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Abstract— In this paper, we present an approach to generate
robot motions for robust parts assembly. The computation of
motions for parts assembly usually requires an exact model
of all relevant objects. Generating detailed object models,
including friction and dynamics, is often complex and time-
consuming, especially in the context of elastic parts. In addition,
executing motions on real hardware will usually introduce fur-
ther uncertainty. For this reason, we propose an approach that
is inherently robust against model parameter uncertainties and
unknown characteristics of elastic parts. Our planner explicitly
takes into account the internal states of articulated objects, as
well as uncertain model parameters, by constructing a search
tree in the belief-parameter-space. It yields successful assembly
motions from coarse object models and thus eliminates the need
for detailed parameter tuning. We evaluated our approach with
respect to four assembly tasks. Extensive simulations show that
our planner significantly increases the success-rate compared
to previous approaches. Numerous experiments on a real robot
confirm the simulated results.

I. INTRODUCTION

Many automation tasks in manufacturing and logistics

require robots to reliably join parts of various geometries

and material characteristics. Examples include packaging or

assembly tasks such as the elastic peg-in-hole task in Fig. 1.

The state-of-the-art approach to automating these tasks is

to hold parts in precise fixtures or part-feeders and to explic-

itly describe all robot motions via teach-in programming. In

applications where the task or the parts change frequently,

teach-in programming is not viable. We aim for a method that

autonomously computes robot motions for highly reliable

parts assembly. A number of aspects render the automation of

motion planning for parts assembly a challenging problem.

1) High-dimensional spaces with non-linear dynamics:

Assembly is a dynamic process which requires the in-

clusion of velocities into the configuration-space. For a

six-axis robot this already results in a 12-dimensional

configuration-space. As contact between parts is essential

to assembly, the dynamics exhibit abrupt non-linearities.

2) Uncertainty in the process: When precise part-feeders or

fixtures are not available, robotic assembly must rely on

inherently noisy sensor-readings to determine the poses

of objects. For elastic parts, such as a wire, the dynamic

evolution of the part’s deformation must be considered as

well.

3) Inaccuracy of models: Being able to successfully deploy

planned motions on real hardware requires a precise

model of all parts, robots, and the execution environment.

While the geometry of parts is typically available via
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Fig. 1. Elastic peg-in-hole assembly: This problem is particularly chal-
lenging since precise estimates of material characteristics such as bending-
stiffness are typically unavailable. The presented method computes assembly
plans that are robust towards uncertainties in the physical model parameters.

CAD-data, material properties such as friction or elastic-

ity are difficult to obtain. They may even change during

a process step, e. g., when parts are exposed to heat or

lubrication during machining. A precise calibration of

models is impractical, especially in the context of small

batch production.

The main contribution of this work is a kinodynamic

belief-space planner for assembly, that addresses all chal-

lenges above. This planner extends our previous work [1]

on robust assembly to elastic parts and noisy estimates of

model parameters, such as friction. A further contribution

of this work is an analysis of the influence friction has on

the robustness of planned parts assembly. We conduct our

analysis with regard to extensive simulated and real world

experiments. These experiments show that the consideration

of noisy model parameters significantly increases the ro-

bustness of robotic assembly. The proposed planner yields

robust motion plans from CAD data as only input, thus

circumventing the need for extensive parameter tuning.



II. RELATED WORK

The presented work relates to three major strands of

research: motion generation for compliant assembly, kin-

odynamic motion planning, and planning under state and

environmental uncertainty.

A. Compliant Assembly

There exists a broad scope of methods for computing

manipulator motions for parts assembly. Among the early

approaches is fine motion planning (Lozano-Pérez et al. [2]).

It has however been shown that fine motion planning does

not scale to problems of practical relevance [3]. The works of

Dakin et al. [4] and Ji et al. [5] address scalability by means

of hierarchization and planning over contact-manifolds, yet

require a manual classification of all possible contact states.

