
runs the same steps as the average heuristic, but it performs
a verification for additional passive channels.

As stated above, we have a restriction on the number of
channels b < n that we can record simultaneously. Thus,
to minimize the prediction error, the set R should eventually
contain exactly b elements. During the assignment procedure,
we can encounter two different situations:

1) The R set contains already b elements, but not all
the vertices have been assigned yet. In this case, we
select the best possible assignment given the predicting
channel has already been selected, i.e.,

(i∗, j∗) = argmin
(i,j)

aij ,with i ∈ R, j ∈ I. (8)

2) All the vertices are assigned, but |R| < b, i.e., we
record less channels than possible. The solution is to
select the channels from the I set that have the highest
prediction error and assign them to R.

After termination, the algorithm provides the separation of
all channels into R with |R| = b and I with |I| = n− b. In
addition to that, for all elements in I , we know which channel

in R can predict the channel with the smallest prediction
error, evaluated on a pairwise basis. Algorithm 1 summarizes
the main steps of the assignment routine.

Algorithm 1 Greedy channel selection (V , A)
if (|V | ≤ b) then // nothing needs to be done
R = V ;
return;

endif
R = ∅
I = ∅
U = V
while (U 6= ∅) do

(i, j) = argmin(i,j) aij ,
if (|R| = b and i 6∈ R) then // R reached max. size
A(i, j) =∞;

else
move element i from U to R;
move element j from U to I;
A(j, :) =∞; // set the j-th row to infinity
A(:, j) =∞; // set the j-th column to infinity
A(:, i) =∞; // set the i-th column to infinity

endif
end while
while (b− |R| > 0) // we can listen to more channels

(i, j) = argmax (i,j)aij with j ∈ I ,
move element j from I to R;

end while

V. COMPUTATIONAL COMPLEXITY

A straightforward approach to implement our algorithm is
to make the inference directly on the adjacency matrix A.
This leads to cubic complexity, i.e., O(n3) where n is the
overall number of channels. Two different processes con-
tribute to this complexity. First, the algorithm must retrieve
the smallest element in A, which leads to a complexity of
O(n2) and then delete the corresponding row and column
from the matrix, which can be done in O(n). Thus, the com-
plexity of one iteration is in O(n2). Second, the maximum
number of iterations is bounded by n−1 as in each iteration
at least one element of U is removed. This leads to the overall
complexity of O(n3).

By exploiting more efficient data structures, however, we
can reduce the complexity from O(n3) to O(n2 log n). We
can turn the adjacency matrix A into a sorted list, in which
each element stores the prediction error as well as the indices
i and j of the corresponding entry in A. The list has then n2

elements and sorting it takes O(n2 log(n2)) = O(n2 log n).
After this initialization step, we have to perform up to n− 1
iterations. In each iteration, we first need to remove the
smallest element from the list, which is a constant time
operation as the list is sorted. The remaining step is the
delete operation, however, instead of deleting an element,
we add the indices to delete from the list into a hash-
table that allows for constant time adding and querying
operations. Every time an element is removed from the list, it



Fig. 3. Outline of a scanning experiment to collect training data of
neighboring channels for our selection approach by switching electrode
configurations.

is discarded if its indices are stored in the hash-table. Over
all iterations, this leads to a complexity of O(n2). Thus,
this procedure is dominated by the sort operation and has
an overall complexity of O(n2 log n). For the average and
average MPC heuristics, the same efficient data structure
cannot be used, since the heuristics work directly with
the matrix structure. Thus, the complexity of the channel
selection algorithm in these cases is O(n3).

VI. EXPERIMENTAL EVALUATION

After explaining our neural probe and the recorded neural
data, we present our evaluation, which suggests that the
combination of channel selection and GP-based prediction
is well-suited to estimate neural signals across channels.

A. Neural probes and data acquisition

The neural probes used in this study to acquire in vivo
data from anesthetized rats were developed in the framework
of the EU project NeuroProbes [11]. The probes enable
extracellular potentials to be acquired using densely packed
recording sites arranged in a 2D array as illustrated in
Fig. 1. These silicon-based probes are available as single-
shaft probes and comb-like probe arrays [13]. They comprise
a switch matrix realized in a 0.6 µm complementary-metal-
oxide-semiconductor (CMOS)-technology used to flexibly
select different sets of electrodes. This switch matrix enables
the integration of a large number of recording sites despite
tight space constraints driven by the request to minimize
tissue reaction by reducing the overall probe dimensions [12].

