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Abstract— Over the past years learning from demonstration
has become a popular method to intuitively teach new skills
to service robots without explicit programming. However, most
teaching approaches in literature use kinesthetic training and
do not include mobile platforms. Here, we present a novel
approach to learn joint robot base and gripper action models
from observing demonstrations carried out by a human teacher.
To achieve this we adapt RGBD observations of the human
teacher to the capabilities of the robot. We formulate a graph
optimization problem that links observations with robot grasp-
ing capabilities and kinematic constraints between co-occurring
base and gripper poses. In real world experiments we show that
the robot is able to learn complex mobile manipulation tasks
such as opening and driving through a door.

I. INTRODUCTION

The expected rise of mobile manipulation platforms to
service robots acting in households in the near future poses
the question of how they should be instructed in their
custom environments. Ideally the teaching process should
be intuitive and not require expert knowledge neither in
programming nor about the robot kinematic and grasping
capabilities. Instead of explicit programming or performing
kinesthetic teaching the robot should learn actions directly
from observing human demonstrations like depicted in Fig. 1.
In our previous work we introduced a system that learns
manipulation actions from human demonstrations [1]. Here,
we focused on manipulation actions, where the base of the
robot is at a fixed position. The ability to learn and reproduce
actions that require a motion of the platform’s base is one
extension presented in this paper.

One of the major challenges in this context lies in the
fact that the demonstrations provided by the human teacher
typically cannot be exactly executed by the robot, due to
different kinematic constraints between the base and grip-
per of the robot compared to human’s torso and hand. In
addition the grasping capabilities differ due to geometric
differences between a human hand and the gripper of the
robot. Grasp planners can generate high-quality grasp but
lack a connection to the task at hand. I.e. for most tasks
an object may need to be grasp in the way demonstrated
by the teacher instead of just maximizing the grasp quality.
So one needs to trade off the grasp quality against the
resemblance to the demonstrations. Further problems arise
due to the limited observability of the scene from one
static observation angle. This makes the recording prone to
measurement errors and even occlusions where the robot
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Fig. 1: Learning from human demonstrations: The robot observes
the human demonstrating a task, adapts this to its own capabilities
and executes the task on its own.

might temporarily loose track of the human or the object.
In this paper we present an extended approach for teaching
robots mobile manipulation actions by solely observing a
human teacher. We enhance our previously stated approach
that, based on graph optimization, generates consistent hand-
object trajectories for manipulation task learning. In this
paper the following contributions are made. We adapt the
observed human grasp to the robot capabilities as part of
the graph optimization. Here, the robot gripper motion is
determined to both follow the human demonstration while
fulfilling the geometric demands of the task to learn. In
addition, we add functionality to learn the motion of the
robot base by taking into account observed human torso
poses. The motion of the robot base is constrained by the
demonstrated human torso poses as well as the kinematic
feasibility regarding the co-occurring gripper poses.

We evaluated our approach in both simulation and real-
world experiments on a PR2 on challenging tasks demanding
automatic positioning as well as task specific motion of the
robot base. The experiments demonstrate that our approach
is able to learn a combined model of robot gripper and base
motions for complex tasks from a low number of human
demonstrations observed with an RGBD camera.

II. RELATED WORK

Most learning from demonstration approaches do not deal
with human demonstrations of object manipulation tasks and
also do not consider mobile manipulation. Often demon-
strations are performed by kinesthetic teaching [2], [3].
Pastor et al. [4] collect learning data with an exoskeleton
arm and define grasp points on the handled objects manually.
Like us, Calinon et al. [5] track human hand trajectories
with markers, but they do not address manipulation tasks.
The system presented by Mühlig et al. [6] learns from a
human teachers using an articulated models of the human
body. Although dealing with manipulation actions, grasp
poses on the objects are either preprogrammed or assumed
as given. None of these approaches is designed to handle



a motion of the robot base. Burget et al. implement a
imitation of human whole-body motions [7]. The focus lies
on a stable real-time teleoperation of the robot and not on
learning action models. Ratner et al. [8] present a web-based
infrastructure for recording user demonstrations of mobile
manipulation tasks on a simulated robot. This approach deals
with mobile manipulation tasks but does not use human
task demonstrations. Whole-body motion of humanoids or
manipulation of articulated objects are also addressed as a
planning problem in [9], [10], the latter also dealing with the
task of opening and navigating through a door. In contrast
to our work detailed information about the handled objects
are needed to set planning constraints.

