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Abstract—Recent open-vocabulary robot mapping methods
enrich dense geometric maps with pre-trained visual-language
features. While these maps allow for the prediction of point-wise
saliency maps when queried for a certain language concept, large-
scale environments and abstract queries beyond the object level
still pose a considerable hurdle, ultimately limiting language-
grounded robotic navigation. In this work, we present HOV-
SG, a hierarchical open-vocabulary 3D scene graph mapping
approach for language-grounded indoor robot navigation. Lever-
aging open-vocabulary vision foundation models, we first obtain
state-of-the-art open-vocabulary segment-level maps in 3D and
subsequently construct a 3D scene graph hierarchy consisting
of floor, room, and object concepts, each enriched with open-
vocabulary features. Our approach is able to represent multi-
story buildings and allows robotic traversal of those using a
cross-floor Voronoi graph. HOV-SG is evaluated on three distinct
datasets and surpasses previous baselines in open-vocabulary
semantic accuracy on the object, room, and floor level while
producing a 75% reduction in representation size compared to
dense open-vocabulary maps. In order to prove the efficacy and
generalization capabilities of HOV-SG, we showcase successful
long-horizon language-conditioned robot navigation within real-
world multi-story environments. We provide code and trial video
data at: https://hovsg.github.io.

I. INTRODUCTION

Humans acquire conceptual knowledge about the world as
a whole and concrete objects in particular through multi-
modal experiences. These semantic experiences are paramount
to object recognition and language as well as reasoning and
planning [1, 2]. Cognitive maps store this information based on
sensor fusion, fragmentation, and hierarchical structure. This
is central to the human ability to navigate the physical world
[3, 4, 5]. Recently, language proved to be an effective link
between intelligent systems and humans and can enable robot
autonomy in complex human-centered environments [6, 7, 8,
9, 10, 11, 12, 13, 14].

Classical methods for robot navigation build dense spa-
tial maps of high accuracy using approaches to simulta-
neous localization and mapping (SLAM) [15]. Those give
rise to fine-grained navigation and manipulation based on
geometric goal specifications. Recent advances have combined
dense maps with pre-trained zero-shot vision-language mod-
els, which facilitates open-vocabulary indexing of observed
environments [9, 10, 11, 16, 13, 17, 12]. While these ap-
proaches marry the area of classical robotics with modern
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Fig. 1: HOV-SG enables the construction of accurate open-vocabulary 3D
scene graphs for large-scale and multi-story environments and enables robots
to navigate in them effectively.

open-vocabulary semantics, representing larger scenes while
abstracting still poses a considerable hurdle. Scalable scene
representations generated from real-world perception inputs
should generally fulfill the following requirements: 1) Object-
centricity and abstraction in terms of hierarchies, 2) efficiency
regarding storage capacity as well as actionability, 3) true
open-vocabulary indexing and easy querying.

A number of works approach this using 3D scene graph
structures [18, 19, 20] that excel at representing larger envi-
ronments efficiently. At the same time, they constitute a useful
interface to semantic tokens used for prompting large language
models (LLM). Nonetheless, most approaches rely on closed-
set semantics with the exception of ConceptGraphs [14] that
focuses on smaller scenes.

In this work, we present Hierarchical Open-Vocabulary 3D
Scene Graphs, short HOV-SG. Our approach abstracts from
dense open-vocabulary maps and allows the indexing of three
distinct concepts, namely floors, rooms as well as objects.
We utilize open-vocabulary vision-language models [21, 22]
across all concepts in order to construct 3D scene graph
hierarchies that span multi-story environments while main-
taining a small memory footprint. Given its concept-centric
nature, the HOV-SG representation is promptable using LLMs.
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Different from previous work, our approach relates to different
conceptual levels by first decomposing abstract queries such
as “towel in the bathroom on the upper floor” and scoring the
obtained tokens against the different levels of the hierarchy.
We complement this with a navigational Voronoi graph that
covers multiple floors including stairs, which allows actionable
grounding of decomposed queries in the environment. This
enables object retrieval and long-horizon robotic navigation
in large-scale indoor environments from abstract queries as
shown in Fig. 1.

In summary, we make the following contributions:
1) We introduce a novel fusion scheme using feature clus-

tering of zero-shot embeddings that yields state-of-the-
art results in open-set 3D semantic segmentation.

2) We present an algorithm that enables the construction
of truly actionable open-vocabulary 3D scene graphs of
multi-floor buildings.

3) We evaluate the semantic segmentation performance
of our method on the Replica [23] and ScanNet [24]
dataset and analyze key properties of our scene graphs
on the Habitat-Matterport 3D Semantics dataset [25].
Furthermore, we present a detailed ablation study to
justify our design choices.

4) We conduct real-world multi-floor object navigation
experiments based on long natural language queries.

5) We introduce a novel evaluation metric for measuring
open-vocabulary semantics termed AUCtop-k.

6) We make our code and evaluation protocol publicly
available at https://hovsg.github.io to foster future re-
search and introduce comparability in open-set mapping.

II. RELATED WORK

A. Semantic 3D Mapping

Enriching a geometric map with semantic information is a
stepping stone to a flexible and versatile navigation system [26,
27, 16, 10, 4, 9]. In the past, researchers created semantics-
enhanced or instance-level maps by learning sensor obser-
vation features [28], matching pre-built object shapes to the
geometric map [29], back-projecting 2D semantic predictions
into the 3D space [30, 31, 32], or instantiating 2D detections
with basic 3D elements such as cubes or quadrics [33, 34].
These methods have shown their capabilities of reconstructing
scenes with both accurate geometric structure and precise
semantic meaning. However, most of these methods only work
with a fixed category set constrained by either the trained
semantic prediction models or the pre-defined set of relevant
object primitives.

On account of recent advancements in large vision-language
models such as CLIP [21] and their fine-tuned counterparts, a
number of works proposed map representations that integrate
visual-language features into geometric maps, enabling open-
vocabulary indexing of objects [11, 16, 10, 13, 35, 17, 12],
audio data [16, 13] and images [26, 16] in an unstructured
environment. While lifting the constraints of fixed semantic
categories, these approaches often necessitate the storage of a

visual-language embedding for each geometric element such
as points, voxels, or 2D cells in the map, resulting in a
significant increase in storage overhead.

B. 3D Scene Graphs

3D scene graphs have emerged as an effective, object-centric
representation of large-scale indoor [36, 19, 20] and outdoor
scenes [18]. By representing objects or spatial concepts as
nodes and their relations as edges, 3D scene graphs allow to
efficiently represent larger scenes [36, 18, 19]. Both edges
and nodes can hold geometric and semantic attributes, which
are often inferred from certain off-the-shelf networks [37].
Decomposing scenes into objects and their relations enables
higher-level reasoning for robotic navigation and manipula-
tion. This is particularly useful in the realm of reasoning, plan-
ning, and navigation given the object-centric nature of these
tasks [19, 38]. Often combined with odometry estimates from
simultaneous localization and mapping (SLAM) [39, 18, 40],
3D scene graphs also allow a tight coupling between semantics
and highly accurate mapping approaches utilizing e.g. meshes
to represent environments [19].

Early works have shown how to encode hierarchies via
abstraction in both the spatial and the semantic domain using
offline approaches [36, 20]. Successive works investigated
learning-based scene graph construction [41, 37] as well
as dynamic indoor scenes [19]. Several approaches such as
SceneGraphFusion [37] and S-Graphs [39] also investigate
the real-time capabilities of their proposed approaches. Most
recently, ConceptGraphs [14] was the first to show how
to combine 3D scene graphs with open-vocabulary vision-
language features. In addition, the authors show how to query
the graph using LLMs and demonstrate various downstream
applications.

