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Abstract— In this paper we present a vision-based approach
to mobile robot localization, that integrates an image retrieval
system with Monte-Carlo localization. The image retrieval pro-
cess is based on features that are invariant with respect to image
translations and limited scale. Since it furthermore uses local
features, the system is robust against distortion and occlusions
which is especially important in populated environments. To
integrate this approach with the sample-based Monte-Carlo
localization technique we extract for each image in the database
a set of possible view-points using a two-dimensional map of the
environment. Our technique has been implemented and tested
extensively. We present practical experiments illustrating that our
approach is able to globally localize a mobile robot, to reliably
keep track of the robot’s position, and to recover from localization
failures. We furthermore present experiments designed to analyze
the reliability and robustness of our approach with respect to
larger errors in the odometry.
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I. INTRODUCTION

Localization is one of the fundamental problems of mobile
robots. The knowledge about the position of a robot is useful
in different tasks such as office delivery, for example. In the
past, a variety of approaches for mobile robot localization has
been developed. They mainly differ in the techniques used
to represent the belief of the robot about its current position
and according to the type of sensor information that is used
for localization. In this paper we consider the problem of
vision-based mobile robot localization. Compared to proximity
sensors cameras have several desirable properties. They are
low-cost sensors that provide a huge amount of information
and they are passive so that vision-based navigation systems do
not suffer from the interferences often observed when using
active sound- or light-based proximity sensors. Moreover, if
robots are deployed in populated environments, it makes sense
to base the perceptional skills used for localization on vision
like humans do.

In principle, one can use a variety of different techniques
from computer vision to facilitate the registration of perceived
images with images stored in a database. Popular approaches
are pixel-based techniques that compute the correlation be-
tween images or feature-based methods that exploit typical
properties of environments such as linear structures. Image
retrieval techniques can be regarded as a more general ap-
proach to view-registration. The goal of image retrieval is
to find images in a given database that look similar to the
given query image. Instead of relying on a specific kind of

feature like lines or colors, image retrieval systems usually use
a combination of different similarity measures that have been
proven to yield accurate results in a wide variety of domains.
This, in fact, makes image retrieval systems also attractive to
mobile robot localization. Autonomous mobile robots must be
applicable in a variety of different environments. Accordingly,
they must be able to localize themselves in a wide range of
situations. If the robots rely on vision for localization, they
must possess a similarity measure that allows the retrieval of
similar images for a huge variety of environments. However,
they also need a technique to associate images in the database
with locations in the environment.

In this paper we present an approach that combines an
image retrieval system with the sample-based Monte-Carlo
localization technique. The image retrieval system we use
relies on features that are invariant with respect to image
translations and scale (up to a factor of two) in order to
find the most similar matches. Each feature consists of a
set of histograms computed from the local neighborhood of
each individual pixel. This makes the approach robust against
occlusions and dynamic aspects such as people walking by. To
incorporate sequences of images and to deal with the motions
of the robot our system applies Monte-Carlo localization
which uses a sample-based representation of the robot’s belief
about its position. During the filtering process the weights
of the samples are computed based on the similarity values
generated by the retrieval system and according to the visibility
area computed for each reference image using a given map
of the environment. Compared to other appearance-based
techniques, the advantage of our approach is that the system
is able to globally estimate the position of the robot and to
recover from possible localization failures.

Our system has been implemented and tested on a real
robot system in a dynamic office environment. In different
experiments it has been shown to be able to globally estimate
the position of the robot and to accurately keep track of it. We
furthermore present experiments illustrating that our system is
able to estimate the position of the robot even in situations in
which the odometry suffers from serious noise.

This paper is organized as follows. After discussing related
work in the following section we briefly describe Monte-
Carlo localization that is used by our system to represent
the belief of the robot. Section IV presents the techniques
of the image-retrieval system used to compare the images



grabbed with the robot’s cameras with the reference images
stored in the database. In Section V we describe how we
integrate the image retrieval system with the Monte-Carlo
localization system. Finally, in Section VI we present various
experiments illustrating the reliability and robustness of the
overall approach.

II. RELATED WORK

Over the past years, several vision-based localization sys-
tems have been developed. They mainly differ in the features
they use to match images. Horswill [1] extracts several kinds
of environment-specific features like openings, walls or doors
from images to realize a navigation system for a mobile robot.
Basri and Rivlin [2] extract lines and edges from images and
use this information to assign a geometric model to every
reference image. Then they determine a rough estimate of the
robots position by applying geometric transformations to fit
the data extracted from the most recent image to the models
assigned to the reference images. Dudek and Zhang [3] apply
a neural network to learn the position of the robot. One
advantage of this approach lies in the interpolation between
the different positions from which the reference images were
taken. Kortenkamp and Weymouth [4] extract vertical lines
from camera images and combine this information with data
obtained from ultrasound sensors to estimate the position of
the robot. Whereas Dudek and Sim [5] apply a principal com-
ponent analysis to learn landmarks, Paletta et al. [6] as well
as Winters et al. [7] consider trajectories in the Eigenspaces
of features. Dodds and Hager [8] use a heuristic color interest
operator over color histograms to identify landmarks that are
useful for navigation. A recent work presented by Se et al. [9]
uses scale-invariant features to estimate the position of the
robot within a small operational range. Olson [10] extracts
depth information from stereo images in a probabilistic ap-
proach to mobile robot localization.

