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Crop Row Detection on Tiny Plants with the Pattern
Hough Transform

Wera Winterhalter, Freya Fleckenstein, Christian Dornhege and Wolfram Burgard

Abstract—In sustainable farming, robotic solutions are in
rising demand. Specifically robots for precision agriculture open
up possibilities for new applications. Such applications typically
require a high accuracy of the underlying navigation system.
A cornerstone for reliable navigation is the robust detection of
crop rows. However, detecting crops from vision or laser data
is particularly challenging when the plants are either tiny or so
large that individual plants cannot be distinguished easily. In this
paper, we present a pipeline for reliable plant segmentation in
any crop growth stage, as well as a novel algorithm for robust
crop row detection that adapts the Hough transform for line
detection to detect a pattern of parallel equidistant lines. Our
algorithm is able to jointly estimate the angle, lateral offset and
crop row spacing and is particularly suited for tiny plants. In
extensive experiments using various real-world data sets from
different kinds and sizes of crops we show that our algorithm
provides reliable and accurate results.

Index Terms—Agricultural Automation; Robotics in Agricul-
ture and Forestry; Field Robots

I. INTRODUCTION

IN order to satisfy the rising demand for sustainable farm-
ing, autonomous robotic solutions are essential. Precision

farming applications typically require a robot to accurately
navigate. In this context, the robust estimation of crop rows is
a crucial precondition. Applications such as weeding or fertil-
ization require the robot to traverse the field in different growth
stages of crops. Thus, a navigation system for agricultural
robots needs to be robust with respect to varying plant sizes,
plant types, and plants not aligned with the row structure, such
as weeds.

This poses several challenges, in particular for the plant
feature extraction and crop row detection that we focus on.
These include changing soil conditions, tiny plants that are
hard to distinguish from soil even for humans (see Fig. 1),
or plants so large that rows cannot be clearly separated. In
addition, weeds that do not grow in the row structure can
be mistaken for crops. Such contrasting conditions call for
different sensor modalities, such as high-resolution cameras
for detecting small plants or laser range scanners that capture
the geometry of larger plants. As we focus on cases in which a
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Fig. 1: Image of a sugar beet field with tiny plants (left). The
enlargement shows sugar beet plants of about 1 cm. The right
shows a typical pattern detected by our algorithm reprojected
into the camera image.

clear detection of crops is not possible, plant feature extraction
algorithms provide sparse and noisy data.

Besides dealing with plant feature extraction, a robust crop
row detection has to estimate the lateral offset of the rows
as well as the angle relative to the robot and the spacing
between rows. Although the latter can be assumed to be
known, variations exist based on how crops were sown. Crop
row detection algorithms often rely on a clear separation of
plants and soil in the input data or assume a given spacing [1],
[2], [3], [4], [5], [6]. Under such assumptions, it is sufficient
to estimate individual crop rows. To be independent of prior
knowledge of the field, it is preferable to estimate all relevant
parameters and include all data.

Since we want to use the detected crop rows to localize the
robot and—more importantly—its wheels with respect to the
crops, the algorithm should produce crop row patterns defined
in the three-dimensional local robot coordinates.

In this paper, we present a feature map extraction pipeline
for different sensor modalities to capture crops of any size,
especially tiny plants, that yields a two-dimensional plant map.
Furthermore, we propose a novel approach for robust crop row
detection that relies on minimal assumptions, most importantly
that crops are sown in parallel equidistant lines. Taking only
the two-dimensional map from our feature extraction pipeline
as input, our approach is independent of the sensor modality.
We base our crop row detection on the principle of the Hough
transform [7]. In contrast to the classical Hough transform that
detects individual lines, our Pattern Hough transform extracts
a complete crop row pattern in a single step (see Fig. 1).
We achieve this by transforming the two-dimensional plant
feature map into the three-dimensional space of row patterns
that is defined over the angle of the pattern, the lateral offset
and the row spacing. We jointly estimate all parameters of
a pattern, including its spacing. In contrast to incrementally
fitting lines from partial information, the key idea is that all
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input information is used to find the best crop row pattern.
In extensive experiments we show that our algorithm works

robustly on noisy and sparse data from tiny plants, as well as
on dense data from larger plants. We evaluate our algorithms
on different kinds of crops. This includes data from laser
range sensors obtained from winter canola and sugar beet
plants perceived with cameras. The results indicate that our
Pattern Hough transform performs well while driving in the
field and outperforms all other algorithms on noisy data in the
canola data set. Our RANSAC variant that also follows our
idea of using all available data to determine a crop row pattern
performs better in some cases.