Bruyninckx et al. [6] employ analytical models for each

phase during a peg-in-hole scenario. A formal derivation

of motion constraints, though highly effective for the task

at hand, is impractical considering the enormous variety of

possible part geometries.

B. Sampling-Based Motion Planning

The autonomous generation of robot motion requires rea-

soning in high-dimensional robot configuration-spaces, for

which sampling-based planners have demonstrated remark-

able successes. The Probabilistic Roadmap (PRM, Kavraki et

al. [7]) or the Rapidly-exploring Random Tree (RRT,

Lavalle et al. [8]) are prominent examples for sampling-

based motion planners. The results as obtained from kine-

matic planners require post-processing prior to being exe-

cuted on a real robot. In order to account for more general,

control-based system dynamics, Lavalle et al. proposed a

kinodynamic extension to RRT [9]. Both, PRMs and RRTs

rely on local steering-functions. Steering functions are dif-

ficult to obtain, especially in the context of highly non-

linear dynamics as encountered during parts assembly. The

kinodynamic Expansive Space Tree (EST) planner of Hsu et

al. [10] grows a tree by applying random actions to already

existing tree nodes. This circumvents the need for intricate

steering functions. The planner presented within this work

builds on the EST framework.

The above methods assume perfect state- and model-

information. One contribution of this work is an elaborate

analysis of the influence of imprecisely calibrated model

parameters on the success rates during real-world execution.

Our results emphasize the need for a systematic treatment of

uncertainty when planning trajectories for parts assembly.

C. Planning under Uncertainty

In order to address uncertainties in environment and initial

state, Melchior et al. [11] introduce Particle RRT. Simi-

lar to our planner, Particle RRT employs a particle-based

uncertainty representation. However, Particle RRT requires

heuristics for the assessment of path quality and, more im-

portantly, to cluster particles into belief-nodes. Sieverling et

al. [12] and Páll et al. [13] adopt a particle-based belief

representation to domains, where robots enter deliberate

contact with the environment. However, Contact-Exploiting

RRT (CERRT) and Contingent CERRT constrain the entire

particle set to be either in contact or in free space. We found

that this constraint reduces the solution space especially in

the context of manipulating elastic objects.

The work of van den Berg et al. [14] introduces

LQG-Motion Planning. The LQG-MP framework risk-

assesses candidate motion plans, taking into account a-priori

knowledge of sensor- and motion-noise. Patil et al. [15] make

use of the LQG-MP framework, addressing the problem

of motion planning for uncertain, deformable environments.

Similarly, the Chance Constrained RRT (CC-RRT) of Lud-

ers et al. [16] computes motion plans that take into account

systems with process and environment uncertainties. Under

the assumption of linear system dynamics, CC-RRT and

an asymptotically optimal variant CC-RRT∗ [17] provide

probabilistic guarantees on feasibility and asymptotic op-

timality, respectively. The above methods are tailored to

either linear systems or to systems that are well approxi-

mated by means of local linearization. The highly non-linear

and abrupt discontinuities encountered in contact-dynamics

renders methods based on local models infeasible. Agha-

Mohammadi et al. [18] generalize the PRM framework to

domains with motion and sensing uncertainties. However,

their Feedback-based Information RoadMap (FIRM) relies

on the availability of local steering functions, which in the

context of contact dynamics are difficult to obtain.

We extend our previous belief-space planner

Belief -EST [1] (B-EST) to assembly domains containing

elastic parts and model uncertainty. The proposed extensions

do not rely on the availability of local controllers, guiding

heuristics, or tailored reductions to lower-dimensional

manifolds. We evaluate our method with regard to several

assembly benchmarks, considering the full state-space of

robot and objects.

III. PROBLEM SETTING AND NOTATION

In the following, we state the system class considered

and our notation (Section III-A). The need for compliant

robot-environment interaction is discussed in Section III-B.

The system’s dynamical behavior is strongly influenced by

the underlying physical quantities. We present a parametric

version of the system dynamics and the space of model

parameters in Section III-C. The system state and the model

parameters are subject to uncertainty. Section III-E therefore

introduces the notion of a belief over state and model

parameters.

