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Abstract— Learning from demonstration is a popular ap-
proach for teaching robots as it allows service robots to
acquire new skills without explicit programming. However, for
manipulation actions mostly kinesthetic teaching is used as
these actions require precise knowledge about the interactions
between the robot and the object. In this paper, we present
a novel approach that allows a robot to learn actions carried
out by a teacher from observations. We achieve this by first
transforming RGBD observations to consistent hand-object
trajectories, which are then adapted to the robot’s grasping
capabilities. Experimental results show that the robot is able
to learn complex tasks such as opening doors or drawers.

I. INTRODUCTION

Service robots acting in households are expected to inter-

act with a multitude of objects. Obviously, it is not feasible

to pre-program all necessary manipulation skills, especially

for new objects that a human wants to be handled in a certain

way. Learning by demonstration is a promising approach for

teaching new skills to a robot. However, doing so with kines-

thetic teaching requires that the human can physically guide

the robot and has a sufficient understanding of the robot’s

grasping capabilities. Therefore, we present a system that,

in contrast to other approaches, learns manipulation actions

from human demonstrations, where a task is performed by

the teacher whom the robot only observes with its onboard

sensors. The envisioned system is illustrated in Fig. 1.

One of the major challenges in this context lies in the

fact that the demonstrations provided by the human teacher

typically cannot be executed exactly by the robot, due to

different kinematics and grasping capabilities. Grasp plan-

ning, although able to provide high-quality grasps, is not

a sufficient solution as human demonstrations also express

preferences. For example a glass should not be grasped from

the edge as the gripper would touch the inside. To achieve a

successful reproduction of the intended object manipulation

one must therefore balance between precisely following the

hand trajectory, i.e., imitating the human demonstration and

adapting this trajectory to the robot’s grasping capabilities.

A further problem comes from the fact that the robot

only watches the scene from a single perspective—its own.

Occlusions or bad viewing angles might temporarily make

the robot loose track of the human or the object.

In this paper we present a novel approach to teaching

robots manipulation actions by solely observing a human.

In particular, we make the following contributions. We fill

potential gaps in hand-object trajectories for a manipulation
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Fig. 1: Learning from human demonstrations: The robot

observes the human demonstrating a task, adapts this to its

own capabilities and executes the task on its own.

task. Based on the assumption that during manipulation the

grasp stays fixed, i.e., the transformation from the object to

the hand does not change, we pose a graph optimization

problem that leads to consistent hand-object trajectories. We

adapt human hand motions to feasible gripper motions based

on the fact that, although the robot does not know how to

exactly handle the object in question, it does know its own

grasping capabilities. To this end, we formulate an objective

function that, for a given pose, considers on the one hand

the distance to the demonstrations and on the other hand the

quality of the pose as a grasp for the object. By minimizing

this function, we obtain the best grasp pose starting from

which we calculate appropriate gripper-object trajectories.

Our approach has been implemented and tested on a

PR2 robot in a real-world environment for challenging tasks

including moving objects and opening doors or drawers. The

experiments demonstrate that our robot is able to precisely

execute even constrained tasks learned from a low number

of human demonstrations observed with an RGBD camera.

II. RELATED WORK

In the field of learning from demonstration approaches

using dynamical systems for motion representation like [1]–

[3] have shown promising results over the last years. The

main focus of these contributions is on motion generation

and execution. Pastor et al. [2] learn a non-linear differential

equation to reproduce demonstrated movement. Their work is

based on the dynamic movement primitive (DMP) framework

[4]. Calinon et al. [1] extend the concept of the DMP by

formulating the motion mechanism as driven by a virtual

spring-damper system. Their work proposes a probabilistic

approach that estimates the dynamical system’s parameters

in a Gaussian mixture regression.

While those approaches achieve good results in motion

generation, they do not deal with human demonstrations

of object manipulation tasks. Often these are performed by

kinesthetic teaching [3], [5]. Pastor et al. [2] train motion

with an exoskeleton arm and define goal points on the



manipulated objects manually. Calinon et al. [1] track human

hand trajectories with markers, but do not address manipula-

tion tasks. Mühlig et al. [6] and Asfour et al. [7] present

systems that learn from human teachers using articulated

models of a human body. Although Mühlig et al. deal with

manipulation tasks, grasping is not part of the system and is

either preprogrammed or assumed as given. Asfour et al. do

not perform a motion transfer to a robotic platform. Work

by Lioutikov et al. [8] also handles imitation learning but

focuses on segmentation of the demonstrated tasks while

grasp adaption is not addressed.