One of our goals is to allow the robot to position itself
according to the task to handle. To this end we use the
concept of an inverse reachability map [11]. In contrast to
our work they do not address a joint motion of the robot
base and gripper. A different idea to this goal is pursued
by Stulp et al. [12]. They aim at learning to position the
robot to perform manipulation tasks through trial-and-error
interaction with the environment.

On the field of grasp planning there are numerous ap-
proaches with focus on detection of stable grasps of objects
we can build on. Fischinger et al. propose a method to
calculate grasps on point clouds using height accumulated
features [13]. Ten Pas et al. [14] introduce an approach
to sample and classify grasps on unknown objects in clut-
tered scenes using RGBD data. Other approaches focus
on human inspired grasps [15]–[17]. Gioioso et al. [15]
exploit synergetic composition of the human hand mapping
the human hand to different robot grippers. In the grasp
planning approach presented by Lin and Sun [16] human
demonstrated grasp types are used as foundation. The work
of Armor et al. [17] proposes a direct mapping of human
hand to robot joint angles. A generalization to unknown
objects is achieved by adapting the demonstrated contact
points. The latter two methods use precise hand postures
for training. All of them have a focus on grasping itself
and not on manipulating objects. Our work builds upon
such techniques since we use pre-sampled grasps and aim
at choosing a grasp that balances grasp quality and the
resemblance to the demonstrated manipulation task.

III. PROBLEM STATEMENT

For our problem setting a demonstration of a manipula-
tion action consists of three 6-dof trajectories: one for the
teacher’s hand, one for the teacher’s torso and one for the
manipulated object. A trajectory X is a sequence of n poses
X = 〈x1, . . . ,xn〉. These three independent trajectories are
not required to be the same length and may contain gaps
due to occlusions resulting in missing observations. A pose
x is build of a translational part pos(x) given by a 3d
vector (x, y, z)T and a rotational part rot(x) given by a
quaternion (qx, qy, qz, qw)

T . Each pose x has a time stamp
time(x) allowing us to associate matching poses. We assume
that all demonstrations can be segmented into reaching,
manipulation and retreat parts. Manipulation is identified by

a joint hand and object motion. Since our robot is incapable
of in-hand manipulation we expect a fixed grasp. For more
elaborate grippers this assumption might be relaxed.

We neither require expert demonstrations, in which the
human hand trajectory precisely leads to a suitable grasp for
the robot nor a given transform between the human hand and
the robot gripper. Our goal is to adapt human demonstrations
in a way that it allows the robot to learn a joint motion model
for both the robot gripper and base enabling it to reproduce
the intended action. We achieve this by formulating a hyper-
graph optimization problem.

IV. GRAPH STRUCTURE

In this section we show how to generate data suited
for robot motion learning given a set of human teacher
demonstrations. The observations are recorded with a RGBD
camera. Note that these observations are subject to noise
from the detection algorithms and might contain gaps where
either the hand, the torso or the object are obstructed from the
camera view. The recorded trajectories are preprocessed and
segmented as described in our previous work [1]. We first
compute matching same-length trajectories Xhand , Xtorso

and Xobject . Whenever for a pose with time t in one of
the trajectories there is no matching one with the same time
in the others, we create a new pose with the missing time
t in the other trajectories by linear interpolation for the
translational part and slerp for the rotational part. Afterwards
for each xh

i ∈Xhand there is a respective xo
i ∈Xobject and

xt
i ∈Xtorso with time(xh

i ) = time(xo
i ) = time(xt

i).
Next we build a graph in which the vertices correspond

to the recorded trajectories Xhand ,Xtorso ,Xobject . Addi-
tionally we add nodes representing trajectories for the robot
gripper Xgripper and the robot base Xbase . These are ini-
tialized at the same poses as the hand, respectively torso
poses. We refer to the estimates of the vertices, which are
initialized with the recorded poses, as x̂h

i , x̂t
i, x̂

o
i , x̂g

i , x̂b
i for

the hand, torso, object, gripper and base trajectories. These
vertices are connected via different types of edges addressing
assumptions and requirements we pose on the motions.
Each k-edge relates its vertices’ estimates x̂1, . . . , x̂k with a
measurement z1,...,k given for the edge by an error function
e

def
= e(x̂1, . . . , x̂k, z1,...,k). The sum of squared error eTΩe

is minimized weighted with information matrices Ω for all
edges using g2o [18]. Thus, for the optimization, besides
the structure of the graph, we only need to define the error
functions and the information matrices.