A. Contact Dynamics System Model

We consider the problem of parts assembly, where a robot

manipulator joins two objects, one rigidly attached to its

end-effector, the other, statically resting on the environment

geometry. Fig. 2 depicts an exemplary assembly task and

clarifies upon relevant quantities. Throughout the remainder

of this work, we use subscripts (·)r and (·)o in order to

address quantities that refer either to the robot or to the

grasped object, respectively. The robot manipulator has nr
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Fig. 2. Exemplary assembly scenario: a seven degrees-of-freedom (DoF)
robot arm joining a two DoF hinge with an environment-mounted object
(yellow). Several physical parameters affect the system dynamics. These
include the damping- and stiffness-parameters of the hinge joints and the
frictional coefficients of the involved materials.

fully actuated degrees-of-freedom. We assume the grasped

object to be either rigid (no = 0), or articulated by means

of no non-actuated degrees-of-freedom. The simple 2-DoF

hinge depicted in Fig. 2 serves as an example for such an

articulated object. Further examples include flexible objects

such as wires, ropes, or cloth, which are commonly approx-

imated by means of several rigid bodies interconnected with

prismatic or revolute joint primitives.

A system configuration q = [qr, qo]
⊤
∈ R

nq , where

nq = nr + no, is a composite vector of all robot configu-

rations qr ∈ R
nr and object configurations qo ∈ R

no . With

the system configuration in place, we may define the system

dynamics model as

M (q) q̈ + c (q, q̇) + g (q) + h (q, q̇) = τu + τc, (1)

where M ∈ R
nq×nq is the joint-space inertia matrix.

The composite vectors g = [gr, go]
⊤

∈ R
nq and

c = [cr, co]
⊤

∈ R
nq denote the gravitational and Coriolis

force components. We denote the input to the dynamical

system τu = [τr, 0
no ]

⊤
. Since we assume a non-actuated

object, the actuation torque τu is composed solely of the

robot axis-torques τr ∈ R
nr . Constraint forces τc ∈ R

nq

occur whenever the robot or the grasped object is in contact

with the environment. The generalized force h (q, q̇) ∈ R
nq

represents the forces attributed to the dynamics of non-rigid

objects, e.g., a retraction force of a compressed elastic object.

B. Compliant Manipulation

During assembly, we deliberately exploit motions where

the grasped object enters contact with the environment

geometry. When using stiff, position-controlled robot ma-

nipulators, interactions between the manipulated object and

the environment geometry may cause contact forces that

damage the robot and its environment. Hence, compliant

robot-environment interaction is indispensable. We therefore

make use of a stable, compliant robot controller

τr = C
(
qr, q̇r, q

d
r , q̇

d
r , q̈

d
r

)
. (2)

∫
dt

∫
dt

Controller

C(·)
Eq. (2)

f(q, q̇, τr; θ)
Forward Dynamics

Eq. (3)

qdr

q̇dr

q̈dr
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q̈r

q̈o

q̈τr

Fig. 3. Integrated model parameter-dependent system dynamics with
contact and a feedback-controlled compliant robot manipulator.

The compliant controller exerts an actuation torque τr
based on the deviation of the current robot state (qr, q̇r)
from an acceleration-limited reference

(
qdr , q̇

d
r , q̈

d
r

)
. Con-

crete realizations of a compliant controller include, among

others, Cartesian-space impedance control and joint-space

impedance control.

C. Physical Model Parameters

Both the contact forces and the dynamical behavior of

the grasped objects depend upon the parametrization of the

underlying physical models. Practical examples for such

parameters include surface friction coefficients, kinematic

offsets, or the stiffness- and damping-rates of elastic parts.