Another approach to robust object handling is to use grasp

planning. The focus here lies on the detection of stable grasps

of objects. Ten Pas et al. [9] propose a method to detect

grasps on unknown objects in cluttered scenes using RGBD

data. They sample a set of grasp hypotheses and classify

them with machine learning techniques. Work by Saxena et

al. [10] aims at finding grasps relying only on 2D images of

objects. A simulated labeled dataset is generated and used to

train a probabilistic model, which identifies suitable grasping

regions based on visual features. GraspIt! [11] is used to find

stable grasps based on robot gripper and object models.

In contrast to these robot based procedures there are

also human inspired grasp approaches. Gioioso et al. [12]

map the human hand to robot grippers exploiting synergetic

composition of the human hand. Lin and Sun [13] present

a grasp planning approach that builds upon human demon-

strated grasp types. The work of Armor et al. [14] aims at

generalizing human grasps. They propose a direct mapping

of human hand joint angles to the robot and achieve general-

ization by adapting demonstrated contact points to unknown

objects. In contrast to our work these methods use precise

hand postures for training and focus on grasping itself and

not on manipulating objects. Our work complements these

approaches as we are not only interested in optimal grasps,

but aim at choosing a grasp that balances grasp quality and

the resemblance to the demonstrated manipulation task.

III. PROBLEM STATEMENT

A demonstration of a manipulation action consists of two

6-dof trajectories: one for the teacher’s hand and one for

the manipulated object. A trajectory X is a sequence of n
poses X = 〈x1, . . . ,xn〉. Hand and Object trajectories are

not required to be the same length and can contain gaps due

to missing observations. A pose x is represented by a trans-

lational part pos(x) given by a 3d vector (x, y, z)T and a

rotational part rot(x) given by a quaternion (qx, qy, qz, qw)
T .

Additionally each pose x has a time stamp time(x) to

associate matching poses.

The demonstrated trajectories contain reach and retreat

parts, where the object is not moving, and manipulation

parts, where object and hand move together in a fixed grasp.

Note that this assumption is necessary since our robot cannot

perform in-hand manipulations. For more elaborate grippers

this assumption might be relaxed.

Expert demonstrations, in which the human hand trajec-

tory precisely leads to a suitable grasp for the robot are not

(a) (b)

(c) (d) (e)

Fig. 2: Acquiring consistent hand (red) and object (blue)

trajectories for opening a door (a): The top-down projection

of the raw data (b) shows a large gap, where the hand was

not tracked. Missing points are filled by interpolation (c). A

graph optimization problem is posed with the constraint that

during manipulation the hand-object transformation is fixed

(d). The correction results in consistent trajectories (e).

required. Furthermore, no offset from the hand to the gripper

is given. The goal is to learn a motion model that allows the

robot to reproduce the intended action from the human.

IV. CONSISTENT HAND-OBJECT TRAJECTORIES

In this section we show how to generate dense, consistent

pairs of hand and object trajectory segments that are suited

for motion learning. Observations are made by a robot

with its RGBD camera. Besides noisy data and errors from

hand and object detection algorithms, we face two general

problems: First, the relative measured pose of the object in

the hand might change during the demonstration. Second,

observations might contain gaps, where either the hand or

object is obstructed from the robot’s view. To make the data

suitable for learning a motion model, we first segment raw

hand and object trajectories and then in a graph optimization

step correct the grasp transformation and fill the observation

gaps.

A. Acquiring Hand and Object Trajectories

In order to teach the robot an object related task we

need to track both the human hand and the involved objects

during demonstrations. Any algorithm that produces tracks

of hand or object poses is applicable. Tracking the hand

is currently achieved using a marker attached to the hand.