Additionally, there are approaches that rely on image-
retrieval techniques to identify the current position of the
robot. Kröse and Bunschoten [11] describe an appearance-
based localization method which uses a principal component
analysis on images recorded at different locations. Ulrich
and Nourbakhsh [12] developed a system that uses color
histograms for appearance-based localizations. As described
in this paper, such an approach is quite efficient but suffers
from the fact that pure color histograms cannot represent local
relationships between pixels in the images.

Furthermore, there has been work in the context of the
RoboCup in which camera data is used for mobile robot
localization [13], [14], [15]. These techniques exploit given
information about the environment (colors, lines, e.g.) and
compare the images obtained from the robot with this model.

Dellaert et al. [16], [17] match images obtained with a
camera pointed to the ceiling to a large ceiling mosaic covering
the whole operational space of the robot. The mosaic has to
be constructed in advance, which involves a complex state
estimation problem. Finally, Thrun [18] developed an approach
to learn landmarks that are useful for robot localization de-
pending on the uncertainty of the robot in its current pose.

The techniques described above either use sophisticated
feature-matching techniques or rely on simple features like
lines and colors and use probabilistic state estimation or
learning techniques to localize the robot. The goal of this
paper is to illustrate that by combining a standard image
retrieval system, that has been designed for a variety of
different application domains [19], with sophisticated state
estimation techniques one obtains a robust approach to vision-
based robot localization. We describe how both approaches
can be integrated by introducing a visibility area for each
database image. In practical experiments we demonstrate that
our approach is able to reliably keep track of the position of
a mobile robot, to globally localize it, and to recover from
potential localization failures.

III. MONTE-CARLO LOCALIZATION

To estimate the pose l ∈ L of the robot in its environment,
we apply a Bayesian filtering technique also denoted as
Markov localization [20] which has successfully been applied
in a variety of successful robot systems. The key idea of
Markov localization is to maintain the probability density of
the robot’s own location p(l). It uses a combination of the
recursive Bayesian update formula to integrate measurements
o and of the well-known formula coming from the domain of
Markov chains to update the belief p(l) whenever the robot
performs a movement action a:

p(l | o, a) = α · p(o | l) ·
∑

p(l | a, l′) · p(l′) (1)

Here α is a normalization constant ensuring that the p(l | o, a)
sum up to one over all l. The term p(l | a, l′) describes the
probability that the robot is at position l given it executed the
movement a at position l′. Furthermore, the quantity p(o | l)
denotes the likelihood of the observation o given the robot’s
current location is l. It highly depends on the information the
robot possesses about the environment and the sensors used.
Different kinds of realizations can be found in [21], [22], [23],
[20], [24]. In this paper, p(o | l) is computed using the image
retrieval system described in Section IV.

To represent the belief of the robot about its current position
we apply a variant of Markov localization denoted as Monte-
Carlo localization [17], [25]. In Monte-Carlo localization,
the belief of the robot is represented by a set of random
samples [26]. Each sample consists of a state vector of the
underlying system, which is the pose l of the robot in our
case, and a weighing factor ω. The latter is used to store
the importance of the corresponding particle. The posterior
is represented by the distribution of the samples and their
importance factors. In the past a variety of different particle
filter algorithms have been developed and many variants
have been applied with great success to various application
domains [27], [28], [29], [30], [31], [32], [33], [17]. The
particle filter algorithm used by our system is also known
as sequential importance sampling [26]. It updates the belief
about the pose of the robot according to the following two
alternating steps:

1) In the prediction step, we draw for each sample a
new sample according to the weight of the sample



and according to the model p(l | a, l′) of the robot’s
dynamics given the action a executed since the previous
update.

2) In the correction step, the new observation o is inte-
grated into the sample set. This is done by bootstrap
resampling, where each sample is weighted according
to the likelihood p(o | l) of making observation o given
sample l is the current state of the system.

Particle filters have been demonstrated to be a robust tech-
nique for global position estimation and position tracking. To
achieve re-localization in cases of localization errors several
approaches have been proposed. They range from the insertion
of random samples [25] to techniques that use the most recent
observations to more intelligently insert samples at potential
positions of the robot [15], [34].