Let therefore θ = [θ1, . . . θi . . . , θnθ
] ∈ Θ be a nθ-

dimensional vector of model parameters. Given θ, we may

define the parametric version of the forward-dynamics cor-

responding to (1) as

q̈ = f (q, q̇, τr; θ) . (3)

As pointed out earlier, we cannot assume precise knowl-

edge on the above stated parameters. Hence, we restrict

our assumption on individual parameter values θi to a

bounded interval θi ∈
[
θmin
i , θmax

i

]
. For any choice of model

parameters, the resulting parameter-space may be writ-

ten as the Cartesian product over the parameter intervals,

i. e.,Θ =
∏nθ

i=1

[
θmin
i , θmax

i

]
, where (·)min and (·)max denote

the respective lower and upper parameter bounds. Fig. 3 de-

picts the feedback-loop for our parameter-dependent system.

D. Compound State

Since the dynamics f (·) are a function of both state and

the respective model parameters, we introduce the compound

state

x = (q, q̇; θ) ∈ X , (4)

with X = R
2nq × Θ being the combined space of system

configuration, velocities and model parameters.

E. Planning in Belief-Space

Uncertainties in system state and the model parameters

require a probabilistic view on the evolution of the system

dynamics. Let therefore xt = (qt, q̇t; θ) be the time discrete

equivalent to the compound state introduced in (4). The

compound state xt evolves according to the state-transition

probability

p (xt′ | xt, ut→t′) , (5)



where t′ > t. The system input ut→t′ encodes the evolution

of our reference trajectory
(
qdr , q̇

d
r , q̈

d
r

)
between t and t′.

We represent current knowledge about the compound state

by means of a probability distribution over compound states

bt = bel (xt) ∈ B. The associated space of belief distribu-

tions is given as B = {bel (xt) | bel (xt) : X → [0,∞)}.

Given the state-transition probability in (5) and the current

belief bel (xt), the belief evolves as

bel (xt′) =

∫

X

bel (xt) p (xt′ | xt, ut→t′) dxt. (6)

Note that we do not consider sensory feedback aside from

the state-feedback of the compliant controller (2).

With the notion of a belief and the corresponding belief-

propagation in place, we can now formally define our ob-

jective. Let F ⊂ B be the region of valid belief states. The

belief-space region F is a measure of probability mass. To

give an example, one could define F as the region, for which

99% of the belief experiences external torques less than

42 Nm. Furthermore, consider b0 = bel (xt=0) a given initial

distribution over compound states, which encodes the prior

knowledge about the system state and the model parameters.

Definition 1. A belief trajectory Γ : {b0, b1, . . . , bT }
with T ≥ 0, generated by a sequence of inputs

Π : {u0→i, . . . , uj→T } with 0 ≤ i ≤ j ≤ T is valid iff

it lies within F and adheres to the belief dynamics (6).

Another input to the planner is the non-empty goal region

G ∈ B. An example for a goal G could be the region in

belief-space, where more than 95 % of the probability mass

are in immediate vicinity of a target configuration. Given the

goal region G, the initial distribution b0, and the valid region

F , we can define a feasible trajectory.

Definition 2. A belief trajectory Γ is feasible iff it starts in

b0, ends in a goal region bT ∈ G, and is valid according to

Definition 1.

The overall objective is to find a feasible trajectory, solving

the task of parts assembly in the presence of parametric

uncertainties.

IV. ROBUST, COMPLIANT MOTION PLANNING

In the following section, we introduce Model-Belief -EST

(MB-EST), an extension of the B-EST planner that ad-

dresses uncertain model parameters and articulated objects.

A detailed outline of the algorithm for particle-based belief

representations is given in Section IV-B.

A. Model-Belief-EST: Algorithm Outline

The EST [10], the B-EST [1], and the herein presented

MB-EST are kinodynamic motion planners that iteratively

expand a search tree. Any such expansive space tree planner

has to implement the following four methods: a method for

selecting a candidate-node for tree expansion, a control-input

sampler, a method for integrating dynamics, and finally a

method that checks, whether or not a node is valid.