II. RELATED WORK

Crop row detection has received considerable interest in
the past decades. Most approaches use vision data. On RGB
data, often pixel-wise color indices are applied to segment
vegetation. Various different indices have been proposed, for
example excess green that emphasizes green values [8] or the
triangular greenness index that is based on a color spectrum
around green [9]. If specialized near infrared cameras are
available, often the normalized difference vegetation index is
used [10]. Based on such a segmentation, crop row detection
can be performed. Kise et al. introduced an algorithm based
on stereo vision to create an elevation map [1]. Under the
assumption that the row spacing is known and the heading
of the sensor corresponds roughly to the heading of the
crop rows, four rows are extracted from the elevation map.
Other vision-based row detection methods divide the image
into a low number of predefined horizontal strips. In each
strip they determine center points of rows and connect these
points to lines [2], [3]. Another method uses a bandpass filter
computed from a known row spacing to create a crop row
template that can be matched against the image [11]. All
these approaches assume a given row spacing and that the
heading of the sensor is approximately aligned with the crop
rows. Template matching can also be used to estimate row
spacing and offset of a curved pattern, when relying on the
assumption that the sensor heading is aligned with the crop
rows. Here the template is shifted along the image to compute
a minimal score [12]. Explicitly considering curved patterns is
not critical, as curvature found in most fields only leads to a
lateral deviation of a few centimeters from a straight line in the
usable sensor range. The approach by Montalvo et al. assumes
that the number and the position of the rows in the image
is known [13]. They then perform a linear regression in the
region of interest.

A method that estimates the angle and spacing of the rows
is presented by English et al. [14]. They convert the image
into a top-down view, sum the green values of each column
in the image and compute the variance of the resulting sum.
The image is skewed, and the procedure is repeated to find
the angle with the highest variance in the image columns to
estimate the heading. Peaks in the sums of the image columns
correspond to crop rows. Further work integrated this with
a learning based approach that also takes depth data into
account [15]. For every new field, a manually labeled image

and training run over 20 s is required. They achieve a lateral
error of between 1.6 cm and 3.1 cm depending on the field.

Several approaches are based on the Hough transform. They
estimate single lines or a pattern under the assumption of
a given row spacing [4], [5], [6], [16]. These differ in how
the Hough transform is applied. To get more stability against
noise, giving the line a predefined width can be achieved by
summing neighboring pixels [4]. By separating an image into
three parts of width equal to the given spacing it is possible
to incorporate information from parallel lines. The individual
parts are summed before applying the Hough transform [5].
Without the given number of crop rows, but a known spacing
one can also sum all pixels in parallel lines in the Hough
space [6], [16]. While all these approaches aim to tailor
the classical Hough transform [7] towards crop row pattern
detection, all make assumptions on known values such as a
given spacing or the number of crop rows. In contrast, our
approach is related to the generalized Hough transform [17],
as we adapt the model to directly fit the desired shape of
parallel equidistant lines.

All in all, most existing approaches work on vision data,
while our approach is capable of extracting and using plant
features from vision and laser data and is thus independent
from the sensor modality. Furthermore, many approaches
assume that the crop row spacing is given a priori or that the
heading of the sensor corresponds to the heading of the crop
rows. Our approach is able to estimate both the heading and
the spacing of the crop rows in addition to the lateral offset
and thus does not make the assumption of pre-defined values.
In particular, our Pattern Hough transform extracts a crop row
pattern in a single step instead of detecting individual lines.

