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Abstract— Navigation in complex and unknown environments
is a major challenge for blind people. The most popular,
conventional navigation aids such as white canes and guide
dogs, however, provide limited assistance in such settings as
they are constrained to interpret the local environment only.
At the same time, they can hardly be combined with a
walker required by elderly people with walking disabilities.
Technologies developed in the field of robotics have the potential
to assist blind people in complex navigation tasks as they can
provide information about obstacles and reason on both global
and local environment models. The contribution of this paper
is a smart walker that enables blind users to safely navigate.
It includes an innovative vibro-tactile user interface and a
controller that takes into account human characteristics based
on a user study. The walker has been designed to deal with the
fact that humans can only sense and interpret a limited number
of commands and have a delayed response. Our experiments
validate our claim that the technique outlined in this paper
guides a user to the desired goal in less time and with shorter
traveled distance compared to a standard robotic controller.

I. INTRODUCTION

One of the hardest tasks faced by blind people is navi-
gating new environments safely. Conventional aids such as
white canes or guide dogs help in detecting landmarks such
as tactile pavings but they can only provide limited assistance
in guiding the user towards a target location. For example,
large exhibitions often provide human guides who assist
blind people in finding their booth of interest. For blind
people, navigating in such dynamic environments is often
only viable with a non-blind assistant and hence limits their
mobility. Additionally, this makes blind people dependent on
others.

The task is even more challenging for blind people with
walking disabilities. According to a recent report of the
World Health Organization [1], 81.7% of all 39 million blind
people worldwide are 50 years and older. These elderly blind
people have an inherent risk towards walking disabilities.
However, established navigation aids for the blind provide
limited physical assistance as most of these devices are
not designed for blind people with walking impairments. A
conventional technique for such elderly blind people who
depend on a walker is to regularly stop and monitor the
environment with a cane stick. This is tediously slow and
limits their radius of operation significantly.
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Fig. 1. The smart walker is an off-the-shelf walker retrofitted with an
extension unit that contains computing capabilities and two laser scanners
for perception. Additionally, two vibration motors are integrated into the
handles for tactile feedback generation.

In this paper, we present a navigation system for blind
people with walking impairments that uses intuitive vibro-
tactile signals to guide users safely. Our approach is based on
robotic techniques but applied for the purpose of navigating
human users. Guiding users for such tasks requires additional
considerations compared to robots. Humans take a longer
time to react, i.e., a delay exists between the perceived
navigation command in the form of a vibration signal and
the resulting action. Additionally, humans are not as good as
robots in accurately following commands. It is not possible
to ask users to move or turn precisely. Our control system
considers such human characteristics.

The contribution of this paper is twofold. First, we de-
scribe the setup of a smart walker system that is suitable
for assisting elderly blind people, see Figure 1. The second
contribution is a novel method to guide human users on a
path. Our system is based on an off-the-shelf walker that is
equipped with sensors, data processing capabilities, and one
vibration motor in each handle. The smart walker is able
to avoid collisions and guide blind people in complex envi-
ronments to goal locations by leveraging recent advances in
the field of robotic perception. Employing vibration motors
instead of auditory signals allows blind users to use their
hearing for other purposes. We derive a model of the human
motion with the walker based on trajectories recorded with
a motion-capture system and we use this model to design a
novel controller. In an evaluation with multiple test subjects,
we show that this controller guides a user to the desired goal
in less time and less distance traveled compared to a standard
controller.
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II. RELATED WORK

Our system belongs to the field of robot-assisted navi-
gation. Such navigational techniques can be categorized by
their level of autonomy. High-level systems track the user
position and plan complete paths in order to guide the user
along a specific route [2], [3]. These approaches provide
functionalities that are far beyond the ones of conventional
Electronic Travel Aids for the visually impaired, but they
often reduce the autonomy of the user by incorporating
the decision making process into the navigation process.
The user is not a part of the decision making and all
navigation decisions are made by the system. Devices with
a medium level of autonomy propose a direction to avoid
nearby obstacles but do not guide a user to a desired goal
over large distances [4], [5]. Low-level approaches detect
obstacles in the vicinity of the user and only inform about
their positions [6], [7].