Beyond concrete realizations for these methods and the

search-space domain, the high-level algorithms share a

algorithm MB-EST(b0, G)

1: V = {b0} , E = {}
2: while withinTimeBudget() do

3: bt = sampleWeighted(V )
4: ut→t′ = sampleControl()
5: bt′ = integrate(bt, ut→t′)
6: if isValid(bt, ut→t′) then

7: V .append(bt′)
8: E.append(bt, ut→t′ , bt′)
9: if bt′ ∈ G then

10: return Π, the control actions from b0 to bt′

11: return failure

common structure. Compared to the EST, which addresses

classical, deterministic motion planning, both B-EST and

MB-EST account for probabilistic planning domains. B-EST

constructs a search tree in the space of probability distri-

butions over system states. MB-EST further incorporates

the internal states of articulated objects as well as uncer-

tain model parameters, by constructing a search tree in

belief-parameter-space. In the following we briefly outline

the general procedure of the MB-EST shown above.

We initialize the set of nodes V with the root node b0. The

set of edges E is initially empty (Line 1). The tree expansion

is driven by the following steps: first the sampleWeighted

method selects a random node bt from the current tree

(Line 3). Next, the sampleControl method returns a random

control action ut→t′ (Line 4). Given the current state and

a random control action, the algorithm according to (6),

integrates the dynamics (Line 5). If the trajectory segment

from bt to bt′ is valid (Line 6), the child node bt′ is added

to the tree (Lines 7 & 8). In case a child node bt′ is

contained within the goal-region G, the algorithm terminates

and returns the sequence of control actions Π.

B. MB-EST for a Particle-Based Belief Representation

There are several approaches to representing bt = bel (xt),
the probability density over the compound states. These

include parametric distributions (e.g. Gaussian or mixture

of Gaussian distributions) or non-parametric approximations

such as histograms or particles. Contact dynamics are highly

non-linear and aside from a few special cases not available as

closed-form analytical models. Hence, we favor a particle-

based belief representation. We approximate the belief by

means of a set of N particles
(
[1]xt, . . . ,

[N ]xt

)
. A par-

ticle [i]xt =
(
[i]qt,

[i]q̇t;
[i]θ

)
∼ bt denotes a sample drawn

from the true belief bt. A notable difference to the B-EST

algorithm is that a state x now comprises the state of the

robot manipulator, the internal states of articulated or elastic

objects, and physical model parameters.

We obtain the initial particle set representing b0 for

MB-EST as follows: since we assume the initial system

state to be measurable, we share (q0, q̇0) across all particles

i. e.
(
[i]qt,

[i]q̇t
)
=(q0, q̇0) ∀ i=1 . . . N . Each individual pa-

rameter vector [i]θ is drawn at uniform from the bounded

parameter space Θ.
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Fig. 4. Executions of trajectories for compliant peg-in-hole insertion for different material frictions. For the B-EST method, the trajectory yields a
successful peg insertion only for cases where the friction parameter during execution closely matches the nominal friction coefficient µnom assumed during
planning. Contrary, the MB-EST reference trajectory achieves successful peg insertion independent of the actual friction coefficient. MB-EST is able to
decouple the execution success-rate from the gap between simulation and reality.

The sampleWeighted method biases the tree expansion

towards sparsely covered regions in belief-parameter-space.

We assign a weight to each node. The weight is inversely

proportional to a density estimate as to which the respective

region is already covered. This weighted sampling policy

favors to expand nodes in sparsely covered regions. In more

tangible terms, we place a coarse grid over the space of the

particles’ mean object pose. During tree construction, each

node is assigned to one of these grid cells. The sampling

policy then returns a random node from a random, occupied

grid cell.

A sampled belief node evolves by means of a randomly

chosen control action ut→t′ . In the context of our parts-

assembly scenarios, a random action ut→t′ encodes a ref-

erence trajectory segment
(
qdr , q̇

d
r , q̈

d
r

)
. The length of the

trajectory segment is typically sampled at uniform from a

bounded interval.

The evaluation of the dynamics (6) by the integrate

method is straightforward for particle-based belief represen-

tations. For each particle, we simulate the system response

of the closed-loop model depicted in Fig. 3 to the previously

sampled reference trajectory. The result of this procedure

is a set of trajectory segments describing the evolution of

the individual particles. The end-points of these trajectory

segments is what constitutes the node bt′ . Refer to Fig. 4 for

the particle and reference trajectories during a peg-in-hole

scenario.