We attach unary edges to all vertices from measured (non-
interpolated) poses. The poses xi from the trajectories serve
as the measurements for the estimates x̂i. Defining the error
function as

e(x̂i,xi) = x−1
i · x̂i (1)

keeps the estimates near the actual observations. The in-
formation matrix is set to represent the accuracy of the
corresponding tracking algorithm. To model that trajectories
are smooth in the sense that consecutive poses are near to
each other we add binary edges Es along the individual



retreatmanipulationreaching

Human
Torso

V t
nV t

n−1

V t
jV t

i+2V t
i+1V t

i

V t
3V t

2V t
1

Robot
Base

V b
nV b

n−1

V b
jV b

i+2V b
i+1V b

i

V b
3V b

2V b
1

Robot
Gripper

V g
nV g

n−1

V g
jV g

i+2V g
i+1V g

i

V g
3V g

2V g
1

Human
Hand

V h
nV h

n−1

V h
jV h

i+2V h
i+1V h

i

V h
3V h

2V h
1

Related
Object

V o
nV o

n−1
V o
jV o

i+2V o
i+1V o

i

V o
3V o

2V o
1

Vgh

VRG VHG

Et

Et

Et

Es

EIRM

Es

Es

Es

Es

Es

Fig. 2: A hyper-graph is constructed to compute the best estimate from the observations. Vertices for poses from the hand V h and the
torso V t are shown in orange, vertices for object poses V o are shown in blue and vertices for the robot gripper V g and base V b are
shown in magenta and green, respectively. Vertices with unary edges that link matched poses to a fixed frame are shown with double
circles. Binary edges representing the smoothness of trajectories are shown as black lines between vertices. Three lines connected by a
dot display ternary edges that estimate a single transformation. These transformations represent the human grasp VHG , the robot grasp
VRG and the transform between gripper and hand Vgh .

trajectories. For the hand, torso and object trajectories they
keep the relative transformation between poses similar to that
of the input trajectories’ poses xi and xj by

e(x̂i, x̂j ,xi,xj) =
(
x−1
i · xj

)−1 ·
(
x̂−1
i · x̂j

)
. (2)

For the robot gripper and base poses we simply want
consecutive poses to change as little as possible. We define
the error function as

e(x̂i, x̂j) = x̂−1
i · x̂j . (3)

Corresponding information matrices reflect the smooth-
ness we assume for demonstrations scaled by the distance
between the poses. Further used nodes and edges are de-
scribed in the following. The structure of the graph with all
modeled relations is presented in Fig. 2.

A. Consistent Hand-Object Trajectories

We use the structure presented in our previous work [1]
to consistently correct measurement errors and occlusions
in the human hand Xhand and object Xobject motion in
the manipulation segment. Under the assumption that during
manipulation the relative transform between hand and object
is fixed, i.e., we have a fixed (human) grasp, we insert an
additional vertex VHG into the graph that estimates this grasp
transformation. The grasp gives us an estimate for the pose
of the hand in the object’s frame x̂o

h. For each pair of poses
(xh

i ,x
o
i ) in the manipulation segment we add a ternary edge

Et that links their estimates x̂h
i , x̂o

i to x̂o
h. The corresponding

error function is

e(x̂h
i , x̂

o
i , x̂

o
h) = x̂o−1

h ·
(
x̂o−1

i · x̂h
i

)
(4)

During the optimization this minimizes the difference be-
tween the grasp estimate x̂o

h and the relative transformation
between all pairs of pose estimates for the hand and object.

By introducing VHG and using ternary edges the human
grasp is estimated as part of the optimization process.

B. Human Hand to Robot Gripper

On top of the described correction of the measured hand
and object poses we generate a feasible robot gripper trajec-
tory. It should follow the demonstrated hand motion as close
as possible while ensuring a fixed and geometrically valid
robot grasp on the manipulated object. To achieve this we
use a similar approach as described above. We insert a vertex
VRG , with pose estimate x̂o

g , that is connected to the pairs of
gripper x̂g

i and object x̂o
i pose estimates via ternary edges.