All the guidance techniques mentioned above rely on
feedback mechanisms to either guide a user on a path or
inform about hazardous areas. These feedback techniques
range from vibration signals [8], [9], over audio output [6],
[10] to force feedback [4], [11]. Blind users prefer not to
receive guidance through audio signals as they rely on the
auditory channel for a large amount of tasks [12].

Researchers have also evaluated novel strategies to im-
prove the guidance of a human user. For example, Cosgun et
al. use a vibration belt with distinct vibration patterns to com-
municate directional and rotational navigation commands [8].
Their main focus is the comparison of different navigation
signals and the guidance of a user to a pre-defined goal
location. While Cosgun et al. use a controller that models the
human as a robot, we consider typical human characteristics
in the design of our controller and also track the complete
trajectory of the user during the guidance process. We will
later show in the experimental section that by modeling
human characteristics our controller improves the guidance
process.

Related to our system, Yu et al. propose a motorized
walker which aims to guide elderly people with cogni-
tive impairments using shared-autonomy control [13]. Their
walker can measure the driving performance of the user
and varies the autonomy level between user-control and
computer-control according to the observations. This enables
the walker to adjust to the needs of the user. Bosman
et al. propose a high-level system which guides users on
a in complex indoor environments with tactile cues from
vibration motors mounted on the wrist [14]. They show that
their system can even be helpful for non-blind users, but also
results in reduced location and orientation awareness.

The smart walker we present in this paper is related to
the work of Yu et al. [13] as it is designed to provide an
adjustable level of autonomy. It is unmotorized and hence
cheaper to build. As our walker is passive, it allows the user
to be in full control over the locomotion. Given the sensor
setup, our system can identify both positive and negative
obstacles such as downward leading stairs. Additionally, our
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Fig. 2. One of our test environments and the corresponding map with
planned paths from start positions S to goal locations G. Obstacles not
present during the map creation process are marked with an x

system is also able to guide the blind user on a planned path.
This enables a wide range of applications and potential user
groups. We use vibro-tactile signals as feedback representa-
tion because this method does not overlay important sounds
from the environment [12].

III. SMART WALKER OVERVIEW

The smart walker system is an off-the-shelf walker,
retrofitted with LIDARs for perception, data-processing ca-
pabilities and vibration motors in the handles for vibro-
tactile feedback. The sensing and processing unit is built
in a modular fashion, such that it can be easily mounted on
different walker brands. An image of the smart walker is
shown in Figure 1.

We use two planar laser range finders for perception and
estimation of the egomotion. The first laser scanner is fixed
with respect to the walker. We calculate the egomotion
of the walker based on the measurements of this sensor
by laser scan matching [15]. The second laser scanner is
continuously tilted by a servo motor to sense the three-
dimensional environment. We fuse the egomotion estimation
with the measurements of the second scanner and data from
its motor to obtain a dense three-dimensional point cloud.

Additionally, our approach leverages terrain classifiers
from robotics to detect hazardous positive and negative
obstacles from point clouds. Specifically, we modified the
“height-length-density” (HLD) classifier, which is designed
to determine safe and traversable cells in a planar grid
map [16]. Our modification improves its suitability to human
motion with a walker in tight narrow indoor spaces.

We use a publicly available module for path planning
that is based on the Dijkstra algorithm. The path planner
considers the map as well as detected obstacles. Figure 2
shows one of our test environments and the resulting map
overlayed with planned paths. Typically, the map is created
beforehand with a simultaneous localization and mapping
(SLAM) algorithm, but our system is also able to handle
the process of localization, mapping and path planning in
parallel. In this case, the planner considers all available
information for explored regions and uses heuristics for
unexplored areas to estimate a path to the goal location.