C. Scene Graphs for Planning

Several recent works have investigated the use of scene
graphs for robotic planning. The earliest approaches rely
on pre-explored environments and perform iterative scene
graph decomposition to retrieve grounded plans [38, 42].
RobLM [42] decomposes the planning stage by relying on
a fine-tuned GPT-2 instance that proposes high-level sub-
problems from scene graphs, which are in turn solved through
PDDL task planners. SayPlan [38] directly utilizes GPT-4 [43]
for iterative search on a scene graph to generate grounded
plans, which requires feasibility constraints on the manipu-
lated entities and actions. Another line of work investigates
robotic navigation from scene graphs. SayNav [44] obtains
LLM-generated plans from scene graphs and executes short-
distance point-goal navigation sub-tasks. Contrary to that,
VoroNav [45] constructs a Voronoi graph that is attributed
to camera observations in order to solve object navigation.
Orthogonal to that, MoMa-LLM [46] tackles mobile ma-
nipulation objectives using scene graphs fed to GPT-4 in
a task-specific manner. Similarly, GRID [47] uses a graph
neural network to predict actions from scene graphs and LLM
encodings.

https://hovsg.github.io
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Fig. 2: HOV-SG builds hierarchical open-vocabulary 3D scene graphs of indoor household scenes. We first use SAM to extract object masks per frame while
obtaining vision-language features via CLIP. In the next step, we aggregate these features on a point level in the map. Secondly, we segment the full point
cloud based on merged 3D masks. To generate more meaningful semantic object features, we employ a DBSCAN-based filtering approach to obtain a majority
vote feature for each object. To construct an actionable 3D scene graph, we segment the obtained panoptic map into multiple floors, segment and classify
distinct regions using several view embeddings, and identify object names via querying. As a result, HOV-SG allows hierarchical querying and navigation
using mobile robots even in complex multi-floor environments.

Conceptually, our work is most similar to ConceptGraphs
and Hydra. While ConceptGraphs is only evaluated on small
scenes and mostly validated by human evaluators in terms of
semantic accuracy of nodes etc., our work proposes not only
a novel metric for measuring the semantic accuracy of ob-
ject features but also introduces open-vocabulary hierarchies.
Different from ConceptGraphs and similar to Hydra [19],
which does not operate on open-vocabulary features, our
approach demonstrates how to efficiently represent actionable,
hierarchical 3D scene graphs that are attributed with open-
vocabulary features.

III. TECHNICAL APPROACH

This work aims to develop a concise and efficient visual-
language graph representation for large-scale multi-floor in-
door environments given RGB-D observations and odome-
try. The graph should facilitate the indexing of multi-level
semantic concepts through natural language queries such as
“the first floor” (floor level), “the office on the first floor”
(room level), and “the plant in the office on the second floor”
(object level). Additionally, the graph should be actionable
and enable a robot to localize and navigate semantically
and spatially in the environment without additional geometric
maps. We address this by introducing Hierarchical Open-
Vocabulary Scene Graphs, in short HOV-SG. The overall
pipeline consists of two stages. We first create a 3D segment-
level open-vocabulary map and then build a hierarchical open-
vocabulary scene graph based on the map. In the following
sections, we describe (i) the construction of the 3D segment-
level open-vocabulary map (Sec. III-A), (ii) the creation of
the hierarchical open-vocabulary scene graph (Sec. III-B), and
(iii) how to use the graph for language-conditioned navigation
across a large-scale environment (Sec. III-C). Fig. 2 presents
an overview of our method.

A. 3D Segment-Level Open-Vocabulary Mapping

The main idea of building a segment-level open-vocabulary
map is to create a list of 3D point clouds, namely segments,

from an RGB-D video with odometry and assign an open-
vocabulary feature generated by a pre-trained visual-and-
language model (VLM) to each segment. Unlike previous
works that equip each 3D point with an independent visual-
language feature [11, 10, 13, 12], we leverage the fact that
neighboring points in the 3D world often share the same
semantic information. This implies the potential of reducing
the required semantic features to represent the scene while
maintaining expressiveness.
Frame-Wise 3D Segment Merging: Given a sequence of
RGB-D observations, we utilize Segment Anything [22] to
obtain a list of class-agnostic 2D binary masks at each
timestep. The pixels in each mask are then backprojected to 3D
using the depth information, resulting in a list of point clouds,
or 3D segments. Based on accurate odometry estimates, we
transform all 3D segments into the global coordinate frame.
These frame-wise segments are either initialized as new global
segments or merged with existing ones based on an overlap
metric:

R(m,n) = max(overlap(Sm, Sn), overlap(Sn, Sm)), (1)

where Sm and Sn indicate segment (or point cloud) m and n,
overlap(Sa, Sb) is computed by taking the number of points
in Sa showing a neighbor in Sb within a certain distance
divided by the total number of points in Sa. Different from
Gu et al. [14], who incrementally merge new segments with
one global segment that has the largest overlapping ratio,
we construct a fully connected graph where each segment
serves as a node and their edge weights are the corresponding
overlapping ratios. Based on these weights, highly-connected
subgraphs are subsequently merged. In this way, one segment
can be merged with multiple segments, which is useful in
situations in which an incoming segment is, e.g., filling a gap
between two already registered global segments.
Segment-Level Open-Vocabulary Features Computation:
For each obtained 2D SAM mask per frame, we obtain an
image crop based on its bounding box as well as an image
of the isolated mask without background. We encode the full
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Fig. 3: Floor and Room Segmentation. Given the point cloud of the whole environment, floor and room nodes are subsequently derived based on geometric
heuristics. Floor boundaries are computed by finding peaks of the pixel density along the height direction followed by filtering while room segment masks
are extracted using the Watershed algorithm.

RGB frame and the two mask-wise images with CLIP [21] and
fuse them in a weighted-sum manner (Fig. 2, left). Previous
work [48] proposed to use the CLIP feature of the masked
image without background, while others [13] approach this
by combining the CLIP features of the whole image and
the target mask’s crop including background. In our work,
we empirically show that encoding the full RGB frame and
the two mask-wise images with CLIP and fusing them in a
weighted-sum manner achieves improved results (Sec. IV-E).
The fusion scheme can be formulated as:

fi = wgfg + wlfl + wmfm, (2)

where fi indicates the fused features for the i-th 2D mask in
the frame, fg , fl, and fm indicate the CLIP features extracted
from the entire RGB frame, the image crop of the 2D mask,
and the image crop of the 2D mask excluding the background,
respectively. Furthermore, wg , wl, and wm represent their
respective weights, which sum up to 1.

Assuming a single CLIP feature for each mask, we trans-
form the 2D mask into global 3D coordinates and associate the
obtained fused CLIP feature with the nearest 3D points in a
pre-computed reference point cloud. Based on this association,
we register the obtained segment features on a global point-
wise feature map. The final point-wise features are determined
by averaging each reference point’s associated features. Based
on the 3D segments obtained in the independent merging step,
we can finally infer open-vocabulary vision-language features
for all 3D segments as outlined in Fig.2. In the subsequent
step, we match point-wise features with the obtained 3D seg-
ments. For each point within a segment, we identify the nearest
points in the reference point cloud and collect their CLIP
features. We leverage DBSCAN to cluster all the point-wise
features of the segment and assign the feature that is closest
to the majority cluster’s mean to the segment (Fig. 2, middle).
This circumvents mode collapse while removing noise and
thus produces more semantically meaningful segment features.

B. 3D Scene Graph Construction

In this section, we describe how to build a hierarchical open-
vocabulary scene graph given a global reference point cloud
of the scene, a list of global 3D segments, and their associated
CLIP features as described in Sec. III-A.

We formalize our graph as G = (N , E) where N denotes the
nodes and E denotes the edges. The nodes can be expressed
as N = NS ∪ NF ∪ NR ∪ NO, consisting of a root node
NS , floor nodes NF , room nodes NR, and object nodes NO.
Each node in the graph except the root node NS contains the
point cloud of the concept it refers to and the open-vocabulary
features associated with it. The edges can be written as E =
ESF ∪ EFR ∪ ERO. Here, ESF represents the edges between
the root node and the floor nodes, EFR represents the edges
between the floor nodes and the room nodes, and lastly, ERO

denotes the edges between the room and object nodes.
Floor Segmentation: In order to separate floors, we identify
peaks of a height histogram over all points contained in the
point cloud. Given the point cloud of the whole environment,
we construct the histogram over all points along the height
axis using a bin size 0.01m. Next, we identify peaks in this
histogram (within a local range of 0.2m) and select only peaks
that exceed a minimum of 90% of the highest intensity peak.
We apply DBSCAN and select the two highest-ranking peaks
in each cluster. After that, every two consecutive values in the
sorted height vector represent a single floor (floor and ceiling)
in the building. The floor segmentation process is shown in
Fig. 3. Using the obtained height levels, we can extract floor
point clouds for each floor Pl where l is the floor number. In
addition, we equip each floor node with a CLIP text embedding
using the template “floor {#}”. A graph edge between the root
node and each floor node (NS , Nl) ∈ ESF is established.
Room Segmentation: Based on each obtained floor point
cloud, we construct a 2D bird’s-eye-view (BEV) histogram,
from which a binary wall skeleton mask is extracted by
thresholding the histogram. After dilating the wall mask and
computing an Euclidean distance field (EDF), a number of
isolated regions is derived by thresholding the EDF. Taking
these regions as seeds, we apply the Watershed algorithm to
obtain 2D region masks. The room segmentation process is
further shown in Fig. 3. Given the 2D region masks, we extract
the 3D points that fall into the floor’s height interval as well
as the BEV room segment to form room point clouds that are
used to associate objects to rooms later.