Using an error function similar to equation (4) we minimize
the difference between all relative transforms from gripper
to object pose estimates and the estimate of the robot grasp.

e(x̂g
i , x̂

o
i , x̂

o
g) = x̂o−1

g ·
(
x̂o−1

i · x̂g
i

)
(5)

For this to also result in a good grasp for the robot we add a
unary edge on VRG addressing the grasp quality. We generate
a set of possible grasp poses G with corresponding quality on
the handled object beforehand [13]. We define the associated
error function as

e(x̂o
g, G) = x̂o−1

g · g (6)

where g is the grasp closest to x̂o
g with quality above a

certain threshold. To ensure similarity to the demonstration
we add another vertex Vgh representing the transform be-
tween human hand and robot gripper poses, again following
the same pattern as before. All pairs of gripper and hand
poses are connected to Vgh with the goal to keep this
transform constant over the action. Again an error function
like equations (4, 5) is used.

e(x̂g
i , x̂

h
i , x̂

h
g ) = x̂h−1

g ·
(
x̂h−1

i · x̂g
i

)
(7)



Fig. 3: Adaption of the grasp. The poses for the gripper (magenta
dots) are shifted towards the handle of the door leading to a
successful robot grasp. By just imitating the human hand motion
(orange dots) the grasp would fail.

To keep the similarity as good as possible we add a unary
edge on Vgh with error function

e(x̂h
g ) = x̂h−1

g , (8)

which pulls the estimate for the relative transform between
hand and gripper x̂h

g towards identity. The weighting between
resemblance to the demonstrations and grasp quality is done
with the respective information matrices on the unary edges
of VRG and Vgh . An example of the effect of this setup is
shown in Fig. 3.

C. Including Base Poses in the Graph

One drawback of our previous approach was the necessity
to manual position of the robot base and the restriction
that only actions that do not require base motions could be
performed. In this new extended approach we also learn how
to position and move the base while executing a task. To
this end we introduce the nodes for the robot base V b

i in the
graph. These are initialized with the same estimates x̂b

i as the
measured human torso pose estimates x̂t

i with the restriction
that they need to be upright. These estimates are connected
with binary edgeswith error function as equation 3. To ensure
that the base poses form kinematically legal pairs with the
corresponding gripper poses we use the information of an
inverse reachability map (IRM) [11]. For a given gripper
pose the IRM provides all feasible poses that the base may
take to reach the desired gripper pose. The resolution of the
used IRM was 5 cm and 45◦, respectively. We include this
constraint in our graph by adding edges EIRM between base
V b
i and gripper V g

i vertices with error function

e(x̂g
i , x̂

b
i ) = (x̂g−1

i · x̂b
i )

−1 · xIRM (9)

where xIRM is the closest pose in the IRM to (x̂g−1

i · x̂b
i ).

This concept is easily extended to take information about
obstacles in the environment into account by excluding poses
from the IRM that would result in a collision. The informa-
tion matrices place high weight on the inverse reachability
constraints an low ones on the absolute positioning.

D. Merging Multiple Demonstrations

To handle multiple demonstrations of one task, all demon-
strations are merged into one graph. The individual demon-
strations are connected via the nodes for the transforms
between the object and the human hand respectively the

robot gripper. Explicitly the nodes VHG and VRG are shared
among all demonstrations. Further we introduce binary edges
connecting the last gripper pose in the reaching segment of
each demonstration, i.e. the grasp pose, to the grasp poses in
all other demonstrations. These edges use an error function
like equation (3) punishing deviations between grasp poses
of different demonstrations. For the transform between hand
and robot gripper an individual node Vgh is added for each
demonstration.

Recapitulating, the input for our graph optimization are
recorded trajectories for the human hand, torso and object
poses. In the optimization process we generate corrected
poses for the aforementioned and the robot gripper and base
trajectories. Additionally we estimate the human grasp and
a corresponding robot grasp on the object.

V. GENERATE ROBOT MOTIONS

After optimizing the trajectories towards the robots ca-
pabilities, we use these to learn time-driven models using
mixtures of Gaussians [5]. We learn a combined model in
Cartesian space for both the gripper and base motion. As
we are only interested in the applicability of the trajectories,
we use the learned models to generate trajectories. These are
executed on the robot in the corresponding object frame. Dur-
ing trajectory generation we perform obstacle avoidance to
prevent collisions between the robot base and the map [19].