The controller module on the walker guides the user
for navigational tasks with four different vibration signals,
namely go straight, turn left, turn right and goal reached.
Each signal is repeated continuously until it is overwritten
by another one. These navigation commands are generated
by vibration motors which we integrated into the handles of
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Fig. 3. Results from one run of the system identification experiments for obtaining the human characteristics. In all of these runs, the user is directed to
move straight and then turn when one of the handles vibrates. The point at which the turn-signal is sent to the user is marked with a cross sign. The solid
blue line always depicts the actual user state while the dotted lines represent the best model fit based on k-means clustering and least square estimation.
The left image illustrates that we compute the reaction time of a user by measuring the difference in time between the signal sent (cross) and the change
in orientation (intersection of the dotted lines). The center image illustrates the rotational radius computed by fitting a circle (dotted lines). The right image
illustrates the two distinct velocities.

the walker. In order to create signals which are intuitive and
easily distinguishable, we vary the signal pattern in addition
to the location of the signal (left/right):

• Go straight: Pulsed vibration on both vibration motors.
After an on-cycle of 100 ms, the motors are turned off
for 400 ms.

• Turn left: Continuous vibration on the left vibration
motor. The right motor is turned off.

• Turn right: Continuous vibration on the right vibration
motor. The left motor is turned off.

• Goal reached: Both motors are first enabled with
100% vibration intensity, then enabled with 50% and
finally turned off. Each step is executed with a duration
of 500 ms.

Our software is based on the ROS framework [17], which
simplifies the use of existing, publicly available modules and
increases its flexibility.

The smart walker has two caster wheels on the front
that can rotate freely around the yaw-axis. In contrast, the
two wheels on the back are mounted fixedly in parallel.
Therefore, we can abstract the kinematic of our walker to a
differential drive. The rotation axis of the walker is always on
the line which goes through both contact points of the back
wheels with the ground, as long as the wheels do not slip.
The user of the walker adjusts to this kinematic constraint
intuitively. We define the reference-frame with its origin in
the middle between both contact points, the x-axis pointing in
forward direction and the z-axis perpendicular to the ground.

IV. SYSTEM IDENTIFICATION

An important prerequisite for guiding users on a path with
our controller is to understand how humans react to naviga-
tion commands. In particular, we model in a user study the
response of human users to changes in the navigation signal.
We identified the following parameters to be important for
human guidance:

• Reaction time (tR): The time between the system sends
a command and the user performs the desired action.

• Rotational radius (r): The radius of curvature for the
trajectory employed by the user for turning.

• Velocities (vstraight , vrot ): The constant velocity of a
user while moving straight and while turning.

In our user study we blindfolded the test subjects and
asked them to move straight till a vibration-feedback on the
handle directed the user to stop and turn either in the left or
the right direction depending on the signal. The users were
directed to turn on the spot to avoid generating trajectories
with large radius to facilitate navigation in narrow passages.
In total we observed 10 users. Initially, they were allowed to
get familiar with the walker and vibration feedback. During
this phase we did not record data. Once the users were
familiar with the setup we collected 10 evaluation runs per
user to model the human response to navigation commands.
We used a motion capture system to track the position and
orientation of the walker over time and fused this data with
the navigation signals. Figure 3 shows the typical results of
one run.

For calculating the reaction time per run, we consider the
orientation of the walker over time. K-means clustering was
used to fit two lines which approximate the rotation velocity
before and during the turning process. The intersection point
of these lines marks the point in time where the user reacts
to the signal and actually turns. The reaction time is the
difference between the signal sent to the user and the walker
being rotated. This is further illustrated in Figure 3(a). The
cross mark is the time at which the turn signal was sent to
the user while the intersection of the dotted lines estimates
when the user actually turned the walker.

To calculate the rotational radius we fit a circle to the
rotational trajectory using a least square minimization tech-
nique. The radius of the circle is the approximated rotation
radius. Figure 3(b) illustrates the circle fit to the trajectory.
The velocity of the user in both situations, while going
straight and while turning, is computed with a similar k-
means method as the one we used to estimate the reaction
time. The dotted lines in Figure 3(c) illustrate the straight
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TABLE I
ESTIMATED PARAMETERS FOR THE PREDICTION-BASED CONTROLLER

Parameter Mean (std-dev)

Reaction time tR [s] 0.87 (±0.20)
Rotational radius r [m] 0.36 (±0.25)
Straight velocity vstraight [m/s] 0.44 (±0.15)
Rotational velocity vrot [m/s] 0.18 (±0.08)

and rotational velocities.
The results of the system identification experiments can be

found in Table I. It can be seen that the reaction time of a
human is almost 1 second. This is much more than that of a
typical robot setup. Hence, we believe that incorporating the
delay of a human user is a key for improving the guidance
process. For example, if the delay is not considered, a user
could overshoot the goal by more than half a meter based on
the straight velocity. The rotational radius is also important
for guiding a human on the desired path and to predict his
position.