The silicon-based probe shanks are 180 µm wide and
measure 100 µm in thickness. The inter-electrode spacing
of ca. 40 µm allows 188 electrodes to be integrated along
the 4-mm-long probe shanks [12]. Using the CMOS-based
switch matrix, eight channels are simultaneously selectable
to monitor neighboring cells, which typically have a size
of 20 to 50 µm. Experiments have shown that the measured
signal decreases rapidly depending on the distance to the
neuron. Up to a distance of 50 µm, single neurons can be
perceived with a sufficiently large signal-to-noise ratio.

The data sets of neural activity have been recorded at
the Institute for Psychology of the Hungarian Academy of
Sciences, Budapest, Hungary, according to the respective
animal care regulations. The data was recorded in vivo in
the neocortex of Wistar rats as described in detail by Seidl
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Fig. 4. Distribution of spike errors when using GPs vs. sparse GPs.

et al. [13] and Dombovári et al. [4]. Extracellular potentials
were recorded and sampled at 20 kHz over a period of several
minutes in each probe configuration. The data is bandpass
filtered in the range of 300 Hz to 3 kHz. We detected spikes
by amplitude thresholding [13], and the final data contains
small time windows around each spike.

We evaluated our selection algorithm on a data set
recorded simultaneously at eight neighboring channels. The
data was recorded over several minutes, which allows for
a cross-validation of our algorithm. On this data set, we
evaluated the task of selecting two to six out of eight
channels. This setup allows us to compare the prediction
of our selection to ground truth data. In principle, to obtain
training data for the entire probe with 188 electrodes, it is
required to record all pairwise combinations of recording
channels in order to determine the adjacency matrix. This
could be time-consuming, given that each combination needs
to be observed for several seconds or even minutes to gather
enough training data. Possibly, this could be organized in a
more efficient manner by exploiting the fact that typically
only spatially close electrodes measure correlated signals.
Thus, instead of considering all possible combinations, only
neighboring configurations could be observed as outlined in
Fig. 3. This, however, requires further investigations and an
analysis of correlations in the obtained data.

B. Prediction error

To evaluate the quality of our across-channel prediction,
we compute the prediction error of the signals based on
cross-validation. We consider the error over all passive, i.e.,
predicted, channels I defined as

error(I) =

√√√√√ 1

Nc

Nc∑
i=1

 1

Ns

Ns∑
j=1

spikeError(i, j)

. (9)

Here, Ns is the number of spikes observed in channel i
during recording and Nc is the number of channels in I .
The spikeError(i, j) is the root mean square error between
the predicted (GP-output) and the recorded (ground truth)
j-th spike in the i-th channel in the test data set.

C. Signal prediction using sparse GPs

The first experiment illustrates that GPs are a well-suited
tool for making predictions across channels. Fig. 2 depicts
three small sequences of predicted neural spikes, together
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with the ground truth. We obtained similar results over all
our data sets with average errors of approx. 6.5×10−3 mV. In
these experiments, four active channels were used to predict
signals of the remaining four passive channels.

We furthermore analyze the prediction performance of the
sparse GP approach. In contrast to standard GPs, sparse GPs
have a smaller computational complexity due to a reduced
set of inputs. Therefore, we compare the prediction results
of GPs versus sparse GPs. Fig. 4 depicts the distribution of
the individual spike errors in a data set using GPs (blue) and
sparse GPs (cyan). As can be seen, both approaches yield
comparable results. The overall prediction errors for the GP
prediction were around 6.45× 10−3 mV and the difference
between the full and sparse GP is around 8× 10−6 mV. Thus,
using sparse GPs instead of GPs results in a substantial
reduction of computation time (cubic vs. linear complexity),
while having only a small impact on the accuracy of the
results.

D. Channel selection

The next experiments are designed to evaluate the perfor-
mance of our method for selecting the active and passive set
of the channels. In order to obtain training data for building
the adjacency matrix, we use recordings for pairs of channels.
As discussed above, the channels can be switched from active
to passive mode in vivo to collect the required data.

In our data set, we use a set of n = 8 neighboring channels
organized in two rows. We assume that only b = 4 are
active at the same time. Thus, our approach has to select
four out of eight channels for predicting the remaining four.
As our probe has more channels and can actually record up
to eight channels simultaneously, we were able to record all
channels to obtain a ground truth data set. By evaluating all
possible combinations of active and passive channels in an
offline setup, we can always identify the optimal solution
and compare it to our result.