To enrich room nodes with open-vocabulary features, we
associate RGB-D observations whose camera poses reside
within a room segment to those rooms (see Fig. 4). The
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CLIP embeddings of these images are distilled by extracting k
representative view embeddings using the k-means algorithm.
During inference, given a list of room categories encoded via
CLIP, we construct a cosine similarity matrix between the k
representative features and all room category features. Next,
we take the argmax along the category axis and obtain the
most probable room type for each representative separately,
resulting in k votes per room. Given these votes, we obtain
the predicted room category by either taking the maximum-
score vote or the majority vote across all k representatives per
room.

These k representative embeddings and the room point
cloud attribute the room node Nf,r of room r on floor f . An
edge between the floor node and each room node (Nf , Nf,r) ∈
EFR is established. The construction and querying of view
embeddings are illustrated in Fig. 4.
Object Identification: Given the room point cloud, we as-
sociate object-level 3D segments that show a point cloud
overlap with a potential candidate room in the bird’s-eye-view.
Whenever a segment shows zero overlap with any room, we
associate it with the room showing the smallest Euclidean dis-
tance. To reduce the number of nodes, we merge 3D segments
of significant pair-wise partial overlap (Sec. III-A) that produce
equal object labels when queried against a chosen label set.
Each merged point cloud constitutes an object node Nf,r,o

that is connected to its corresponding room node Nf,r ∈ NR

by an edge (Nf,r, Nf,r,o) ∈ ERO. Each object node holds its
corresponding 3D segment feature as described in Sec. III-A,
its 3D segment point cloud as well as a maximum-score object
label for intermediate naming.
Actionable Graph Creation: In addition to the open-
vocabulary hierarchy, the scene graph also contains a nav-
igational Voronoi graph that serves robotic traversability of
the mapped surroundings [49] spanning multiple floors. This
enables high-level planning and low-level execution based on
the Voronoi graph. The creation of actionable graphs involves
constructing per-floor and cross-floor navigation graphs. For
the floor-level graph, the approach entails computing the free
space map of the floor and creating a Voronoi graph [49] based
on it. To construct per-floor graphs, we first obtain all camera
poses and project them as 2D points onto a BEV map of each
floor, assuming areas within a certain radius of two nodes
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Inflated Camera 
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Fig. 5: Actionable navigational graph: The creation of the actionable navi-
gational graph involves constructing single-floor and cross-floor navigational
graphs: (a) By deducting the set of obstacles from the union of camera poses
and the per-floor obtained BEV projection of the floor point cloud, we obtain
the navigable area. Within this area we construct a Voronoi diagram as shown
right. (b) In order to equip our navigational graph with cross-floor navigation
capabilities, we extract the camera positions within regions classified as stairs.
This subgraph is connected with the corresponding floor-level Voronoi graphs.

are pair-wise navigable. Subsequently, the entire floor’s region
is obtained by projecting all floor-wise points into the BEV
plane. An obstacle map is generated based on points within a
predefined height range [ymin + δ1, ymin + δ2], where ymin

is the minimal height of the floor points while δ1 = 0.2,
δ2 = 1.5 are empirically tuned. By taking the union of the
pose region map and the floor region map and subtracting
the obstacle region map, the free space map of each floor is
derived. The Voronoi graph of this free map yields the floor
graph. (see Fig. 5a). To build cross-floor navigational graphs,
camera poses on stairs are connected to form stair-wise graphs.
Subsequently, the closest nodes between the stairs graph and
the floor-wise graph are selected respectively and connected,
thereby completing the construction of cross-floor navigational
graphs as shown in Fig. 5b.

C. Navigation with Scene Graph

HOV-SG extends the scope of potential navigation goals
to more specific spatial concepts such as regions and floors
compared to simple object goals [14, 16, 10, 13]. Language-
guided navigation with HOV-SG involves processing complex
queries such as “find the toilet in the bathroom on floor
2” using a large language model (prompts are given in the
supplementary material Sec. S.1-A). We break down such
lengthy instructions into three separate queries: one for the
floor level, the room level, and the object level, respectively.



TABLE I: OPEN-VOCABULARY 3D SEMANTIC SEGMENTATION

Method CLIP Replica ScanNet
Backbone mIOU F-mIOU mAcc mIOU F-mIOU mAcc

MinkowskiNet [50] - - - 0.42 0.47 0.56

ConceptFusion [13] OVSeg 0.10 0.21 0.16 0.08 0.11 0.15
Vit-H-14 0.10 0.18 0.17 0.11 0.12 0.21

ConceptGraph [14] OVSeg 0.13 0.27 0.21 0.15 0.18 0.23
Vit-H-14 0.18 0.23 0.30 0.16 0.20 0.28

HOV-SG (ours) OVseg 0.144 0.255 0.212 0.214 0.258 0.420
Vit-H-14 0.231 0.386 0.304 0.222 0.303 0.431

Higher values are better. The used evaluation metrics are defined in Sec. S.2-B in
the supplementary material. The ConceptFusion pipeline evaluated against made use
of instance masks predicted by SAM [22]. The MinkowskiNet [50] is a privileged
method that was trained on the full set of ScanNet [24] scenes to demonstrate the
gap between zero-shot and fully-supervised methods.

Leveraging the explicit hierarchical structure of HOV-SG, we
sequentially query against each hierarchy level to progressively
narrow down the solution corridor. This is done by taking
the cosine similarity between the identified query floor, query
region, and query object as well as all objects, rooms, and
floors given in the graph, respectively. Once a target node
is identified via scoring, we utilize the navigational graph
mentioned above to plan a path from the starting pose to
the target destination, which is demonstrated in Fig. S.1 and
visualized in Fig. 1.

IV. EXPERIMENTAL EVALUATION

The goals of our experiments are five-fold: (i) we quanti-
tatively compare HOV-SG with recent open-vocabulary map
representations in 3D semantic segmentation on ScanNet
and Replica (Sec. IV-A), (ii) we investigate the semantic
and geometric accuracy of HOV-SG at the floor, room, and
object level on the Habitat Matterport 3D Semantic Dataset
(Sec. IV-B), (iii) we study how HOV-SG enables large-scale
language-grounded navigation in the real-world (Sec. IV-C),
(iv) we demonstrate the compact memory footprint of HOV-
SG compared to previous open-vocabulary representations
(Sec. IV-D), and lastly, (v) we justify our design choices
through an ablation study (Sec. IV-E).

A. 3D Semantic Segmentation on ScanNet and Replica

To test the semantic expressiveness of our HOV-SG method,
we evaluate the open-vocabulary 3D semantic segmentation
performance on ScanNet [24] and Replica [23]. We com-
pare our method with two alternative vision-language rep-
resentations (ConceptFusion [13] and ConceptGraphs [14])
while using different CLIP backbones. We consider ViT-H-
14 and a fine-tuned backbone ViT-L-14 released with the
work OVSeg [48]. The used evaluation metrics are defined
in Sec. S.2-B. To demonstrate the existing gap between
zero-shot and fully supervised methods we also evaluated a
MinkowskiNet [50] instance trained on ScanNet [24].
Prediction Generation: We generate the CLIP text embedding
for each category contained in the dataset by using a template
of the form “There is the {category} in the scene.” as well
as the category name “{category}” itself. Next, we average

the two to obtain the embedding of each specific category. We
obtain predicted labels for each object node by computing the
cosine similarity between all object nodes’ embeddings and
all category embeddings and lastly apply the argmax operator.
In the following, we concatenate all objects’ point clouds to
create our predicted point cloud Ppred and transform it to the
same coordinate frame as that of the point cloud with ground-
truth (GT) semantic labels PGT . Given that the predicted point
cloud may exhibit varying point densities compared to the
ground truth (GT), we iterate through each GT point to locate
its five nearest points in Ppred, and then determine the majority
label among these points as the predicted label for each GT
point.
Evaluation Scenes: For consistency, we evaluate the same
scenes evaluated in [14, 13]. For ScanNet, we evaluate scenes:
scene0011_00, scene0050_00, scene0231_00,
scene0378_00, scene0518_00. Regarding Replica,
we evaluate on office0-office4 and room0-room2.
Results: The semantic segmentation results on both Replica
and ScanNet are provided in Table I. Regarding mIOU and F-
mIOU, HOV-SG outperforms the open-vocabulary baselines
by a large margin. This is primarily due to the following im-
provements we made: First, when we merge segment features,
we consider all point-wise features that each segment covers
and use DBSCAN to obtain the dominant feature, which in-
creases the robustness compared to taking the mean as done by
ConceptGraphs [14]. Secondly, when we generate the point-
wise features, we use the mask feature which is the weighted
sum of the sub-image and its contextless counterpart. This
mitigates the impact of salient background objects. Further
qualitative results are given in Fig. 6.