For object tracking we use SimTrack [15]. This gives us

the two trajectories XR

h
for the hand poses and XR

o for

the object poses with raw tracking data. As a first step,

we compute matching same-length trajectories Xh and Xo ,

where for each xh
i ∈ Xh there is a respective xo

i ∈ Xo

with time(xh
i ) = time(xo

i ) and vice-versa. Whenever for

a pose with time t in one trajectory there is no matching

one with the same time in the other, we create a new pose

with time t in the other trajectory by linear interpolation

for the translational part and slerp for the rotational part.

This leaves us with hand and object trajectories that possibly

contain sequences of interpolated poses representing gaps in

the observations. An example is visualized in Fig. 2(a)-(c).
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Fig. 3: A hyper-graph is constructed to compute the best estimate from the observations. Vertices for poses from the hand

V h are shown in red, vertices for object poses V o are shown in blue. Vertices with unary edges that link matched poses to

a fixed frame are shown with double circles. Binary edges representing the smoothness of trajectories are shown as lines

between vertices and three lines connected by a dot display ternary edges that estimate a single grasp transformation VG.

B. Segmentation

We segment the hand and object trajectories by labeling

matching poses in both trajectories to belong to a reaching,

manipulation or retreat segment. We identify manipulation

segments by searching for joint hand and object motion. For

this we use the co-occurrence of parallel movements [16]

defined by the scalar product of hand and object velocities.

Whenever this scalar product is greater than the threshold

δp=0.002m2/s4, hand and object move in the same direction

and both velocities are greater than zero, i.e., the object is

being manipulated.

C. Trajectory Correction

We now have two labeled trajectories Xh and Xo . Both

might contain gaps with interpolated poses that do not form

consistent manipulation segments, where the hand and object

move together. Besides the actual observations contained in

the trajectories, we have two other sources of background

information: First, trajectories are smooth in the sense that

consecutive poses are near to each other. Second, during

manipulation the relative pose of hand and object is fixed.

We now formulate a hyper-graph optimization problem that

simultaneously captures the background information and the

observations in a single system. Its solution are two corrected

trajectories X̂h and X̂o that best represent the hand and

object motions given the observations.

We use the general graph optimization library g2o [17] to

compute a least-squares solution. Each k-edge in the graph

relates its vertices’ estimates x̂1, . . . , x̂k with a measure-

ment z1,...,k given for the edge by an error function e
def
=

e(x̂1, . . . , x̂k, z1,...,k). Together with the information matrix

Ω the sum of squared error eTΩe for all edges is minimized.

This means that besides the structure of the graph, we only

need to state, how the error functions are defined and what

the information matrices represent. In our case all vertices’

estimates are 6-dof poses or transformations and the error

functions also compute 6-dof transformations. We represent

these internally in the same way as Kümmerle et al. [17].

Fig. 3 shows an illustration of the constructed graph. For

each pose xh
i ∈ Xh and each pose xo

i ∈ Xo a vertex is

added representing the estimates x̂h
i and x̂o

i , respectively.

The poses xh
i , xo

i are also used to initialize their estimates

x̂h
i and x̂o

i . We use unary edges for all vertices from non-

interpolated poses. The pose xi from the trajectories is used

as the measurement for the estimate x̂i. The corresponding

error function is therefore

e(x̂i,xi) = x−1
i · x̂i (1)

and ensures that the estimates are near the actual obser-

vations. The information matrix is set to the accuracy of

the object or hand detection algorithm. Between consecutive

nodes for x̂i and x̂j along each trajectory binary edges Es

are added. These represent the smoothness of the trajectory

and keep the relative transformation between poses similar

to that of the input trajectories’ poses xi and xj by

e(x̂i, x̂j ,xi,xj) =
(

x−1
i · xj

)−1
·
(

x̂−1
i · x̂j

)

. (2)

We set the information matrix to reflect the smoothness that

we assume for user demonstrations scaled by the distance

between the poses. Finally, we address the fact that in the

manipulation segment the grasp is a fixed transformation. We

introduce an additional node VG into the graph that estimates

the grasp transformation, i.e., the pose of the hand in the

object’s frame x̂o
h. For each pose pair xh

i and xo
i a ternary

edge EG is added that connects the vertices for x̂h
i , x̂o

i and

VG. The error function

e(x̂h
i , x̂

o
i , x̂

o
h) = x̂o−1

h ·
(

x̂o−1

i · x̂h
i

)

(3)

computes the difference between the grasp estimate x̂o
h and

the relative transformation between the pose estimates for

the hand and object. When the error is minimized, the grasp

estimate x̂o
h is as close as possible to the relative transforma-

tion. Thus, for all manipulation pose pairs, the error of each

relative transformation to the grasp estimate is minimized.