Tab. I summarizes the results of our algorithm on six
different datasets. For each of these datasets, we computed
the assignment with our algorithm and compare it to the
optimal one. In the table, the last column lists the rank of the
solution in the sorted list of all solutions. The rank is equal
to 1 for the optimal solution and equal to 2 for the second
best solution. With n = 8 and b = 4, 70 is the worst one as
there are 70 sets of 4 out of 8 elements. As Tab. I indicates,
our approach in most of the cases finds a solution that is
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Fig. 7. Evaluation of how often our channel selection algorithm found a
solution with a certain rank compared to the optimal solution.

among the best three ones. In such cases, the corresponding
prediction errors are also close to those of the optimal set of
active and passive channels. As Fig. 5 shows, there are only
minor differences in the distribution of the spike prediction
errors for our approach compared to the optimal selection.

We furthermore compared our selection approach to an
equidistant and a random selection of electrodes. While the
error for our approach is 6.40× 10−3 mV, the error for
the equidistant selection is 10.8× 10−3 mV with a maxi-
mum amplitude of 0.12 mV. As can be seen in Fig. 6, the
equidistant and random selections more often lead to larger
individual spike errors.

To provide a more quantitative evaluation, we performed
the same evaluation on 40 datasets. In our experiments, the
solution of our channel selection algorithm is within the best
three solutions in 97 % of all cases as depicted in Fig. 7. In
3% of the cases, the solution was worse but never larger
than rank 13 out of 70. This indicates that—at least on our
type of data—this is an effective selection strategy which
brings down the computational complexity to O(n2 log n).
Averaged over all 40 data sets, the difference in error between
our approach and the optimal selection is 6.47× 10−5 mV.
We also evaluated the influence of the different heuristics
on the selection. Results are summarized in Fig. 8. Here,
the average and average MPC heuristics more often find the
optimal solution. Thus, it can be beneficial to combine these
heuristics and select the subset of channels that leads to the
smallest overall prediction error.



TABLE I
CHANNEL PREDICTION RESULTS FOR DIFFERENT TRAINING DATA SETS.

Spikes Error ×10−3

train test our opt diff rank
20 282 6.490 6.490 0 1
20 280 6.400 6.400 0 1
25 293 6.370 6.370 0 1
30 285 6.344 6.344 0 1
40 277 6.398 6.372 0.0261 2
20 280 6.621 6.559 0.0621 3

TABLE II
CHANNEL PREDICTION RESULTS FOR A VARYING NUMBER OF ACTIVE

CHANNELS IN A 10-FOLD CROSS-VALIDATION.

# active Opt. sel Our approach Equidist. Rand.
channels err. 10−3 err. 10−3 rank err. 10−3 err. 10−3

2 7.91 10 7.72 10.5 10.26
3 6.941 6.945 1.1 9.19 9.68
4 6.427 6.49 1.81 9.23 8.932
5 5.666 6.047 5.27 6.48 8.95
6 5.432 5.475 2.9 6.48 8.844

In an additional experiment, we evaluated the influence of
the number of active channels on the prediction result. This
is designed to more closely reflect real-world situations in
which a small subset must be chosen to represent a large
set of electrodes. Tab. II summarizes the results for selecting
two to six out of eight channels, averaged over 10 runs.
As can be seen, our method is in most cases close to the
optimal solution, and always outperforms the equidistant and
the random selection strategies in terms of the prediction
errors.

In summary, the experiments indicate that our selection
method yields highly accurate results. Furthermore, they
demonstrate that the higher resolution obtained by the current
probe technology indeed provides better information. Other-
wise, the equidistant strategy, which corresponds to probes
with a coarser resolution, would perform equally well as the
high-resolution probes paired with our algorithm.

VII. CONCLUSION

The ability to analyze neural signals is an important basis
for brain computer interfaces and brain-controlled robots.
This paper considers the problem of effectively obtaining
data from neural probes that have limitations in the number
of channels they can record simultaneously. It makes two
contributions. First, it presents an approach using sparse
Gaussian processes for predicting the signal of a channel
based on the information of other channels. Second, it
introduces a novel selection technique to identify, which of a
given maximum number of channels to record so as to mini-
mize the overall prediction error for the remaining channels.
We implemented and tested our approach on data obtained
with a real neural probe. As our experiments illustrate, our
method can effectively select the channels that produce low
prediction errors. We furthermore found that it often finds
a solution that is close to the optimal set of channels.
Directions for future work include the application of the
approach to large scale data sets with a limited number of
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Fig. 8. Evaluation of how often our channel selection algorithm found a
solution with a certain rank compared to the optimal solution (bottom) for
greedy, average and average MPC heuristics.

simultaneously observable channels and efficient exploration
strategies for the acquisition of the required training data.
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