B. Scene Graph Evaluation on Habitat 3D Semantics

We evaluate our scene graph on four aspects. To analyze
the geometric accuracy of the scene graph, we analyze the
floor and class-agnostic region segmentation performance in
Sec. IV-B1. To evaluate the semantic accuracy, we evaluate
predicted region semantics (Sec. IV-B2) as well as open-
vocabulary object-level semantics (Sec. IV-B3). To scrutinize
the downstream navigation capabilities of HOV-SG, we con-
duct hierarchical object retrieval and navigation experiments
given abstract language queries in Sec. IV-B4. We display two
exemplary constructed hierarchical 3D scene graphs in Fig. 7.
The 3D scene graph visualization of the remaining scenes is
shown in Fig S.4.
Dataset: In order to evaluate various aspects of the produced
scene graph hierarchy, we have chosen the Habitat-Semantics
dataset (HM3DSem) as it provides true open-vocabulary labels
across large multi-floor scenes and also provides object-region
assignments. Since our approach operates on RGB-D frames,
we manually record random walks of 8 scenes of the Habitat
Semantics dataset [25], which span multiple rooms and floors:
00824, 00829, 00843, 00861, 00862, 00873, 00877,
00890. To construct ground-truth maps to compare against,
we fuse the RGB-D and panoptic data across all frames
given accurate odometry and obtain RGB and panoptic global
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Fig. 6: Qualitative results for 3D semantic segmentation on Replica dataset. For conciseness, the legend only shows ten out of 101 categories in the Replica
dataset. Observing the position “A” indicated in the images, only HOV-SG predicts the door with correct boundaries. At position “B” in the images, only
HOV-SG predicts the sofa correctly.

ground truth. These maps are finally voxelized using a 0.02 cm
resolution.

1) Floor and Class-Agnostic Room Segmentation: In order
to evaluate both floor and class-agnostic room segmentation,
we identified several heuristics on top of the provided metadata
of the dataset. Since HM3DSem does not include floor height
labels, we hand-labeled all upper and lower floor boundaries.
In addition, we pooled the annotated objects contained in our
constructed ground truth point clouds based on their associated
region labels. Based on this, we obtain region-wise point
clouds we utilize as ground truth. As shown in Table II, our
method achieves 100% accuracy in retrieving the number of
floors, both in single-floor as well as multi-floor scenes. In
addition, we evaluate the region segmentation performance of
HOV-SG and compare with Hydra [19] across eight scenes
on HM3DSem. We observe slightly lower precision but a
significantly greater recall of 83.59% compared to 77.55%.
In addition to the overall results given in Table II, we provide
scene-wise results in Table S.1 in the supplementary material.
In general, we obtain higher precision and recall on smaller
scenes comprising fewer regions. Similar to Hydra [19], our
approach utilizes a naı̈ve morphological heuristic to segregate
regions, which does not work well on more complex, seman-
tically ambiguous room layouts such as combined kitchen and
living rooms. Nonetheless, our approach does not suffer from
this drawback too drastically as we equip each segmented re-
gion with 10 representative embeddings. This allows adaptive
prompting without directly setting a fixed room category.

2) Semantic Room Classification: We quantitatively evalu-
ate our proposed view embedding-based room category label-
ing method (See Fig. 4) by comparing it against two strong
baselines across the set of eight scenes on HM3DSem. Both
baselines rely on object labels to classify room categories.
To draw a fair comparison, all methods rely on ground truth
room segmentation, namely the class-agnostic mask of each
room. Thus, all objects are assigned to rooms based on ground
truth room layouts. This is different from the general HOV-SG

TABLE II: FLOOR AND REGION SEGMENTATION ON HM3DSEM

Method Floors Regions
AccF [%] Precision [%] Recall [%]

Hydra [19] - 86.18 77.55
HOV-SG (ours) 100 84.10 83.59

Evaluation of the floor and room segmentation: We present the accuracy
of correctly predicted floors using a threshold of 0.5m. The region seg-
mentation precision (P) and recall (R) are calculated based on the metric in
Hydra [19].

method, which also estimates room masks.
Dataset: In this evaluation, we utilize a closed set of room
categories. The HM3DSem dataset does not provide annotated
room categories but merely educated votes, which are often not
sufficient. Therefore, we manually labeled the regions of the
eight scenes detailed in Sec. IV-B. The list of room categories
is provided in Sec. S.2-D.
Baselines: We compare the HOV-SG approach of using fil-
tered view embeddings for labeling rooms against a privileged
and an unprivileged baseline. The privileged baseline operates
on ground truth object categories contained within each room.
In order to obtain room labels, the baseline prompts an LLM
(GPT-3.5 and GPT-4 [43]) to provide a room category guess
out of the closed set of room categories given the objects
per room in a few-shot manner (prompts are detailed in
Sec. S.2-D). The second and unprivileged baseline applies the
same principle of prompting an LLM but only has access to
the predicted object categories obtained using HOV-SG. This
means that each predicted object is labeled as the category
showing the highest similarity to the object feature among
a category list. In general, we expect that the number of
objects will be different from the privileged baseline because
of under- and over-segmentation of HOV-SG’s predictions. In
comparison, our view embedding method relies on 10 distinct
view embeddings, which are scored against the chosen set of
room categories. The final predicted room category is defined
by the room category that showed the highest similarity across
all view embeddings as described in Fig. 4.



(a) Scene 00824 (single floor) (b) Scene 00861 (two floors)

Fig. 7: Qualitative visualization of the hierarchical 3D scene graphs produced by HOV-SG of two apartments of the Habitat Matterport 3D Semantics
dataset [25]. Yellow nodes represent floors, while blue nodes represent rooms. The green graph right above the respective floor represents the produced
navigational graph. For more visualizations, please refer to Fig. S.4.

Metrics: We apply two different evaluation criteria: The
first accuracy called Acc= fosters replicability by evaluating
whether the predicted and the ground truth room categories are
text-wise equal. Different from that, the performance regarding
the Acc≈ metric is produced via human evaluation. This is
crucial as room categories are not always fully determinable
when labeling, e.g., combined kitchen and living room areas.
Moreover, the answers provided by the LLM do not always
state definitive categories because of frequent hallucinations. A
high number of objects per room exacerbates this. This partic-
ularly applies to the unprivileged baselines when facing under-
segmentation. In order to circumvent this, we manually filter
all outputs across the set of eight scenes and check whether the
LLM leaned towards the correct answer such as predicting a
synonym of the GT room type, which boosts results in favor of
the LLM-based methods. In addition to this, we also evaluated
the same task using the current state-of-the-art LLM, GPT-4,
which shows significantly fewer hallucinations and increased
accuracy.
Results: As presented in Table III, the view embedding
method of HOV-SG outperforms all unprivileged baselines
both in terms of the strict accuracy (Acc=) as well as the
approximate accuracy (Acc≈) by a significant margin. In addi-
tion, HOV-SG also outperforms the privileged baseline relying
on GPT-3.5 while showing similar approximate accuracy as
GPT-4 of 84.10% vs. 84.25%. Thus, we conclude that our
room labeling method is robust and outperforms comparable
unprivileged methods by a significant margin. Furthermore,
we provide additional scene-wise evaluations in Table S.2 in
the supplementary material.