III. FEATURE MAP EXTRACTION

For robust crop row detection it is necessary that the algo-
rithm works with various sensor modalities to be applicable in
different environments. We achieve this by computing feature
maps from arbitrary sensor data. These feature maps provide a
generic input for the crop row detection algorithms. A feature
map is a two-dimensional grid map, where each cell contains
a weight that describes the likelihood of vegetation being
present. Such feature maps are defined in the coordinate frame
of the robot and located on the ground plane. This ensures that
real-world geometric relations between plants are recovered in
the feature map (see Fig. 2). In particular crop rows sown in
parallel equidistant lines appear as such in the feature map.
This is especially important for vision data, where dependent
on the perspective crop rows do not appear parallel. We give
two procedures for feature map extraction for either vision or
laser data.

a) Vision-based Segmentation: Given RGB images of
plants, we first compute the triangular greenness index for
each pixel. This index forms a triangle in RGB space around
the spectral values of leaf chlorophyll [9]. Thus larger index
values imply that this pixel belongs to a plant. We use a
threshold of 0.06 to segment vegetation based on this index.

To rectify the image and project image pixels into the feature
map in the ground plane the camera must be intrinsically and
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Fig. 2: This figure shows the 3d laser and vision camera
mounted on our robot; their raw data, i.e., 3d point clouds
or RGB images; and the resulting feature maps. Note that in
both cases plant features form equidistant and parallel lines.

extrinsically calibrated to the robot. We intersect the 3d ray
from the camera origin through each pixel with the ground
plane to determine the corresponding cell in the feature map
and increase its weight by the index value. The projection
into the coordinate frame of the robot makes the feature maps
independent of the sensor placement.

As plants further away from the camera appear smaller, i.e.,
occupy a smaller area in the image, we re-weight the feature
points based on the squared distance from the camera. Finally
we retain the best 25% of all feature points to remove noise.

b) Laser-based Segmentation: We use extrinsically cali-
brated 3d laser range scanners that provide 3d point clouds
relative to the robot. As these are less dense than vision
data, we integrate the point clouds over 2.5 seconds using
the odometry of the robot (see Fig. 2).

Since the ground is usually the lowest in the local robot
frame, we consider all points that are below a certain height
threshold as ground points. The remaining non-ground points
are then treated as vegetation. Instead of a fixed threshold,
we dynamically determine this at the upper 10% of all height
values, i.e., we retain the 10% highest points above the ground.
The weight of the feature map cell corresponding to the 2d
projection of the point is increased by its height above the
ground.

IV. CROP ROW DETECTION

We aim for a crop row detection that determines a set of
rows localized in metric space relative to the robot and is
therefore suited for applications like localization or mapping.
The input is a two-dimensional feature map in the robot
coordinate frame described in the previous section. In most
fields crops form lines that—at least locally—appear parallel
and equidistant. Therefore our goal is to extract a crop row
pattern po,θ,s of parallel equidistant lines from a feature map.
Here, o is the offset of the line closest to the origin of the
robot frame, θ is the angle of the pattern lines, and s is the
spacing between lines in the pattern (see Fig. 4).

We cannot expect the vegetation segmentation used to
compute the feature maps to be perfect. This holds especially
under harsh conditions, when large plants overlap crop rows
or plants are extremely small and thus feature points are
sparse. Moreover false positives during segmentation or weeds
produce noise that is not aligned with the crop row pattern.
To be robust in such environments we propose to extract all
rows of a pattern at once, thus considering all available data
in contrast to only detecting individual lines.

In this section we present multiple approaches for crop
row detection. The first two algorithms use the Hough trans-
form [7]. This is a robust algorithm developed to detect
individual lines in images. We describe its application as a
naive approach to detect a single crop row, which—with a pre-
given spacing—defines a pattern. This approach is widely used
for crop row detection [4], [5], [6], [16]. We denote this as the
Line Hough transform. We then describe our Dual Line Hough
transform that uses the results of the Line Hough transform to
also estimate the row spacing by extracting a second parallel
line.

In contrast to extracting individual lines, our Pattern Hough
transform follows our idea to extract all lines of a pattern
at once. Finally as a comparison, we present a variant of
the random sample consensus (RANSAC) algorithm [18], the
Pattern RANSAC, that also determines all rows jointly.