The isValid method checks whether a belief-space trajec-

tory segment is vaild according to Definition 1. In the context

of parts assembly, it is crucial to prevent situations in which

the robot or its environment are at risk of being damaged.

Hence, we enforce an upper bound on the robot torques. If

we register a violation of the maximum allowed torque for

any of the particles, we reject the node candidate.

We consider a particle-based belief approximation to be

contained in the goal region if more than a γ fraction of

the particles fulfill a certain goal condition dist (q) < d∗.

With regard to the assembly scenario in Fig. 4, we define

dist (q) as the distance between peg and hole and d∗ as

a suitable distance threshold. As soon as a particle set

fulfills the goal condition, the tree expansion terminates. The

algorithm returns a sequence of trajectory points
(
qdr , q̇

d
r , q̈

d
r

)

corresponding to the actions Π that steer the system from b0
to the goal node.

V. MODEL PARAMETERS FOR PARTS ASSEMBLY

The following section introduces the set of physical model

parameters we consider most relevant for industrial assembly

tasks.

A. Kinematic Offsets

Imprecise grasping or slippage of the grasped object

induce uncertainty on the kinematic offset between the robot

end-effector and the grasped part. Uncertainties on the object

location render assembly tasks with small or even zero tol-

erance challenging. Similar to the B-EST, we systematically

address these uncertainties by introducing a bounded offset

transform (=̂ θ1) between the end-effector and the grasped

object.

B. Elastic Objects

The physical properties (e. g., bending stiffness) of ar-

ticulated objects, ranging from simple kinematic structures

such as the hinge shown in Fig. 2 to more complex flexible

body approximations, are mainly determined by the stiffness
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Fig. 5. Benchmark scenarios targeting industrial assembly scenarios.
Shown are the dimensionalities of the actuation- and state-space as well
as the assumed bounds of the parameter-space.

and damping coefficients of the underlying joint primitives.

Under the assumption of uniform stiffness and damping

coefficients, we can write the generalized force attributed

to the system dynamics as

h (q, q̇) = diag {0nr , k 1no} q + diag {0nr , d 1no} q̇, (7)

where diag {·} denotes the matrix operator and d (=̂ θ2) and

k (=̂ θ3) are the damping and stiffness, respectively. For the

case of a rigid object (no = 0), the above equation yields

h (q, q̇) = 0nq .

C. Friction

During parts assembly, contact interactions are not only

inevitable, but can systematically be exploited in order to

address system uncertainties. The dynamics during contact

are in large parts determined by the (possibly non-constant)

friction µ (=̂ θ4) of the involved materials, i. e., the constraint

torque τc is a function of friction µ. At this point, we omit a

further discussion on the broad details of contact dynamics.

VI. RESULTS

In the following, we introduce the benchmark tasks with

regard to which we assessed our algorithms (Section VI-A)

and provide implementation details in Section VI-B. Sec-

tion VI-C analyzes our method with respect to several key

criteria. The real-world experiments we conducted and their

results are presented in Section VI-D.

A. Benchmark Scenarios

We evaluated our planner with regard to the four bench-

mark scenarios shown in Fig. 5. The GEAR assembly task is

a benchmark problem set out by Siemens1 that specifically

addresses the demands in industrial automation. It requires

placing a gear with a square opening onto a square-shaped

peg. The clearance is 1 mm. The PEG task is a well studied

1https://www.siemens.com/us/en/home/company/fairs-events/robot-
learning.html

assembly benchmark, since it covers a wide spectrum of in-

dustrial applications. The clearance between peg and hole is

0.5 mm. The PUZZLE problem was introduced in [4]. Solving

it requires three consecutive joining processes with tolerances

of 1-2 mm. The ELASTIC benchmark illustrates our method’s

applicability to the joining of non-rigid, deformable objects

such as encountered in wiring tasks. A short, wire-like object

is approximated by means of eight interconnected cylindrical

primitives. It is important to stress that we did not rely

on tailored projections to lower-dimensional manifolds. All

problems were solved in the full (up to 46-dimensional) state

space.