V. CONTROLLER

Our controller is based on a modified carrot-following
approach. We extend the existing method described by Hogg
et al. [18], as the basic algorithm cannot guarantee that the
path is not followed in the wrong direction in case that the
robot is oriented in the wrong way. The carrot-following
approach estimates a waypoint on the path in a fixed looka-
head distance L from the robot. This waypoint is called the
carrot position. The algorithm calculates the intersections of
a circle with the radius L around the reference-frame with
all path segments as illustrated in Figure 4. We consider an
intersection point as a potential carrot position in case that
a direction vector which indicates the direction of the path
at this position points away from the circle. This constraint
avoids that the robot follows the path in the wrong direction.
A new carrot position is only accepted if its distance from
the old carrot position measured over the path length is
below a threshold. This ensures that the robot follows a
self-intersecting path all the way from the beginning to the
end and does not choose a wrong carrot position at the
intersection of two path segments.

Our controller monitors the angular difference α between
the roll-axis of the walker and the line that connects the
reference-frame and the carrot position. It sends a turn-
command to the user as soon as |α| > αthresh . To avoid
oscillations for α ≈ αthresh we introduce a hysteresis
value αhyst . After a turn-command was sent, the controller
switches back to the go-straight-command as soon as |α| ≤
αthresh − αhyst .

We state three requirements to compute the lookahead
distance L and the angular threshold αthresh :

1) A robot driving on a straight line parallel to a straight
path line commands the user to turn as soon as the
distance between the two lines is above a maximum
distance dmax :

L sin (α) ≤ dmax (1)

Lα

(a) Without prediction (b) With prediction

Fig. 4. Carrot planner for controlling the walker with (right) and without
(left) considering the delay in the response time. The controller computes
a reference point on the desired trajectory in a fixed lookahead distance L
from the robot. The control commands are sent to the user based on the
angular deviation α between the x-axis of the walker (red) and the line
between the reference-frame and the carrot position. Our controller predicts
the pose of the walker under consideration of the delay time and computes
the navigation command based on the predicted pose (shown in gray).

2) A robot without control delay and with a fixed curve
radius r driving on a straight path line towards a
rectangular corner of the path should start turning as
soon as the distance between the robot and the corner
equals r:

L cos (αthresh) = r (2)

3) The lookahead distance should be maximized with
respect to Eq. 1 and 2 in order to avoid oscillations.

From these requirements we can derive suitable values for
L and αthresh :

αthresh = arctan

(
dmax

r

)
(3)

L =
r

cos (αthresh)
(4)

In its basic version, the carrot planner does not consider
the reaction time tR of the user. As we explained in Sec. IV,
this delay can cause significant guidance errors. Therefore,
we extend our carrot planner with a prediction module that
predicts the pose of the walker at the time t0+tR, where t0 is
the current point in time. This is a technique commonly used
when handling delay times in systems, for example Engel et
al. use this method to handle delay times caused by off-
board computations [19]. We use a constant velocity model,
the rotational radius determined in the user study and the
navigation commands sent in the time range [t0 − tR; t0] to
predict the specific pose of the walker which is relevant for
the current navigation decision, see also Figure 4.

VI. EXPERIMENTS

In order to evaluate our smart walker and the controller
we performed a second user study with 8 blindfolded par-
ticipants. The goal of our evaluation is to compare the
controller which considers the human characteristics against
the standard controller without prediction. Based on the
estimated system parameters in Table I we set the reaction
time of the user tR to 0.87 s and the rotational radius to
0.36 m. These values were used to determine the parameters
for the carrot planner. Furthermore, we set αhyst to 5° and

6017



-4 -2 0 2 4

-2

0

2

-4 -2 0 2 4

-2

0

2

Path 1 Path 2

-4 -2 0 2 4

-2

0

2

-4 -2 0 2 4

-2

0

2

Path 3 Path 4
Fig. 5. The four randomly generated paths for our evaluation. The start
point is marked with x. Path 1 and Path 2 contain straight lines joined by
right angles. This simulates indoor environments. Path 3 and Path 4 consist
of both straight lines and arcs. They simulate outdoor environments. Each
path has a length of 30 m. All units are in meters.

dmax to 0.09 m. This yields a value of 14° for αthresh and
0.35 m for the lookahead distance L (rounded).