In general all these algorithms aim to find a model, e.g.,
a line, that best fits the data, in our case the feature map.
Algorithms based on the Hough transform compute the model
with maximum support by transforming the 2d data from the
feature map into a histogram h over the space of possible
models H, e.g., the space of lines. For each vegetation cell
c in the feature map the subset of models H(c) ⊂ H
that contain c is determined. For each element in H(c) the
corresponding histogram value is increased by the weight of
the cell. Intuitively, each bin in the histogram represents a
model and the value of that bin corresponds to the weight
of all cells supporting this model. The maximum value of h
then represents the result of the algorithm, i.e., the best fitting
model. In contrast, RANSAC samples a minimal number of
feature map cells that define a candidate model. Through itera-
tive sampling a large number of candidate models is obtained.
For each model the support is computed by accumulating
the weights of the feature map cells that lie on this model.
The model with the maximum support is then the best fitting
model.

We use the following parametrizations for lines and crop
row patterns. We represent crop rows as lines in 2d space. All
lines lr,θ are represented in the Hesse normal form

lr,θ :=
{
(x, y) ∈ R2 | r = x · cos (θ) + y · sin (θ)

}
, (1)

where θ defines the normal vector ~nθ = (cos (θ) , sin (θ))
t to

the line lr,θ and r is the signed distance of the line to the
origin. An illustration of the Hesse normal form is shown in
the left image of Fig. 3. A crop row pattern po,θ,s is a set of
parallel equidistant lines, i.e.,

po,θ,s := {lr,θ | r = n · s+ o for any n ∈ Z} , (2)

where θ is the angle of the normal vector of all lines, s is
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Fig. 3: The left side illustrates the Hesse normal form of a
two-dimensional line (red), where θ defines the angle of the
normal to the line and r the distance to the origin. The right
side visualizes lines l1, . . . , l5 of the set HL(c) for a cell c.

the spacing or distance between consecutive lines and o is the
offset of the pattern from the origin. An example of such a
pattern is shown on the left side of Fig. 4.

A. Line Hough Transform

The Line Hough transform is often used for crop row
detection as it determines the best fitting line from a set of
points. The Hough space HL of this transform is the space of
lines (see Equation 1) and defined as

HL := {lr,θ | r ∈ R, θ ∈ [0, π)} . (3)

Given the coordinates of a cell c in the grid, the Hough
transform maps c onto the set of lines HL(c) that pass
through c. For each possible value of θ, Equation 1 defines
the matching value of r (see Fig. 3). The corresponding value
for each (θ, r) in the Hough space is incremented to account
for each possible line. As this leaves θ free and r bound, for
each cell a one-dimensional subset of HL is examined.

With the Line Hough transform one can easily extract a
best-matching single crop row line lr∗,θ∗ . Many approaches
consider this sufficient and employ the Hough transform or
other line detection algorithms with a pre-given row spacing
s∗ to define a pattern pr∗,θ∗,s∗ [4], [5], [6], [16]. Extracting
additional lines for other crop rows is not trivial as, for
example, the second best line in the Hough space is often
similar to the best line, i.e., only using a slightly different θ
or r. For crop row detection, however, one is usually interested
in lines that represent a different crop row.

B. Dual Line Hough Transform

Given the information already computed by the Line Hough
transform, i.e., HL, it is possible to retrieve a second crop row
and thus the pattern spacing under the reasonable assumption
that this line is parallel to the best matching line and one has
a rough idea of the spacing. We thus only assume that instead
of a pre-given spacing we have a minimum spacing s− and
maximum spacing s+ that in practice are set to be within
15 cm around the expected spacing.

Given the best matching line lr∗,θ∗ from the Line Hough
transform, we now define a new search pattern that does not
consider the full Hough space, but only

H′L := {lr′,θ∗ ∈ H | s− ≤ ‖r∗ − r′‖ ≤ s+}. (4)

The best value in H′L represents the parallel line to lr∗,θ∗

with the highest support within the minimum and maximum

spacing. The difference between the offsets of these two lines
thus determines the row spacing. As this variant of the Hough
transform uses two lines to define a crop row pattern, we
denote it as the Dual Line Hough transform.

C. Pattern Hough Transform

Although the approach described in the previous section
estimates a crop row pattern, it only uses the information from
two lines to estimate the spacing, while the offset and normal
angle are determined by a single line. Especially in data that is
not perfectly segmented, we aim for an approach that considers
all available data to determine the best pattern. To this end we
follow the principle of the Line Hough transform and create
the Pattern Hough transform that estimates a complete crop
row pattern in a single step.