3) Object-Level Semantics: Existing open-vocabulary eval-
uations usually circumvent the problem of measuring true
open-vocabulary semantic accuracy. This is due to arbitrary
sizes of the investigated label sets, a potentially enormous and
challenging amount of object categories [25], and the ease of
use of existing evaluation protocols [10, 13]. While human-
level evaluations such as Amazon Mechanical Turk (AMT)

TABLE III: SEMANTIC ROOM CLASSIFICATION RESULTS (HM3DSEM)

Room Identification Method Acc= [%] Acc≈ [%]

Pr
iv

ile
ge

d GPT-3.5 w/ GT 66.89 81.49object categories

GPT-4 w/ GT 79.86 84.25object categories

U
np

riv
ile

ge
d

GPT-3.5 w/ predicted 28.48 42.95object categories

GPT-4 w/ predicted 59.47 62.55object categories

HOV-SG (ours) 73.93 84.10w/ view embeddings

We present the room classification performance on HM3DSem of HOV-
SG (view embeddings) and two baselines (GPT-3.5 / GPT-4) using either
privileged or unprivileged information. In the privileged case, rooms are
labeled based on ground truth object categories per room. The unprivileged
baselines take the predicted masks and categories as input. We consider
two different evaluation criteria: Acc= measures whether the exact text-wise
room category was predicted while Acc≈ measures semantically correct
room predictions based on qualitative human evaluation through manual
inspection.

partly solve this problem, robust results replication and scaling
remain challenging [14].
Metrics: In this work, we propose the novel AUCtop

k metric
that quantifies the area under the top-k accuracy curve between
the predicted and the actual ground-truth object category (see
Fig. S.2). This entails computing the ranking of all cosine
similarities between the predicted object feature and all possi-
ble category text features, which are in turn encoded using a
vision-language model (CLIP). Thus, the metric encodes how
many erroneous shots are necessary on average before the
ground-truth label is predicted correctly. Based on this, the
metric encodes the actual open-set similarity while scaling to
large, variably-sized label sets. We envision a future use of
this metric in diverse open-vocabulary tasks.

We visualize the AUCtop
k curve HOV-SG on the 00824

scene of HM3DSem in Fig. S.2. The closer the curve is
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Fig. 8: Qualitative visualization of the language-conditioned navigation in multi-floor environments in HM3DSem dataset. In some cases, there are multiple
ground truth objects matching the instruction. Stopping at any of them with a distance within 1 meter is regarded as a success.

to the upper left corner of the plot, the higher the open-
vocabulary similarity. Instead of showing the accuracy at
distinct values of k, we normalize k over the extent of the label
set, which contains 1624 categories for HM3DSem. This also
shows visually how the AUCtop

k metric provides a dependable
measure for large but variably sized label sets.
Baselines: In order to show the applicability of the AUCtop

k

metric, we compare HOV-SG against two strong baselines
VLMaps [10] and ConceptGraphs [14] on the Habitat-
Semantics dataset [25], which comprises an enormous label set
of 1624 object categories. To allow for a fair comparison, we
perform a linear assignment among predicted and GT objects
and only consider predicted objects that show an IoU > 50%
with the ground truth. Since VLMaps [10] does not predict
masks by design, it takes the object masks predicted by HOV-
SG and averages all masked voxels’ features as the object
feature.
Results: The overall AUCtop

k score as well as various
top-k thresholds are given in Table IV. We observe that
VLMaps [10] performs inferior, which is presumably due
to its dense feature aggregation as well as its dependence
on a fine-tuned VLM, LSeg [51], limiting its generalization
in challenging open-vocabulary scenarios. It does not only
score merely 5% of objects correctly given its top-5 choices
but also only predicts the correct class given its top-500
predicted classes in 40.02% of all cases. In comparison,
ConceptGraphs [14] obtains a competitive score of 84.07%
while HOV-SG achieves 84.88%. Especially, up to the top-100
highest ranking classes, HOV-SG outperforms ConceptGraphs.

4) Hierarchical Concept Retrieval: To take advantage of
the hierarchical character of our proposed representation, we
evaluate to what extent we can retrieve objects from hierar-
chical queries of the form: “pillow in the living room on the
second floor” or “bottle in the kitchen”. To do so, we decom-
pose the query using GPT-3.5 into its sought-after hierarchical

TABLE IV: OBJECT-LEVEL SEMANTICS EVALUATION ON HM3DSEM

Method top5 top10 top25 top100 top250 top500 AUCtop
k

VLMaps [10] 0.05 0.17 0.54 15.32 26.01 40.02 56.20
ConceptGraphs [14] 18.11 24.01 33.00 55.17 70.85 81.55 84.07

HOV-SG (ours) 18.43 25.73 36.41 56.46 69.95 80.86 84.88

We provide object-level semantic accuracies across all eight considered
scenes within HM3DSem using both the overall AUCtop

k metric across 1624
categories as well as accuracies at a few selected thresholds k. To allow for
a fair comparison, we perform a linear assignment among predicted and GT
objects and only consider predicted objects that show an IoU > 50% with
the ground truth. Since VLMaps [10] does not predict masks by design, it
takes the masks predicted by HOV-SG and evaluates wrt. those.

concepts, e.g., [floor 2, living room, pillow] or
[-, kitchen, bottle]), and compute the corresponding
CLIP embeddings. In the next step, we hierarchically query
against the most suitable floor, the most appropriate room, and
lastly, the most suitable object given the query at hand (see
Table V). While floor prompting is done naively, we select
the room producing the highest maximum cosine similarity
to the query room across its ten embeddings. On average,
this produces higher success rates compared with mean- or
median-based schemes.
Retrieval Results: In the following, we compare HOV-SG
against an augmented variant of ConceptGraphs [14] that
is equipped with privileged floor information and it scores
objects against the requested room and object, which allows
it to draw answers at the floor and room level. As shown in
Table V, HOV-SG shows a significant performance increase
of 11.69% on object-room-floor queries and a 2.2% advantage
on object-room queries when compared with ConceptGraphs.
While ConceptGraphs struggles on larger scenes and under
more detailed queries, HOV-SG outperforms it by a significant
margin even though it suffers from erroneous room segmenta-
tions by design. For more information, we refer to Sec. S.1-A.
Language-Grounded Navigation in Simulation: In addition,



TABLE V: OBJECT RETRIEVAL FROM LANGUAGE QUERIES (HM3DSEM)

Query Type Method # Trials Retrieval-SR10 [%] Navigation-SR [%]

(o, r, f) ConceptGraphs 40.63 16.31 -
HOV-SG (ours) 28.00 37.32

(o, r) ConceptGraphs 34.88 29.26 -
HOV-SG (ours) 31.48 40.41

Evaluation over 20 frequent distinct object categories in terms of the top-5
accuracy. A match is counted as a success when the IoU > 0.1 between
predicted object and ground truth. The number of trials is an average number
of trials across the eight scenes evaluated. It is lower for (o,r) compared
to (o,r,f) due to a higher number of query duplicates whenever we drop
the floor specification. The 20 evaluated categories are: picture, pillow, door,
lamp, cabinet, book, chair, table, towel, plant, sink, stairs, bed, toilet, tv,
desk, couch, flowerpot, nightstand, faucet.

TABLE VI: REAL-WORLD OBJECT RETRIEVAL AND GOAL NAVIGATION
FROM LANGUAGE QUERIES

Query # Graph Querying Goal Navigation
Type Trials # Successes SR [%] Success SR [%]

Object 41 29 70.7 23 56.1
Room 9 5 55.6 5 55.6
Floor 2 2 100 2 100

We count a retrieval as successful whenever the robot is in close vicinity
to the object sought after (∼ 1m).

to the general querying tasks we also perform navigational
trials using the Habitat Simulator. Based on the obtained
actionable multi-floor navigational Voronoi graphs introduced
in Sec. III-B, we traverse the set of retrieved high-probability
objects satisfying the query and report the physical retrieval
success rate. If the robot stops by one of the matched ground
truth point clouds and its distance to it is smaller than 1m, we
consider the navigation successful. As shown in Table V, the
navigational success rates are higher when compared to the re-
trieval success rates. We found that the robot regularly reaches
the locations of the predicted objects that are in close vicinity
to actual ground truth target objects. This effect is measurable
since we rely on a Euclidean distance-based evaluation for
the navigational success assessment. Moreover, imperfectly
predicted instance masks increase the chance of retrieving
segments that do not provide complete overlap with actual
ground truth objects in terms of geometry and semantics,
which induces slight offsets in the retrieved positions when
querying. Example navigation trials are shown in Fig. 8.