By introducing VG and ternary edges in comparison to just

adding binary edges between each pose pair, we do not have

to input a grasp transformation into the system. Instead,

this is estimated as part of the optimization process. An

illustration of the optimization process and its results is

shown in Fig. 2(d) and (e). Here, VG in ternary constraints

is not shown as that represents a relative transformation, but

not an absolute location.

V. ADAPTING HUMAN DEMONSTRATIONS TO ROBOT

CAPABILITIES

We now have consistent hand and object trajectories with

X̂h and X̂o . Based on these, we first compute a grasp pose



respecting the robot’s capabilities and the demonstrations

and then apply this to gain gripper trajectories. These are

then used in motion learning, so that the resulting model is

suitable for execution on the robot.

A. Grasp Adaption

A grasp is given by the pose of the hand or gripper relative

to the regarded object. The set of demonstrated grasp poses

for a pair of corrected trajectories X̂h , X̂o is therefore

X̂G = {x̂o−1

i · x̂h
i | x̂o

i ∈ X̂o , x̂
h
i ∈ X̂h}, (4)

where only the indices i that were labeled as manipulation

poses are chosen. This set is now used to find the robot

grasp. The distance of a pose x to the demonstration X̂G is

defined by

dd(x, X̂G) =
1

|X̂G|

∑

xG∈X̂G

dt(x,xG)+β · dr(x,xG), (5)

with the translational and rotational distances

dt(x,xG) = ‖pos(x)− pos(xG)‖2 (6)

dr(x,xG) = 1− 〈rot(x), rot(xG)〉
2, (7)

where 〈·, ·〉 computes the dot product of the quaternions and

the parameter β=10 adjusts translational versus rotational

error. The best grasp x∗
g is found by minimizing the objective

function of the non-linear optimization problem

x∗
g = min

x
Ψ(x), such that

{

c(x) = 0

xmin ≤ x ≤ xmax

(8)

with

Ψ(x) = w · dg(x, o) + (1− w) · dd(x, X̂G). (9)

The objective function Ψ(x) consists of two competing

parts dg(x, o) and dd(x, X̂G). The weight w allows the user

to adjust the procedure to emphasize grasp quality in dg(x, o)
or closeness to the human demonstrations dd(x, X̂G). We

used w = 0.5 in our experiments. The robot’s grasping

capability is expressed by a grasp quality function dg(xg, o)
that accepts a potential grasp pose xg and a representation

of the object o, usually a mesh or point cloud. The function

states, how far off the pose xg is from a good grasp for o. The

constraints c(x) ensure that the quaternion in the rotational

part rot(x) is normalized and that the pose x is collision

free. For efficiency, we first evaluate Ψ on discretized poses

in a 2 cm grid and then compute x∗
g with the initial guess

from the four best poses using a solver based on interior point

techniques [18] in Matlab. The bounds xmin and xmax for

optimization are then set to not deviate more than 3 cm for

pos(x) and ±0.5 for rot(x). The optimization takes between

one and four minutes. An example of the optimization result

is shown in Fig. 4.

The grasp quality measure depends on the robot’s gripper

and object geometry. We use the same mesh as in the

object detection in Sec. IV-A as the object representation.

In principle any grasp quality function can be used. As our

robot is equipped with a simple two finger parallel gripper

Fig. 4: Grasp adaption for the cereal box (blue) results

in a suitable grasp x∗
g (green). Note that in the sideways

direction the grasp had to be significantly adapted from the

demonstrations (black), while the optimization kept close to

the demonstrations in the height.

we use the distance to the gripper’s tool center point for

grasp quality. With the pose of the tool center point in the

gripper frame as xt, we define

dg(x, o) =

{

‖pos(x · xt)− pc‖2, if o in gripper

‖pos(x · xt)− po‖2 +R, otherwise

(10)