The key idea is to directly transform into the space of row
patterns HP instead of the space of lines HL. The set of all
such patterns po,θ,s as defined in Equation 2 is given by

HP := {po,θ,s | s ∈ R+, o ∈ [0, s) , θ ∈ [0, π)} . (5)

An example of how changing the angular parameter θ or the
spacing parameter s affects the pattern is shown in Fig. 4.

Similar to the Line Hough transform, we map a cell c onto
the set of all patterns HP (c) ⊂ HP that matches this cell
and increase the corresponding entry in the histogram. Here,
a pattern matches a cell if it contains a line going through c.
Such a pattern po,θ,s ∈ HP (c) is defined by values of θ and s,
as the offset o is then bound by combining the constraints from
Equation 1 and Equation 2, yielding cx ·cos (θ)+cy ·sin (θ) =
n · s + o for some n ∈ Z such that o ∈ [0, s). To determine
HP (c) we thus iterate over all possible values of θ, and all
values of s in [s−, s+]. Therefore a two-dimensional subset
of HP is examined. Note that shifting the offset of a pattern
by the spacing s results in an equivalent pattern according to
r = n · s+ o for some n ∈ Z (see Equation 2). We therefore
constrain the offset to be in the range [0, s) to gain a unique
pattern po,θ,s Equation 5.

Although in comparison to the Line Hough transform our
Pattern Hough transform adds one dimension to the histogram
and the search space, the additional computational require-
ments are limited since—by our design—the range of the off-
set parameter o is bounded by the spacing parameter s. Finally,
the result of the Pattern Hough transform is the maximum
value in HP and directly represents the best matching pattern
over all parallel equidistant lines.

D. Pattern RANSAC

The Pattern RANSAC is a RANSAC variant that directly
computes crop row patterns. To find candidate patterns, we
first sample three points from the feature map. The first two
points define a line lr,θ. The distance of the third point to this
line determines the spacing s. If s is not within [s−, s+] we
reject the candidate pattern and continue sampling. To evaluate
a candidate pattern pr,θ,s we accumulate the weight of all
cells in the feature map that lie on this pattern. We retain
the candidate pattern with the highest accumulated weight as
the result. Similar to the Pattern Hough transform the Pattern
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Fig. 4: Left: The lines l0, l1, l2 (red) of a pattern with parame-
ters o (offset), θ (angle), s (spacing). The blue line depicts the
distance r1 of line l1 from the origin, equal to 1·s+o. Middle:
Two patterns from the set HP (c) for a cell c with angles θ1
(red) and θ2 (blue) and the same spacing. Right: Two patterns
with the same θ for spacings s1 (red) and s2 (blue). Note that
a given spacing determines the offset of the pattern through c.

Fig. 5: This figure shows a web cam image of the canola field
and the corresponding laser range data.

RANSAC therefore finds the pattern that is supported by most
data across the feature map.

V. EVALUATION

We evaluate the performance of our approach regarding
robustness on various real-world data sets featuring different
crops and sensor modalities. Robustness in our case means
that a crop row detection algorithm is reliably able to produce
crop row patterns that are close to the actual real-world
situation. This is crucial especially as an input for autonomous
navigation.

We ran all four crop row detection algorithms presented in
Section IV on every data set, which we processed either with
the vision or laser feature map extraction respectively. In all
cases the same parameter sets have been used independent
of the data set and algorithm. The histograms for the Hough
based algorithms had an angular resolution of 0.57◦ and an
offset and spacing resolution of 1 cm. As the Pattern RANSAC
algorithm relies on an incremental improvement, we evaluated
this with 2 500, 5 000, and 25 000 iterations and repeated each
run five times to account for its probabilistic nature. We chose
the number of iterations so that one variant is faster than the
Pattern Hough transform, one takes a similar amount of time
and one gets close to the best possible result when time is not
an issue.

In the following, we first describe the hardware used to
record the data sets and to perform the evaluation, then we
introduce our data sets before investigating the robustness of
crop row detection in general. Afterwards we discuss data
sets that are especially challenging in detail and close with
considerations on the applicability for real-world scenarios.