C. Real World Language-Grounded Navigation

To validate the system in the real world, we utilize a Boston
Dynamics Spot robot with a calibrated Azure Kinect RGB-
D camera and a 3D LiDAR attached to it. We collect a
stream of RGB-D sequences inside a two-story office building,
traversing through a variety of rooms with diverse semantic
information as shown in Fig. 9.
Real-World Application of HOV-SG: We calibrate the ex-
trinsics between the LiDAR and the RGB-D camera and
apply an off-the-shelf LiDAR SLAM implementation that
combines FAST-LIO2 [52] with a loop closure component to
obtain LiDAR poses. Subsequently, we leverage the extrinsics

Fig. 9: Boston Dynamics Spot robot exploring a two-story office building with
multiple types of rooms. The quadruped is equipped with an Azure Kinect
RGB-D camera and a 3D LiDAR to collect RGB-D data and odometry.

to derive the associated camera poses. Finally, employing
the RGB-D data and odometry, we construct the HOV-SG
representation as detailed in Sec. III.
Robot Navigation with Long Queries: Within the two-story
building, we select 41 object goals, nine room goals, and two
floor goals and use natural language to query the HOV-SG
representation built. Some examples of the queries are “go
to floor 0”, “navigate to the kitchen on floor 1”, and “find
the plant in the office on floor 0”. Unlike previous methods
that only retrieved object-level goals, our representation en-
ables long queries containing multiple levels of concepts and
facilitates a more detailed constrained retrieval.

To separate the evaluation of our representation and
the navigation system, we first evaluate the accuracy of
the retrieval tasks qualitatively. Since the building is well
structured, we can easily determine the boundary between
rooms and regions like offices, corridors, and dining rooms.
Meanwhile, we manually label the categories of all regions
in the building, using a category set containing office,
corridor, kitchen, seminar room, meeting
room, dining room, bathroom. If the HOV-SG
representation returns the correct floor and room point cloud
as well as an object point cloud that shows overlap with
the correct object, we consider this as retrieval success. We
achieve a 100% success rate in floor retrieval, a 55.6% success
rate in room retrieval, and a 70.7% success rate in object
retrieval. The major failure cases for room retrieval stem from
the visual similarity among rooms such as “meeting room”,
“seminar room”, and “dining room” as shown in Fig. S.3.

We query our HOV-SG representation using hierarchical
concepts and utilize the Spot quadrupedal robot to carry out
navigation trials. In our experiments, the robot navigates to
queried objects across both floors with a 56.1% success rate
while navigating to all successfully retrieved room and floor
concepts with language instructions. One failure case occurred
for the “go to the whiteboard in the office on the second
floor” query. Since the whiteboard is attached to a room-
separating wall, the robot achieved the necessary distance to
the object but was positioned on the opposite side of the
wall as shown in Fig. S.6). In addition to that, we did not
consider target locations on stair segments to prevent the robot



TABLE VII: REPRESENTATION SIZE (HM3DSEM)

Scene # Floors VLMaps [10] ConceptGraphs [14] HOV-SG (ours)

00824 1 568 143 143
00829 1 407 110 99
00843 2 534 143 125
00861 2 943 255 225
00862 3 1808 474 479
00873 2 570 167 129
00877 2 556 154 131
00890 2 682 192 162

Σ - 6068 1638 1493

We compare the storage sizes of the representations produced by
VLMaps [10], ConceptGraphs [14], and HOV-SG, measured in
megabyte (MB), across eight differently sized scenes of Habitat-
Semantics (HM3DSem). The smallest sizes are highlighted bold,
respectively.

assuming unstable poses. The evaluation results for retrieval
and navigation are shown in Table VI. We display a subset of
target objects in Fig. S.6 and three trials in more detail in the
supplementary material Fig. S.5.

D. Representation Storage Overhead Evaluation

A key advantage of HOV-SG is the compactness of the
representation. We compare the storage size of VLMaps [10],
ConceptGraphs [14], and HOV-SG created for the eight scenes
in the HM3DSem dataset and show the results in Tab. VII. We
adapt VLMaps to store LSeg features at 3D voxel locations
with 0.05m voxel size. The backbone of the LSeg is ViT-
B-32, which has 512-dimensional features. ConceptGraphs
and HOV-SG are using the ViT-H-14 CLIP backbones, which
requires saving 1024-dimension features in the representation.
VLMaps is optimized to only save features at voxels near
object surfaces instead of saving redundant features at non-
occupied voxels. Nonetheless, thanks to the compact graph
structure, ConceptGraphs and HOV-SG are much smaller than
their dense counterparts. HOV-SG even reduces as much as
75% in memory footprint on average compared to VLMaps.
While ConceptGraphs encodes supplementary object relation-
ships, HOV-SG incorporates hierarchical semantic features.
Overall, ConceptGraphs and HOV-SG serve as excellent com-
plementary representations, each emphasizing distinct facets
of scene semantics.

E. Ablation Study

In order to shed light on the contributions of various key
components in our approach, we present an ablation study on
the Replica dataset [23] in Table VIII. One key component
of the 3D open-vocabulary segment-level mapping pipeline
(Sec. III-A) is the DBSCAN clustering we apply to pixel-wise
CLIP embeddings associated with each segment to select the
most representative features among them. This design, inspired
by the principle of majority voting, has proven effective
in mitigating outlier CLIP features caused by the inherent
limitations of CLIP and the noise originating from SAM’s
outputs, thereby enhancing semantic accuracy. A different key
component of our approach involves fusing CLIP features
extracted from various sources: the global image, the masked
image of an object based on its SAM mask, and the masked

TABLE VIII: ABLATION STUDY ON REPLICA

DBSCAN L-CLIP M-CLIP mIOU ↑ F-mIoU ↑ mAcc ↑

✗ ✓ ✓ 0.212 0.340 0.290
✓ ✗ ✓ 0.136 0.178 0.170
✓ ✓ ✗ 0.215 0.337 0.298

HOV-SG (ours) 0.231 0.386 0.304

DBSCAN indicates whether we apply DBSCAN clustering
to select segment features, L-CLIP indicates the use of only
masked images including background, and M-CLIP refers to
only the masked CLIP embeddings without background.

object image given the SAM mask without background. In
contrast to ConceptGraphs [14], which only integrate the
global image embedding and the sub-image embedding, we
hypothesize that incorporating salient features from the sub-
image into CLIP embeddings could enhance accuracy. Based
on this, we tested three setups: utilizing only the CLIP em-
bedding of the masked object including background (L-CLIP),
employing only the CLIP embedding of the masked object
without background (M-CLIP), and third, combining both of
these CLIP embeddings by fusing them as done in HOV-SG.
Our findings indicate that combining both embeddings yields
the highest semantic accuracy as given in Table VIII.

V. CONCLUSION

We presented HOV-SG, a novel hierarchical open-
vocabulary 3D scene graph representation for indoor robot
navigation. Through the semantic decomposition of environ-
ments into floors, rooms, and objects, we demonstrate effective
concept retrieval from abstract language queries and perform
long-horizon navigation across a multi-story environment in
the real world. With extensive experiments conducted across
multiple datasets, we showcase that HOV-SG surpasses previ-
ous baselines in terms of semantic accuracy, open-vocabulary
capability, and compactness. Nevertheless, HOV-SG is not
without limitations. Consisting of several stages and com-
ponents, our approach necessitates a large number of hyper-
parameters. Moreover, the construction process of HOV-SG is
time-consuming, rendering the method unsuitable for real-time
mapping. Furthermore, it assumes a static environment and
thus cannot handle dynamic environments. Future research di-
rections may involve developing an open-vocabulary dynamic
representation of the environment or integrating a reactive
embodied agent to enhance reasoning and grounding in the
physical world. To foster future research, we make the code
publicly available at https://hovsg.github.io.
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Fig. S.1: The language-grounded navigation module of HOV-SG allows to
parse complex queries such as “find the toilet in the bathroom on floor 2”
into three queries using a large language model (GPT-3.5) - one each for the
floor, room, and object levels. Leveraging HOV-SG’s hierarchical structure,
we progressively narrow down the search space by querying at each level.
Once the target location is identified, the action graph in HOV-SG is used to
plan a path from the starting pose to the target.

In this supplementary material, we expand upon multiple
aspects of our main paper. In Sec. S.1, we detail several design
choices and paradigms regarding our method. In Sec. S.2,
we additionally present experimental results that support the
claims introduced in the manuscript. This includes a more
detailed discussion of the proposed open-vocabulary metric,
an analysis regarding identified semantic room categories,
additional baselines regarding object retrieval from language
queries. Moreover, we provide insightful visualizations of the
produced multi-story scene graphs, representing scenes from
both Habitat Semantics (HM3DSem) as well as our real-world
environment.

S.1. METHOD

A. Robot Navigation Prompts

We provide few-shot examples to GPT-3.5 or GPT-4 to
increase the chance of correctly decomposing the instruction
query at test time. In the following, we detail the “system”,
“user”, and “assistant” variables used in gray, green, and
highlighted , respectively. “INSTRUCTION” is the test query

provided by the user. The prompt is shown below:

system: You are a hierarchical concept parser. You need

to parse a description of an object into floor, region and

object.