For this evaluation, we generated 6 random paths. Half of
the paths consist of lines connected with right angles sim-
ulating indoor environments. The other half of the random
paths contain lines and arcs that are connected with varying
angles. This simulates typical outdoor trajectories. Out of
the 6 paths, we used 2 for training the users and the other
4 paths for evaluation. Figure 5 provides an overview of the
paths which we used for evaluation.

We provided each test participant with a short introduction
to the smart walker and the guidance commands. The test
subjects completed both training paths in randomized order,
one path with the standard controller and one path with
our prediction-based controller. After the training, every test
participant completed each of the remaining four paths twice,
once with each controller. The order of paths and controllers
was randomized to avoid any bias. For the purpose of
quantitative evaluation, we tracked the trajectory of the test
person using a motion capture system and recorded the
navigation signals with a frequency of 50 Hz. For qualitative
comparison, the test person graded the guidance style on a
scale from 1 (very bad) to 10 (excellent) after every run.

Figure 6(a) illustrates the desired path that the user is
guided along and the two trajectories of the test subject
resulting from the different controllers. The standard robotic
controller which does not consider the reaction time of the
user oscillates around the ground truth path. This is also
illustrated in Figure 6(b) where we compare the length of
each trajectory pair per user and path by subtracting the dis-
tance traveled with the standard controller from the distance
traveled with our controller. We can see that the length of the
trajectories resulting from our controller which incorporates
user prediction is shorter compared to the standard controller.

A paired-sample t-test confirms that the trajectories with
prediction are significantly shorter at a significance level
of α = 0.01. Additionally, the time required for the user
to reach the goal on the desired path is also less with our
controller. This is illustrated in Figure 6(c).

We also computed the mean deviation from the desired
trajectory to compare the influence of the controllers. To
compute the mean deviation we chose equidistant points on
the desired trajectory and then calculated their distance to
the path of the user for both controllers. We could not find
significant differences between the pairs of mean deviations
of the trajectory from the ground truth path at the significance
level of α = 0.01. The mean deviation over all experimental
runs is 0.060 m with a standard deviation of 0.058 m.

The improved path guidance performance for the con-
troller with prediction comes at the cost of a higher frequency
of navigation signal changes, as can be seen in Figure 7(a).
Also, the qualitative evaluation reveals that the users pre-
ferred the controller without prediction (see Figure 7(b)).
As a few users stated, this was mainly due to the fact
that the controller with prediction caused a high amount of
signal changes which could not always be interpreted clearly.
This result is in contrast to the improved path guidance
performance in terms of resulting path length and trajectory
execution time. Our results show that out of 32 runs, 78% of
the runs were shorter with our controller and 65% of the runs
required less time. We believe that these results which we
acquired with healthy test persons can also be transferred to
elderly people with walking disabilities. On one hand these
people tend to walker slower but on the other hand they
also suffer from decreased reaction times (compare [20]) that
motivate the need for the prediction-based controller.

VII. CONCLUSIONS

In this paper we outlined a smart walker designed to
enable blind people with walking disabilities to navigate
safely in unknown and complex environments. Our system
leverages existing robotic technologies for guiding humans.
We first proposed the system architecture for our walker and
explained the various hardware and software modules. Sec-
ondly, we identified human characteristics which differ from
robots for the task of precise navigation for path guidance.
In practical experiments we showed that by modeling human
characteristics, especially in terms of reaction time, users can
be guided more accurately resulting in less time required and
distance traveled to reach the desired goal. As a next step
we plan to evaluate our controller in real-world everyday
scenarios on the presented hardware platform.
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