VI. EXPERIMENTS

We present four experiments to evaluate different aspects
of our approach to learning from human demonstrations.

A. Adapting Human Demonstrations to Robot Requirements

In the first experiment we evaluate our proposed graph
structure and the optimization. We evaluate our method on
four different tasks. The first consists of grasping a door
handle, pushing it down and then opening and moving
through the door and releasing the handle. The other three
consist of operating small furniture pieces, i.e., opening a
shelf swivel door, a drawer and a sliding door. We record
the poses of the human hand and torso with attached markers
(see Fig. 1). The door handle is also tracked using a marker.
For the tracking of the other objects we use SimTrack [20].
For the drawer and sliding door task we did not use recorded
torso positions but instead estimated them based on the hand
positions. For these two tasks sets of 40 grasp samples each
were manually defined instead of using [13]. Even then our
system is capable of optimizing the data for all tasks. Table I
gives a summary of the numerical evaluation of all tasks.

The evaluation is particularly interesting for a complex
task that requires the base to navigate through a narrow pas-
sage while having a constrained gripper motion. Therefore
we discuss the open and drive through door task in detail
(first column in Table I). The task is demonstrated 10 times
by a human teacher. In total, after inserting and interpolating
missing poses (see Section IV-A), we have 1529 pose tuples.
Each tuple consists of an object, a hand and a torso pose.
A visualization of a few iterations steps of the optimization



Fig. 4: Graph optimization procedure. The images show the graph
poses after 0, 1, 5 and 20 iterations. The black parts in the images
outline the map of the environment. The green and red dots describe
the base pose of the robot where red signals kinematic infeasibility.
The red squares indicate the footprint of the robot base. Note that
only footprints that are in collision with the map are displayed here.
At iteration zero base poses correspond to the demonstrated torso
poses. As the robots base is wider than the teachers body most of
the demonstrated poses are in collision with the map if executed
by the robot. By reducing the inverse reachability map by poses
that collide with the map during optimization most collisions with
the map can be avoided for the learning data. The magenta dots
describe the robot gripper trajectories. The displayed data covers
10 human demonstrations.

is shown in Fig. 4. First we analyze the distance between
the closest sampled valid grasp pose and the gripper poses
at the end of the grasping motions. As expected we see that
the initial gripper poses are not well suited to perform the
grasp with an offset of 2.8 cm to the next sampled grasp pose.
After the optimization this distance drops to 0.5 cm. We see
the same behavior in the rotational part. As a result of this
the mean distance between the demonstrated hand poses and
the gripper poses increases from 0 cm to 2.2 cm, which is
necessary to correct the grasp. As for the transform between
object and hand respectively gripper we are only interested
in it being constant. Thus, we calculate the corresponding
standard deviations. For these connections we see a drop in
the standard deviation for both the translational and rotational
parts to low values indicating that a stable transform was
found. We also observe that almost all collisions with the
map as well as kinematic problems were resolved. Note that
individual low quality poses are not an issue since this is data
is only used to learn a feasible action model. The results for
the other tasks show similar behavior.

B. Automatic Positioning

In this experiment we show that our approach is able to re-
produce actions independent of the starting pose. Specifically
if reachability of all intermediate poses and the goal poses
is not given from the starting robot base configuration. We
test this in real world scenarios on the tasks of grasping the
swivel and the room doors handles. Each task is reproduced
on the PR2 with five different starting poses. We vary both

Fig. 5: Generated trajectories for different initial poses for the task
of grasping the handle of the swivel door. The images show a top
and a 3rd person view of the scene. The right image also displays
the environment including the swivel door as a point cloud.

the base and gripper configuration. We use Simtrack as
before to detect the swivel door and a marker for the room
door handle. Fig. 5 shows all five generated paths with
our learned model for both the robot gripper and base for
grasping the swivel door handle. All trials of grasping the
handles were successful.