Fig. 6: Our agricultural robot, the BoniRob, on a leek field
(left). The right side shows a georeferenced image of a sugar
beet field overlaid with a crop row pattern (magenta) extracted
from the image data.

A. Hardware Description

All data has been recorded with our agricultural robot
BoniRob (see Fig. 6). It was driven at different speeds with
a maximum of 1m/s manually and 0.2m/s autonomously.
Vision data was recorded with a PointGrey Blackfly color
camera with five megapixels and laser data was recorded with
a Nippon-Signal FX-8 3d laser range scanner (see Fig. 2).
Both sensors are mounted centered in the front of the robot at
a height of about one meter above the ground and are tilted
downwards by about 25◦. Crop row detection on the robot
during autonomous navigation was performed on a Pokini i2
computer with an Intel Core i7-4600U CPU with 16 GB RAM.
Evaluations in this section were performed on an Intel Core
i7-4770 CPU with 16 GB RAM.

B. Data Sets

We collected data from various different plants. We recorded
vision data from sugar beet fields with medium sized plants of
about 5 cm (see Fig. 2 (bottom)) and tiny plants that had just
recently emerged. With a size of about 1 cm these plants are
hard to perceive even for a human (see Fig. 1). Furthermore,
we recorded 3d laser data from a canola field (see Fig. 5), a
corn stubble field, and a leek field (see Fig. 2 (top)). In the
canola and leek data sets, the plants are in a later growth stage
and thus can be easily seen in the laser range data. The corn
stubbles are harder to segment as they are small and therefore
hardly recognizable in the laser data. They also do not present
a distinctive color difference to the soil in images.

All data sets were split into in row motions, where the
robot drives in the field aligned with crop rows and transition
motions, where the robot either leaves or enters the field. The
covered distance for driving in row and the covered angle
for transitions are listed in Table I. When leaving or entering
the field crop rows are usually only partially visible and the
robot is not necessarily aligned with the field, e.g., when
turning towards it as in the leek and sugar beet transition
data sets (see Table I). For the canola and corn transition
data sets, the robot was mostly leaving the field and thus
not changing its orientation notably. Such scenarios present
hard challenges to crop row detection algorithms as less data
is available to detect crop row patterns, while at the same
time the sensors see areas not part of the field that also
contain vegetation. Nevertheless these situations are especially
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in row transition
Canola Corn Leek Medium

Sugar Beet
Tiny Sugar

Beet
Canola Corn Leek Medium

Sugar Beet
Tiny Sugar

Beet
number of feature maps 47 24 79 70 63 59 61 87 55 88
distance / angle covered 43.94m 35.69m 383.36m 70.81m 109m 1.98◦ 8.00◦ 45.84◦ 49.46◦ 62.72◦
mean vegetation density 0.7% 1.6% 0.5% 0.6% 0.5% 0.6% 0.6% 0.7% 0.3% 0.3%

TABLE I: Data set properties. When driving in row, the angle does not change a lot, and during transitions, the robot does
not cover much distance. The vegetation density denotes the percentage of cells that contain plant features.

Canola Corn Leek Medium Sugar Beets Tiny Sugar Beets
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Fig. 7: This figure shows the success rates for all algorithms on each data set.

important for autonomous navigation as they allow the robot
to accurately leave and enter a field.

To evaluate the success rate we manually labeled crop row
patterns for integrated point clouds in the laser data sets and
images for the vision data sets. As feature maps extracted
during transitions potentially change in appearance quickly, we
evaluated a feature map every 0.1 s. When driving in a row, we
only evaluated a feature map every 5 s since the surroundings
stay similar for a long time due to low speed. The number of
feature maps is shown in Table I.

C. Robustness
Robustness is crucial for guiding an autonomous vehicle.

We define robustness by the percentage of successfully ex-
tracted patterns, i.e., that the angular and lateral error are
within reasonable thresholds for navigation. Here, the error of
the spacing is not essential, as navigation relies on the angular
and lateral errors. We quantify the error between the computed
pattern and the labeled ground truth pattern by three measures:
the angular error (theta error) between the normal angles of the
patterns, the spacing error as the difference of the computed
spacing to the ground truth, and the lateral error. The lateral
error is defines as the lateral distance of the computed pattern
in comparison to the ground truth pattern at a point one meter
in front of the robot.