B. Implementation

The integration of the system-dynamics in contact (1)

was carried out using the MuJoCo physics-engine [19]. We

simulated each of our benchmarks at an integration step-

size of 5 ms. The dynamics were integrated in parallel using

OpenMp [20]. The analysis of all algorithms was carried out

on two Intel Xeon E5-2640v4 (2.4 GHz) ten-core processors.

The present work addresses offline scenarios. Yet, the time

required to compute assembly trajectories consistently lay

within the range of a few minutes. The real-world experi-

ments were conducted using a KUKA iiwa R800 redundant

7-axis manipulator. As concrete realization of compliant

robot-environment interaction, we used joint-level impedance

control with gravity compensation. The resulting control

law (2) is

τr = Mr (qr) q̈
d
r +K

(
qdr − qr

)
+D

(
q̇dr − q̇r

)

imposed dynamics

+gr (qr) ,

where K ∈ R
nr×nr and D ∈ R

nr×nr are the di-

agonal, positive-definite stiffness and damping gains and

Mr ∈ R
nr×nr is the manipulator’s inertia matrix. The above

control law compensates for the robot dynamics and imposes

a torsional spring-damper behavior on each of the joints.

We chose a stiffness value of K = diag
{
17 200

}
Nm/rad

during all experiments. The damping term D was computed

using double-digitalization damping design [21]. We sampled

end-effector targets in Cartesian space and computed the

corresponding joint-space reference using the eTaSL/eTC

framework [22].

C. Simulation Study & Analysis

In the following, we show that the assembly trajectories as

obtained from kinodynamic motion planners, are likely to fail

even at minor deviations between model and real-world. We

demonstrate that the MB-EST algorithm performs well even

in situations where there is a significant deviation between

the assumed and actual model parameters.

The experiments evaluate and compare the following

planning methods: firstly, the EST planner [10], a standard

reference for kinodynamic motion planning, secondly the

B-EST planner [1], a motion planner for robust trajectories

in the face of state uncertainties and, finally, the MB-EST

planner.Throughout our experiments, we assumed an uncer-

tain translational offset between object and gripper sampled
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Fig. 6. Success-rate during assembly execution as a function of the friction
parameter µ. During planning, the B-EST and the EST algorithm assume
nominal parametrizations µnom.

within a range of ± 2 mm. The assumed parameter ranges for

friction, damping and stiffness, the nominal parametrizations,

as well as the dimensionality of the state-space are illustrated

in Fig. 5.

In a first step, we computed 50 assembly trajectories for

each of the benchmarks. We planned the EST and B-EST

trajectories assuming nominal parametrizations (·)
nom

.

Next, we executed each of the trajectories 4000 times,

whereby we drew the model parameters for each execution

uniformly on a logarithmic scale (base 2). Fig. 6 and

Fig. 7 depict the planners’ success-rates with regard to the

employed parameter values. The success-rate was obtained

by binning (200 bins) the outcome of individual executions

(success-failure) over the range of parameter values.

The success-rates for the EST and B-EST planners experi-

ence a drop especially for high values of material friction and

unsurprisingly are at maximum when the simulation model

closely matches the execution environment. Fig. 4 shows how

an assembly trajectory computed for a nominally assumed

friction coefficient fails, as soon as deviations between the

planning- and execution-environment occurs.

The results in Fig. 6 emphasize how susceptible motion

plans are to a mismatch between the assumed parametrization

and the actual physical parameters. In contrast, our method

yields success-rates near 100 % over a parameter range from

an eighth up to eight times the nominal values. Fig. 4

demonstrates our method’s ability to compute trajectories

that work despite a potential mismatch between simulation

and reality. As shown in Fig. 7, the effects are even more

distinct when considering multiple parameters subject to

uncertainty.