To compute if the object o is inside the gripper, we span

a plane by the two finger tips and the tool center point and

consider the projection of all points of the object, i.e., its

mesh’s vertices, onto this plane. If any projection lies inside

the convex hull of the gripper on this plane and the respective

point is no farther away from the plane than the gripper

thickness, we consider the object inside the gripper. pc is

the mean of the projected points inside the plane. Thus, the

first condition favors grasps that keep the object in the center

of the gripper. po is the closest center of a face of the object

mesh to the gripper’s tool center point. The second condition

pushes the object towards the gripper. R is a parameter

used to punish the object being outside the gripper. In our

experiments we used R=15. In contrast to choosing large

values for grasp poses that do not enclose the object, this

guides gradient-based optimization methods towards suitable

grasps. This heuristic is inspired by [19]. More complex

gripper geometries might require more elaborate heuristics.

If no grasp quality measure is available, state-of-the-art grasp

planners [9]–[11] can be leveraged by sampling good grasps

and computing the distance of x to the closest grasp.

B. From Human to Robot Trajectories

Once a suitable grasp x∗
g is found the hand and object

trajectories X̂h and X̂o are used to create a robot gripper

trajectory. We separate between poses in reaching or retreat

segments and poses in manipulation segments. As x∗
g is the

best gripper pose in the object’s frame, during manipulation

the resulting robot poses are derived from applying this grasp

to the object poses, i.e.,

xr
im

= xo
im

· x∗
g for all xo

im
∈ X̂o , (11)

if im is labeled as a manipulation segment.

For reaching or retreat segments, we do not have a grasp

constraint. However, a reaching or retreat motion must con-

nect with a manipulation motion. Thus we estimate the offset

between hand and gripper at the transition points between

manipulation and reaching or retreat. Then we transform
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Fig. 5: The robot’s view, when repeating the following tasks

after demonstration: Placing a cereal box (a), putting a bowl

in a drawer (b), opening a swivel door (c), opening a drawer

(d) and opening a sliding door (e).

the reaching and retreat motion for the gripper to connect

seamlessly to the manipulation segment. The resulting poses

together with the xr
im

form the robot gripper trajectory X̂r.

C. Generating Robot Motions

A corrected gripper trajectory X̂r is obtained for each

demonstration. Multiple demonstrations are merged and in-

dependent time-driven models for the reaching, manipulation

and retreat parts are learned using mixtures of Gaussians [1].

Alternative approaches for time independent motion learning

could also be used [20]. The motion model is designed to

generate online motions. As we are only interested in the

applicability of the gripper trajectories, we use the learned

models to simulate trajectories in the corresponding object

frame and execute these on the robot.

VI. EXPERIMENTS

To evaluate our approach we recorded human demon-

strations for five scenarios consisting of moving a cereal

box onto a shelf, placing a bowl in a drawer, opening a

swivel door, opening a drawer and opening a sliding door.

We refer to those as Cereal, Bowl, Door, Drawer and Slide.

Examples of the robot executing these tasks are shown in

Fig. 5. While the first two are mainly a grasping challenge,

the last three tasks in addition require a correct execution

of the manipulation trajectory as the object’s movements are

constrained by geometry.

All demonstrations were recorded with our PR2 robot’s

RGBD camera with approximately 30Hz in a setup as shown

in Fig. 1. The data was then processed offline to generate

the motion models. These were then executed in real-world

experiments on the robot to determine their success. We

considered an execution a failure, if the robot failed to grasp

the object, collided unintentionally (e.g., bumped into a door,

when trying to grasp the handle) or failed to execute the

manipulation.

A. Learning from Human Demonstrations

First, we determine, if our approach allows the robot to

successfully reproduce human demonstrations. To this end

Fig. 6: Gripper trajectories for the Cereal (top) and Bowl

(bottom) tasks. The trajectories on the left (red) were learned

without grasp adaption, while the trajectories on the right

(green) were produced with our approach.