We say that a pattern extraction was successful, if the
angular error is smaller than 10◦ and the lateral offset does not
exceed 0.10m. Both measures are crucial to control the angle
and sideways tracking of a robot following a crop row [4].
The thresholds were determined in real-world experiments on
our BoniRob (see Fig. 6).

Fig. 7 shows the success rates for all algorithms and data
sets. For all approaches, the success rate depends on the
data set. For small plants, when feature points are extracted
accurately while driving in the sugar beet field, the linear
structure is clearly visible and therefore all algorithms perform
well. In the medium sugar beet data set, the Pattern Hough
transform performs best with 85%, while other algorithms
show similar performance. This is also true for most other
data sets, while driving in row, besides the canola, where
crops were larger and thus a clear line is not easily visible
(see Fig. 11).

Most data sets pose harder challenges when the robot is
transitioning as less data is visible overall and the sensors
not only view the field, but also possible vegetation off the
field. This can be seen clearly in the corn data set, where the
stubbles present quite sparse data and thus there is not much
noise driving in the field. This results in almost 100% success
rates for all algorithms here. In contrast, when not all data is
visible while entering or leaving the field, success rates drop
to around 75% for all algorithms.

For larger plants, as in the canola and leek fields or the
medium sugar beets, plant feature points are distributed across
the larger plant surface, so that the linear structure is harder
to recognize. Therefore, in these data sets we see notable
differences in the success rates also while driving in row.
Here, the Pattern Hough transform still performs well in
comparison, where especially in canola with large plants all
other approaches perform worse.

When driving in row the Pattern Hough transform usually
performs similar or better than others. This is different during
transitions. For canola all Hough-based algorithms have higher
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Fig. 8: Evaluation of spacing error (left) and lateral error(right)
in the medium sugar beet transition data set. Shown are
individual errors for each measurement for a data set. The
error values have been sorted by size. The black horizontal
line shows our threshold for a successful pattern extraction.

success rates than RANSAC, while the opposite is true in leek.
For the medium sugar beets the Dual Line Hough shows worse
success rates than the Pattern or Line Hough. We consider
these cases in detail in the next section.

D. Discussion

In this section we show how the different algorithms behave
in special cases by investigating the distributions of individual
errors for a specific data set. In particular, we are interested
in why RANSAC appears to be more robust than the Hough
variants in the leek and medium sugar beet transition data sets,
as can be observed in Fig. 7.

For the medium sugar beets, we take a closer look at the
spacing and offset errors shown in Fig. 8. Most prominent in
both plots is the considerable error when applying the Dual
Line Hough transform. Here, estimating the spacing only using
the closest parallel line is not always correct, as the sugar beets
were not sown evenly on the field. This shows that, in realistic
scenarios, an estimation of the crop row spacing across all data
is necessary.

While the Pattern Hough transform only finds a pattern with
a suitable lateral error for about 35 of the 60 images, for most
of the other images the lateral error is only about 2 − 3 cm
above the threshold. As the choice of 10 cm as a threshold for
the lateral error is arbitrary, we conclude that, even though by
our definition the Pattern Hough transform has a lower success
rate than RANSAC, in this case it performs reasonably well
although at slightly less precision than the Pattern RANSAC.

For the leek transition data set, a detailed evaluation plot
is shown in Fig. 9. We observe that about ten images (70-80)
show a larger theta error for the Pattern Hough transform.
In this case, the data was quite sparse, which caused the
increase in theta error by about 4◦ in comparison to RANSAC.
Although the theta error in these cases is still below the
threshold, the slightly off-angle pattern causes lateral errors
exceeding the success threshold.

In contrast, RANSAC performs a lot worse than the Pattern
Hough transform in the canola transition data set (see Fig. 7).
It is clear from Fig. 10 that the theta error diverges from
image 35 to 40, which subsequently causes large lateral errors.
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Fig. 9: Evaluation of theta error (left) and lateral error (right)
in the leek transition data set.
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Fig. 10: Evaluation of theta error (left) and lateral error (right)
in the canola transition data set.

In this case however, the failure of the Pattern RANSAC to
correctly determine the angle is too large to be recovered
by adjusting the threshold. Note that even though the Pattern
Hough transform has a success rate of 100%, it does not yield
perfect results: The lateral error still goes up to 7 cm. This is
low enough for navigation applicability and thus we consider
it a success.