The fact that we use a set of N particles in order to

represent a continuous parameter range raises the question

as to how many particles one requires in order to produce

adequately robust assembly trajectories. For this purpose,

we repeated the above experiment, varying the number of

particles. Fig. 8 depicts our planner’s success-rate w.r.t. the

number of particles N . One can observe that even few

particles are sufficient to retrieve robust trajectories. We

are well aware that the number of particles required grows
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Fig. 7. Success-rate as a function of the stiffness- and damping-coefficient
of elastic materials. Left: success-rates for the EST, assuming a nominal
parametrization (·)nom. Right: Success-rate of the MB-EST assuming pa-
rameters intervals

[

(·)min, (·)max
]

. The EST is significantly more susceptible
to a deviation from the nominal parameters assumed during planning.
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Fig. 8. Success-rate during execution of the PEG benchmark as a function
of the friction parameter µ assumed during planning, for different numbers
of particles N .

exponentially in the dimension of the continuous parameter-

space. Since a mere five particles can be sufficient to achieve

robust results in a single dimension, we remain confident that

our method also scales well to other problems of practical

relevance.

D. Real-World Experiments

In addition to simulated experiments, we evaluated our

method with regard to two real-world assembly tasks. In to-

tal, we conducted 300 runs on hardware. The first experiment

realizes the PEG benchmark (clearance 0.5 mm) depicted in

Fig. 5. We executed 30 trajectories of both B-EST and MB-

EST with four different surface materials for peg and hole.

Sorted in ascending order according to surface friction: lu-

bricated plastic, plasitc, paper, and sandpaper. Table I shows

the success-rate for individual friction values and in total.

Additionally, we tested the two planners against the null-

hypothesis of identical success-rates. The results demonstrate

that trajectories as obtained from MB-EST perform reliable

regardless of the true friction. By assuming a wide range of

possible friction parameters, MB-EST performs significantly

better (p-value: 0.028 %) than a planner assuming a nominal

friction value.



Fig. 9. Experimental setup for an elastic peg-in-hole scenario using a
KUKA iiwa R800 redundant 7-axis manipulator. The clearance between
peg and hole is 0.5 mm .

TABLE I

REAL-WORLD EXPERIMENTS

SUCCESS RATES AND FISHER’S EXACT T-TEST

PEG plastic, lubr. plastic paper sandpaper Σ

planner

B
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S
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S

T

B
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S
T

M
B
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S
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B
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S
T

M
B

-E
S

T

success

rate
77% 97% 70% 93% 90% 90% 77% 97% 78% 94%

p-value 2.6 % 2.1 % >10 % 2.6 % 0.028 %

The second experiment resembles the ELASTIC bench-

mark with a rubber-like, elastic peg material. The experimen-

tal setup is shown in Fig. 9. We computed 30 trajectories

for both MB-EST and B-EST. The trajectories computed

using MB-EST achieved the peg insertion in all runs (30/30)

compared to a 50 % success-rate achieved by B-EST (15/30).

We noticed that the elastic behavior of the peg gradually

changed over the course of the experiment in that it became

softer. MB-EST performed successfully despite an ongoing

change in material properties. This highlights the advantage

of assuming a wide range of elasticity characteristics during

planning.

VII. CONCLUSION

This paper presented a novel belief-space planner for

compliant assembly. It extends our previous work in two

ways: We incorporate the state of deformation for articulated

or elastic objects into the configuration-space of the planner.

This allows to plan assembly tasks with elastic objects such

as wires. Furthermore, we include model parameters, such

as friction, into the belief-space. This makes the approach

more robust to inaccurate estimates of these parameters.

We analyzed the impact on robustness in extensive exper-

iments, both in simulation and on a real robot. These sim-

ulations and several hundred real-world experiments show,

that the proposed approach has significantly higher success

rates than two state-of-the-art planners. The experiments

conducted show that our method yields robust assembly

sequences, despite a potentially wide gap between model

and real world. This enables autonomous assembly without

beforehand parameter-tuning.
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