Q: chair in region living room on the 0 floor

A: [floor 0,living room,chair]

Q: floor in living room on floor 0

A: [floor 0,living room,floor]

Q: table in kitchen on floor 3

A: [floor 3,kitchen,table]

Q: cabinet in region bedroom on floor 1

A: [floor 1,bedroom,cabinet]

Q: bedroom on floor 1

A: [floor 1,bedroom,]

Q: bed

A: [,,bed]

Q: bedroom

A: [,bedroom,]

Q: I want to go to bed, where should I go?

A: [,bedroom,]

Q: I want to go for something to eat upstairs. I am

currently at floor 0, where should I go?

A: [floor 1,dinning,]

Q: INSTRUCTION

B. Semantic Localization

HOV-SG achieves agent localization within the graph using
only RGB images and local odometry using a simple particle
filter. The process involves randomly initializing K particles
within the free space map, estimated from each floor’s point
cloud. Subsequently, the global CLIP feature of the RGB
image and the CLIP feature of objects within the image
are extracted using the same pipeline as used for the graph
creation. In the prediction step, the particle poses are updated
based on robot odometry. Thus, we assign each particle a floor
and room based on its updated coordinates. In the update step,
we calculate cosine similarity scores between the current RGB
image’s global CLIP feature and the graph’s room features
for each particle. Additionally, scores are computed between
object features in the RGB image and observed objects in front
of each particle. Then, particle weights are adjusted based on
these similarity scores. This integrated approach allows HOV-
SG to semantically localize the agent within the graph at the
floor and room level within a short span of 10 observed frames.
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Fig. S.2: We visualize the AUCtop
k curve for different evaluation thresholds

k, which this plot measures in terms of percent out of the total number of
categories (HM3DSem: 1624). The shown curve represents the results of our
method HOV-SG on the HM3DSem scene 00824.

S.2. EXPERIMENTAL EVALUATION

A. Open-Vocabulary Similarity Metric (AUCtop
k )

In this section, we present a visualization of the open-
vocabulary similarity metric AUCtop

k introduced in the paper.
As shown in Fig. S.2, the AUCtop

k metric represents the area
under the top-k accuracy curve. The closer this curve is to
the upper left point, the higher the open-vocabulary similarity.
Instead of showing the accuracy at distinct values of k as in
the main paper, we normalize k over the extent of the label
category set, which contains 1624 categories for HM3DSem.
This also shows visually how the AUCtop

k metric provides a
dependable measure for large but variably-sized label sets. We
envision the future use of this metric in a number of open-
vocabulary tasks.

B. Evaluation Metrics for 3D Semantic Segmentation

In terms of 3D semantic segmentation, we perform point-
wise evaluation between the predicted and ground truth labels.
The used 3D semantic segmentation metrics mIOU, F-mIOU,
and mAcc are defined as follows:

mIOU =
1

N

N∑
i=1

TPi

TPi + FPi + FNi
(1)

F-IOU =
1∑N

i=1 ni

N∑
i=1

ni · TPi

TPi + FPi + FNi
(2)

mAcc =
1

N

N∑
i=1

TPi

TPi + FPi
(3)

where N is the total number of categories, TPi, FPi, and
FNi denote the truth positive, false positive, and false negative
number for category i, and ni is the total number of ground
truth points for category i.

C. Floor and Region Segmentation

In addition to the overall results provided in Table II, we
provide scene-wise results in Table S.1. Our results show that
we tend to obtain higher precision and recalls on smaller
scenes comprising fewer ground-truth rooms.

TABLE S.1: FLOOR AND REGION SEGMENTATION ON HM3DSEM

Method Scene Floors Regions
AccF # FP # FGT Precision [%] Recall [%]

H
yd

ra
[1

9]

00824 - - - 79.89 78.37
00829 - - - 86.42 85.08
00843 - - - 87.27 78.77
00861 - - - 77.23 67.93
00862 - - - 85.03 78.34
00873 - - - 96.87 80.24
00877 - - - 81.51 88.86
00890 - - - 95.25 62.82

Overall - - - 86.18 77.55

H
O

V
-S

G
(o

ur
s)

00824 1.0 1 1 81.20 80.00
00829 1.0 1 1 88.81 88.02
00843 1.0 2 2 88.54 87.10
00861 1.0 2 2 76.41 89.95
00862 1.0 3 3 72.65 76.10
00873 1.0 2 2 95.63 67.71
00877 1.0 2 2 74.82 92.30
00890 1.0 2 2 94.75 87.55

Overall 1.0 - - 84.10 83.59

Evaluation of the floor and room segmentation: We provide the number
of correctly predicted floors using a threshold of 0.5m. Room segmen-
tation precision (P) and recall (R) are calculated based on the metric
provided by Hydra [19].

D. Room Classification

As presented in Table S.2, we provide additional scene-wise
results across the set of eight scenes in HM3DSem [25] that
complement the results given in Table III. We note that there
is only a single scene in which the privileged GPT-3.5 baseline
outperforms our proposed view embedding method (00877).
The naı̈ve baseline operating on predicted object categories is
significantly outperformed across all scenes, which is mostly
due to under-segmentation and wrongly predicted top-1 object
categories.
Prompts: For the GPT-based methods, we used the following
prompts to derive room types based on the contained object
names. The content for “system” is in gray. The content
for “user” is in green. And the content for “assistant” is
highlighted . During test time, the user needs to provide
{objects} and {room types} which are the object names in
the room and the pre-defined set of room types to select from.
The prompt is shown below:

system: You are a room type detector. You can infer a room

type based on a list of objects.

Q: The list of objects contained in this room are: bed,

wardrobe, chair, sofa. What is the room type? Please just

answer the room name.

A: bedroom

Q: The list of objects contained in this room are: tv,

table, chair, sofa. Please pick the most matching room type

from the following list: living room, bedroom, bathroom,

kitchen. What is the room type? Please just answer the room

name.

A: living room

Q: The list of objects contained in this room are:

{objects}. Please pick the most matching room type from

the following list: {room_types}. What is the room type?

Please just answer the room name.



TABLE S.2: SEMANTIC ROOM CLASSIFICATION RESULTS (HM3DSEM)

Room Identification Method Scene Acc= [%] Acc≈ [%]
Pr

iv
ile

ge
d

M
et

ho
ds

00824 70.00 90.00
00829 71.43 100.0
00842 61.54 69.23

GPT-3.5 w/ ground-truth 00861 58.33 70.83
object categories 00862 50.00 72.22
(privileged) 00873 81.82 90.91

00877 69.23 76.92
00877 72.73 81.82

Overall 66.89 81.49

00824 80.00 90.00
00829 85.71 85.71
00843 76.93 84.61

GPT-4 w/ ground-truth 00861 75.00 79.17
object categories 00862 63.89 66.67
(privileged) 00873 90.91 90.91

00877 84.62 84.62
00890 81.81 92.31

Overall 79.86 84.25

U
np

riv
ile

ge
d

M
et

ho
ds

00824 30.00 40.00
00829 42.86 57.14
00843 38.46 38.46

GPT-3.5 w/ predicted 00861 16.67 25.00
object categories 00862 19.44 25.00
(unprivileged) 00873 45.45 63.64

00877 07.69 30.77
00877 27.27 63.64

Overall 28.48 42.95

00824 70.00 80.00
00829 71.43 71.43
00843 53.85 53.85

GPT-4 w/ predicted 00861 45.83 45.83
object categories 00862 44.44 50.00
(unprivileged) 00873 72.73 81.81

00877 53.85 53.85
00890 63.63 63.63

Overall 59.47 62.55

View embeddings (ours)

00824 80.00 90.00
00829 85.71 100.0
00842 69.23 76.92
00861 54.17 79.17
00862 63.89 83.33
00873 90.91 90.91
00877 61.54 61.54
00877 81.82 90.91

Overall 73.93 84.10

The table shows the room classification performance of our method
(view embeddings) and two baselines (at the top) on HM3DSem.
The baselines utilize GPT-3.5 / GPT-4 for labeling the rooms based
on either ground-truth objects (masks) and categories or on predicted
masks and categories. We consider two different evaluation criteria:
Acc= measures whether the exact text-wise room category was pre-
dicted while Acc≈ measures correct room labels based on qualitative
human evaluation.