Task \ Grasp Cereal Bowl Door Drawer Slide Average

Cereal © © - © - -
Bowl © © - © - ©
Door © - © - © ©
Drawer © © - © - ©
Slide - - - - © -

TABLE I: Executing tasks with pre-defined grasps. Each

column represents the grasp derived from a task or the

average of all grasps. Rows show the tasks with © marking

successes and - failures.

we performed ten executions for each of the five demon-

strated tasks: five with the model learned from our approach,

i.e., with trajectory correction and grasp adaption, and five,

where the model was learned from uncorrected tracking data

without grasp adaption, i.e., Xh . None of the latter runs

lead to a successful execution, while all executions with our

approach worked. Examples of the robot performing the tasks

are displayed in Fig. 5. While this shows that our approach

works in principle, Fig. 6 illustrates, why it is necessary. In

most cases, the robot failed to grasp the object, because the

human hand pose does not accurately reflect a proper grasp

for the robot. Although learning from hand observations

has been shown to work for pointing motions and gestures,

interacting with objects directly requires accurate models

adapted to the robot, which we provide.

B. Grasp Adaption

The previous experiment demonstrated that an adaption

from the human hand pose to the robot gripper is necessary.

Here, we investigate in how far the automated grasp adaption

from Sec. V-A can be replaced by a pre-given grasp offset.

A reasonable assumption is that a grasp offset that works

for one object might also work for another. As examples for

working grasp offsets, we use the grasp offsets derived from

the grasp adaption for each task. In addition, we also use the

average of all grasp offsets. In comparison to computing x∗
g,

we transform the trajectories by fixed offsets, learn a model

and execute that, i.e., we try each task with a grasp for each

other task. Table I shows the results.

None of the grasps work for every object and there is

also no task that can be solved with any grasp. The door

and drawer tasks are solved with four of the six pre-given

grasps as these have large handles (see Fig. 5(c) and (d)) and

thus inaccurate grasps might still work. On the other hand

the sliding door has a small handle (see Fig. 5(e)), which

requires a specifically adapted grasp. This shows that a pre-
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Fig. 7: Trajectory execution error for the Door (top), Drawer

(middle) and Slide (bottom) tasks. The path execution has

been scaled to the same length.

given grasp offset is unlikely to work in general and the grasp

adaption ensures successful reproduction. This is due to the

fact that the offset depends on the grasped object’s shape,

i.e., a wide grasp (cereals) leads to a different offset than

a fingertip grasp (door/drawer handle). Further the marker

placement on the hand underlies a small variation and the

independent tracking of the hand and objects introduces an

additional fluctuation. Note that our approach is represented

by the diagonal entries as each grasp is adapted per object,

however, in contrast to pre-given grasps automatically.

C. Trajectory Correction

In a third experiment we address the influence of the

trajectory correction. We created motion models with grasp

adaption either using the corrected trajectories X̂h and X̂o or

the interpolated trajectories without correction Xh and Xo

as input. As the grasp adaption prevents grasping failures, we

now see the effect of the trajectory correction. We use the

Door, Drawer and Slide tasks as these only allow constrained

motions. Thus, during the execution the robot is forced away

from the motion’s trajectory. As we cannot measure these

undesirable forces directly we consider the deviation of the

actual execution from the learned motion. At each point

of the execution, we compute the distance to the nearest

point in the desired trajectory. Fig. 7 shows the results. With

corrected trajectories, the execution error is always below one

centimeter. The error is largest when using interpolated data

for the Door task as linear interpolation does not accurately

reflect the rotating motion. There is no clear difference for

the Drawer task. The reason for that is that there is more

mechanical compliance in the drawer mechanism and thus

the robot could execute the motion without large deviations.

This shows that the graph optimization is able to correct

errors in the measurements and produce a smooth joint pose

estimation for hand and object. Further it oppresses undesired

(but present in the demonstrations) in-hand manipulations by

fixing the grasp. It also fills occlusions in the demonstrations.

VII. CONCLUSION

We presented an approach that learns manipulation ac-

tions from human demonstrations. It aims towards a natural

teaching process similar to how humans show tasks to

others. In particular, we do not require continuous and highly

accurate tracking, e.g., from a motion capture setup, data

gloves, or kinesthetic teaching. Instead, our approach corrects

gaps in trajectories using the background knowledge that

manipulated objects move with the hand and by adapting

demonstrated grasp trajectories to the robot’s capabilities.

In practical experiments we show that our approach is able

to reproduce demonstrated object manipulation actions even

when precise grasping is required. They further demonstrate

that fixed grasp offsets are not sufficient in general.
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