C. Task Relevant Base Motion

In the previous experiment we demonstrated that our
approach is applicable to automatically position the robot for
simple tasks. In this experiment we show that our approach
is also able to generate a model for tasks that require a
complex combined motion of the robot base and gripper.
We demonstrate this on the task of opening and driving
through a door. Fig. 6 shows generated trajectories for one
of the trials for the robot base and gripper while opening
and driving through the door. We conducted five trials in the
real world setting and 20 trials in a simulated environment.
In both settings the PR2 is used. All trials were executed
successfully, which shows that our system is able to learn
subtle gripper motions as needed to press down the door
handle at the same time with the rougher overall path for
both gripper and base to open the door. The opening of the
swivel door was also successfully carried out five times in
real world experiments.

D. Transition Between Actions

In a last experiment we demonstrate that the capability of
our system to position the robot according to the desired
task can be used to append actions that require different
base positions. The transition between the actions is handled
implicitly by the motion generation. To demonstrate this we
append the task of opening the swivel door after opening
the room door in the simulations of the previous experiment.
We choose two different positions of the swivel door in the
simulated world. We run 10 trials in each setup to append
the tasks. The positions of the door handles in the simulated
environments are given. All 20 runs to append the actions
were executed successfully.

VII. CONCLUSION

We presented an approach that learns mobile manipulation
actions from human demonstrations. Our approach does not
rely on accurate tracking or robot tailored demonstrations.
We use graph optimization to correct measurement errors and



Room Door (10, 1529) Swivel Door (4, 419) Drawer (6, 656) Sliding Door (10, 1482)
Before Opt. After Opt. Before Opt. After Opt. Before Opt. After Opt. Before Opt. After Opt.

Euclidean distance gripper-grasp 2.82 cm 0.55 cm 2.36 cm 0.49 cm 6.33 cm 0.37 cm 3.23 cm 0.60 cm
Angular distance gripper-grasp 18.3◦ 8.0◦ 5.3◦ 0.7◦ 5.4◦ 1.6◦ 6.5◦ 0.5◦

Euclidean distance gripper-hand − 2.2 cm − 2.68 cm − 5.54 cm − 3.13 cm
Angular distance gripper-hand − 13.5◦ − 3.0◦ − 2.8◦ − 5.8◦

Std dev on gripper-object trans. 1.7 cm 0.53 cm 2.35 cm 0.21 cm 2.66 cm 0.18 cm 0.51 cm 0.12 cm
Std dev on gripper-object rot. 20.5◦ 2.4◦ 19.3◦ 1.6◦ 0.88◦ 0.21◦ 3.4◦ 0.34◦

Std dev on hand-object trans. 1.7 cm 0.5 cm 2.35 cm 0.16 cm 2.66 cm 0.28 cm 0.51 cm 0.16 cm
Std dev on hand-object rot. 20.5◦ 4.6◦ 19.3◦ 0.9◦ 0.88◦ 0.3◦ 3.4◦ 0.6◦

Map collision free poses 89.2% 99.74% − − − − − −
Kinematically achievable 69.8% 96.86% 85.9% 99.52% 87.3% 100% 63.2% 99.93%

TABLE I: Results for the optimization for all four trained tasks. The numbers after the task name denote the number of demonstrations
for the task and the total number of recorded poses, after interpolating missing ones. The shown distance between gripper and grasp
poses is a mean over the endpoints of the reaching segments of the demonstrations. For the distance between gripper and hand as well
as the collisions and the kinematic feasibility all pose tuples are considered. Kinematic feasibility expresses the lookup in the inverse
reachability map. For the relation between object and robot gripper respectively human hand a mean over all poses in the manipulation
segments is calculated. Since gripper poses are initialized with the measured hand poses no meaningful distance before optimization can
be given. For the three furniture operating tasks no collisions with the map are considered.

Fig. 6: In the top row the figure illustrates exemplary generated
trajectories to grasp the handle (left) and then open the door (right).
The bottom row shows the PR2 during task execution.

adapt the demonstrations to the robot capabilities. In contrast
to our previous work, in this paper we also learn feasible
robot base motions accounting for kinematic constraints
between robot base and gripper. We jointly integrate this
with adapting the gripper motion, while we consider grasping
capabilities of the robot as well as occlusions in demon-
strations. Our experiments demonstrate that our approach is
able to reproduce a task that requires subtle gripper motion,
while the robot base needs to navigate through a narrow
passage. It also enables the robot to position itself according
to the demands of an action. We believe this to be specifically
beneficial in the context of task planning as it facilitates the
transition between individual actions when solving complex
tasks, which we plan to address in future work.
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