Room Categories: We manually label the GT room
regions with the following 14 room types: living room,
dining room, kitchen, bathroom, bedroom,
dressing room, combined kitchen and living
room, entryway, basement, laundry room,
office, empty room, hallway, closet.

E. Language-Grounded Navigation with Long Queries

In order to support our proposed hierarchical segregation
of the environment, we present another comparison with
ConceptGraphs [14]. To do so, we compare the object retrieval
from language queries performance to demonstrate the efficacy

TABLE S.3: OBJECT RETRIEVAL FROM LANGUAGE QUERIES (HM3DSEM)

Query Type Method Scene # Floors # Regions # Trials SR10[%]

(o, r, f)

ConceptGraphs

00824 1 10 33 33.33
00829 1 7 20 65.00
00843 2 13 26 03.85
00861 2 24 55 01.82
00862 3 36 90 21.11
00873 2 11 28 10.71
00877 2 13 32 09.38
00890 2 11 41 04.88

Overall - - 40.63 16.31

00824 1 10 33 57.57
00829 1 7 20 45.00
00843 2 13 26 34.62
00861 2 24 55 25.45

HOV-SG (ours) 00862 3 36 90 21.11
w/ OVSeg 00873 2 11 28 14.29

00877 2 13 32 25.00
00890 2 11 41 21.95

Overall 40.63 28.00

(o, r)

ConceptGraphs

00824 1 10 33 33.33
00829 1 7 20 65.00
00843 2 13 23 34.78
00861 2 24 46 19.57
00862 3 36 67 26.98
00873 2 11 25 30.00
00877 2 13 24 25.00
00890 2 11 41 21.95

Overall - - 34.88 29.26

00824 1 10 33 57.58
00829 1 7 20 45.00
00843 2 13 23 39.13
00861 2 24 46 30.43

HOV-SG (ours) 00862 3 36 67 20.63
00873 2 11 25 20.00
00877 2 13 24 33.33
00890 2 11 41 21.95

Overall - - 34.88 31.48

Evaluation over 20 frequent distinct object categories in terms of the top-5
accuracy. A match is counted as a success when the IoU > 0.1 between
predicted object and ground truth. The floor and room counts refer to the
ground-truth labels. The number of trials is lower for (o,r) compared to
(o,r,f) because we observe a higher number of query duplicates whenever
we drop the floor specification. The 20 categories evaluated are: picture,
pillow, door, lamp, cabinet, book, chair, table, towel, plant, sink, stairs, bed,
toilet, tv, desk, couch, flowerpot, nightstand, faucet.

of hierarchically decomposing scenes. We draw this compari-
son by augmenting ConceptGraphs to also work with room and
floor queries. For both HOV-SG as well as ConceptGraphs, we
decompose the original query via GPT3.5 parsing as before.
Using this, we obtain text variables stating the requested
floor name, room name, and object name. Since the floor
segmentation of HOV-SG consistently showed 100% accuracy,
we directly provide ConceptGraphs with that information.
Our augmentation of ConceptGraphs allows us to implicitly
identify potential target rooms and objects: We compute the
cosine similarity between the set of all object embeddings
and the queried room text. Similarly, we compute the cosine
similarity between the set of all objects and the queried object
name. We combine these two similarities by taking the product
of those scores per object to identify the most probable objects.
This allows ConceptGraphs to draw answers at the floor level
and room level. The remaining details of this evaluation are
detailed in the main manuscript.



The results in Table S.3 regarding object-room-floor queries
demonstrate a significant performance improvement of 11.69%
when using HOV-SG compared to ConceptGraphs. We observe
that ConceptGraphs struggles with larger scenes and under-
segmentation of the produced maps, which often makes finding
the object in question hard. Regarding the object-room queries,
the drawbacks of ConceptGraphs are not as apparent because
the search domain is significantly larger. Still, HOV-SG shows
a 2.2% advantage over ConceptGraphs. In general, erroneous
room segmentations produced by HOV-SG make finding the
object in question hard, which remains subject to future work.

F. Graph Representation on HM3DSem

In the following, we also show the produced hierarchical 3D
scene graphs on the set of 8 scenes we evaluated in Fig. 7.
Each distinct object is colored with a different color and the
ground truth floor surface is underlayed for easier visibility.
The blue nodes denote rooms and its links to the objects denote
the object-room associations. The edges among the yellow
nodes and the blue nodes show the association between rooms
and floors. For clear visualization, we do not visualize the root
node that connects multiple floors. We reject certain objects
for visualization based on their top-1 predicted object category
(out of 1624 categories). Any categories containing sub-
strings of the following have not been visualized: wall, floor,
ceiling, paneling, banner, overhang. All other predicted object
categories are shown. Remarkably, this procedure removed
the fair majority of ceilings, walls, etc., which confirms the
accuracy of the top-1 predicted open-vocabulary object labels.
Nonetheless, future work should address the problem of over-
and under-segmentation in these maps. Coping with multiple
overlapping masks produced during iterative mask merging
is still an open question. While having multiple overlapping
masks per point drives the recall in semantic retrieval, this
does not produce visually appealing maps. In general, one
could argue that depending on the language query at hand
different concepts are requested. In case of a query such
as ”Find the sofa”, one would like to obtain the mask that
encloses the whole sofa. On the other hand, if the query comes
in the form of ”Find the cushion” (on the sofa), we would
want to singulate the cushion in question. This however is
difficult when the sofa is masked as one, which would then
be considered under-segmentation. Thus, we envision maps

that can hold multiple overlapping object masks that could
represent various sub-concepts. Essentially, this translates to
an additional object hierarchy layer that decomposes objects
into their parts.

G. Real-World Ambiguous Room Labels

As mentioned in Sec. IV-C, one major failure reason is
the challenge of differentiating room types with similar vi-
sual appearance and the subjectivity of the room definitions.
Througout our real-world evaluation of HOV-SG, we noticed
that “dining room”, “seminar room”, and “meeting room” all
contain many chairs and large tables as shown in Fig. S.3.

Seminar Room Dining Room Meeting Room

Fig. S.3: Camera images obtained in the “seminar room”, “dining room”, and
“meeting room”. We observe that these rooms all contain multiple chairs and
large tables. In addition, the definition of the room types can be subjective.
This poses a considerable challenge when trying to differentiate among these
rooms given their visual CLIP embeddings.

H. Real-World Qualitative Navigation Results

In Fig. S.5, we present three real-world trials that were exe-
cuted with a Boston Dynamics Spot quadrupedal robot, which
allowed us to traverse multi-floor environments safely. The
trials are performed based on complex hierarchical language
queries that specify the floor, the room, and the object to find.
All hierarchical concepts relied on in these experiments are
identified using our open-vocabulary HOV-SG pipeline. The
top row in Fig. S.5 shows the taken path (blue) from the start
position (red) to the goal location (green). The following rows
show the time-wise progression of the trial from top to bottom.
The unique difficulty in these experiments is the typical
office/lab environment with many similar rooms, which often
produced similar room names. Having semantically varied
rooms instead drastically simplifies these tasks. Nonetheless,
as reported in the main manuscript, we reach real-world
success rates of around 55%. We also showed a subset of
target objects in Fig. S.6.



Scene 00829 (1 floor) Scene 00890 (2 floors)

Scene 00843 (2 floors) Scene 00877 (2 floors)

Scene 00862 (3 floors) Scene 00873 (2 floors)

Fig. S.4: We show a visualization of the hierarchical open-vocabulary scene graphs produced on HM3Dsem. To make the visualization more clear we do
not show the root node connecting (multiple) floors. In addition, we underlay the ground-truth floor surface for easier visibility. We reject certain objects for
visualization based on their top-1 predicted object category (out of 1624 categories). Any categories containing sub-strings of the following have not been
visualized: wall, floor, ceiling, paneling, banner, overhang. All other predicted object categories are shown. Remarkably, this procedure
removed the fair majority of ceilings, walls, etc., which confirms the accuracy of the top-1 predicted open-vocabulary object labels. Best viewed zoomed in.
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Fig. S.5: Real-World Object Navigation from Language Queries: We show a set of qualitative results of the real-world demonstration trials, which uses a
Boston Dynamics Spot to allow for multi-floor traversals. The first row displays the observed scene and the taken path from the start (red) to the goal location
(green). The following rows detail the time-wise progression (top-to-bottom).



"fridge in the seminar room
on the first floor"
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on the first floor"
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Fig. S.6: Qualitative visualization of the real-world language-grounded navigation results. Examples masked green denote successful trials, and red masks
represent failure cases.
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