Overall, the Pattern Hough performs well in row, and
especially outperforms other algorithms in the noisy canola
data set. In contrast the Pattern RANSAC has higher success
rates while transitioning in the leek data set and slightly
higher success rates while transitioning in corn and medium
sugar beets, where more iterations show improvements. Most
importantly, in the cases where the Pattern Hough transform
had lower success rates, we observed from the individual error
plots that its error values did not diverge. The lower success
rates were explained by lower precision in comparison with the
Pattern RANSAC. These results show that using the Pattern
Hough transform as correction input of a localization filter is
viable, since a filter does not require perfect measurements to
enable reliable navigation.

E. Applications for Navigation

The main use case for crop row detection is as an input for
localization during autonomous navigation. Here, sufficiently
fast computation is essential. We measured the computation
time of each algorithm and report the mean time over each
data set in Table II. Here, the Line Hough and Dual Line
Hough are an order of magnitude faster in comparison to the
Pattern Hough as the Hough space is of a lower dimensionality.
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Canola Corn Leek Medium
Sugar Beet

Tiny Sugar
Beet

Line Hough 8 13 8 9 8
Dual Line Hough 8 12 8 9 8
Pattern Hough 89 119 71 53 41
RANSAC 2500 34 40 33 27 27
RANSAC 5000 69 79 64 53 52
RANSAC 25000 340 391 319 259 255

TABLE II: Mean computation times in ms.

Fig. 11: A feature map from the canola transition data set (left),
overlaid with correct row patterns from the Pattern Hough
(black) and RANSAC 25000 (blue) (right). Both algorithms
are able to extract row patterns in difficult scenarios.

As desired, RANSAC 2 500 is faster than our Pattern Hough,
RANSAC 5 000 is comparable, and RANSAC 25 000 is five
times slower, but can get better results than with 5 000 itera-
tions. The larger times for all algorithms on the Corn data set
can be explained by the higher vegetation density in the feature
maps while driving in row (see Table I), as all vegetation
features need to be evaluated (RANSAC) or transformed
(Hough). Overall, all computation times are reasonable for
online operation and in fact we use the Pattern Hough as part
of our autonomous navigation system successfully 1.

Besides autonomous navigation crop row detection can also
be used for mapping, either based on the sensors of the robot,
or as shown in an example in Fig. 6 (right) to extract semantic
information of crop rows from a georeferenced overhead
image acquired with a UAV 2. To extract such a map, we
used our vision-based segmentation on the overhead image
to produce a feature map and applied the Pattern Hough
transform. This information can then in turn be used by a
ground vehicle to localize itself—using crop row detection—
in the field.

VI. CONCLUSION

In this paper we presented a novel approach that robustly
creates a sensor-independent feature representation from dif-
ferent sensor modalities and detects crop rows from noisy
or sparse data. A key idea is to determine a pattern that
is best supported by all data in contrast to (incrementally)
extracting single lines. Our Pattern Hough transform estimates
the spacing between equidistant rows directly. While other
approaches rely on strong assumptions and prior information
limiting the search space, the Pattern Hough performs a
global optimization over all necessary parameters with all data
provided. Estimating the complete pattern instead of recon-
structing the spacing in post-processing steps or assuming it

1A video demonstrating our approach on different fields can be found at
https://www.youtube.com/watch?v=0VIwuCaTHPM.

2Thanks to Raghav Khanna from ETH Zurich for providing the image.

given constitutes a sound method for crop row detection. Our
Pattern RANSAC follows the same philosophy.

Our approaches work particularly well on tiny plants, a use
case that is rarely tackled by other systems. Our results show
that we achieve high robustness especially when driving in the
field, which makes it well suited for the intended application of
precision farming. We furthermore showed that in some hard
cases the Pattern RANSAC performs better than the Pattern
Hough based on our requirements for precision, although
even in these cases the Pattern Hough transform did not
fully diverge from the ground truth. We are already using the
Pattern Hough transform as part of our system for autonomous
navigation. In future work we will focus on increasing the
robustness of the complete navigation system leveraging our
crop row detection methods.
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