IV. IMAGE RETRIEVAL BASED ON INVARIANT FEATURES

In this section we briefly describe our method for comparing
color images obtained with the robot’s cameras with the
images stored in the image database. In order to use an image
database for mobile robot localization, one has to consider that
the probability that the position of the robot exactly matches
the position of an image in the database is virtually zero.
Accordingly, one cannot expect to find an image that exactly
matches the search pattern. In our case, we therefore are
interested in obtaining similar images together with a measure
of similarity between retrieved images and the search pattern.

Our image retrieval system simultaneously fulfills both re-
quirements. The key idea of this approach, which is described
in more detail in [35], [36], [19], is to compute features that
are invariant with respect to image rotations, translations, and
limited scale (up to a factor of two). To compare a search
pattern with the images in the database it uses a histogram
of local features. Accordingly, if there are local variations,
only the features of some points of the image are disturbed,
so that there is only a small change in the histogram shape.
An alternative approach might be to use color histograms.
However, this approach suffers from the fact that all structural
information of the image is lost, as each pixel is assigned
without paying attention to its neighborhood. Our database,
in contrast, exploits the local neighborhood of each pixel and
therefore provides better search results [35], [36].

In the remainder of this section we give a short description
of the retrieval process for the case of gray-value images. To
apply this approach to color images, one simply considers the
different channels independently. Let M = {M(x0, x1), 0 ≤
x0 < N0, 0 ≤ x1 < N1} be a gray-value image, with
M(i, j) representing the gray-value at the pixel-coordinate
(i, j). Furthermore let G be a transformation group with
elements g ∈ G acting on the images. For an image M and
an element g ∈ G the transformed image is denoted by gM.
Throughout this paper we consider the group of Euclidean
motions:

(gM)(i, j) = M(k, l) (2)

with(
k
l

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
i
j

)
−
(
t0
t1

)
, (3)

for all f ∈ F do
for x0 = 0, . . . , N0 − 1, x1 = 0, . . . , N1 − 1 do

(T[f ](M))(x0, x1)←
1
P

∑P−1
p=0 f(g(t0 = x0, t1 = x1, ϕ = p 2π

P )M)
end for

end for
Algorithm 1: Computation of a global Feature F(M) for an
image M .

where all indices are understood modulo N0 resp. N1.
In the context of mobile robot localization we are especially

interested in features F (M) that are invariant under image
transformations, i.e., F (gM) = F (M)∀g ∈ G. For a given
gray-value image M and a complex valued function f(M)
we can construct such a feature by integrating over the
transformation group G [37]. In particular, the features are
constructed by generating a histogram from a matrix T which
is of the same size as M and is computed according to

(T[f ](M))(x0, x1) =

1

P

P−1∑

p=0

f

(
g(t0 = x0, t1 = x1, ϕ = p

2π

P
)M

)
. (4)

Since we want to exploit the local neighborhood of each
pixel, we are interested in functions f that have a local support,
i.e., that only use image values from the local neighborhood.
Our system uses a set of different functions F with f(M) =
M(0, 0)M(0, 1) as one member. For each such monomial,
we generate a weighted histogram over T[f ](M). These
histograms are invariant with respect to image translations and
rotations and robust against distortion and overlapping and
therefore well-suited for mobile robot localization based on
images stored in a database. Due to the fact that the kernel
function f has local support we obtain invariance (or robust-
ness) not only with respect to global Euclidean motion of the
whole scene but also with respect to independent Euclidean
motion of individual objects and to different appearances of
articulated objects in the scene. Therefore, the results typi-
cally are rather stable, e.g. for a structured background with
people moving independently in the foreground. The finally
considered global feature F (M) of an image M consists of a
multi-dimensional histogram constructed out of all histograms
computed for the individual features T[f ](M) for all functions
in F .

Algorithm 1 describes precisely how F(M) is calculated
given the individual kernel functions f ∈ F . Figure 1
illustrates the calculation of T[f ](M) for the kernel function
f = M(0, 3) · M(4, 0). This function considers for each
pixel (t0, t1) all neighboring pixels with distance 3 and 4 and
with a phase shift of π/2 in polar representation relative to
this pixel. The corresponding gray-levels are multiplied and
(T[f ](M))(t0, t1) is the average over all angles ϕ. To evaluate
f for a given angle ϕ the system uses bilinear interpolation.
Figure 3 shows the feature matrix obtained for the color
image shown in Figure 2 using this kernel function. Finally,
Figure 4 depicts the histograms obtained for the three different
color channels (red, green, and blue) of the image. Please
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Fig. 1. Calculation of T[f ](M) for f = M(0, 3) ·M(4, 0).

Fig. 2. Query image

Fig. 3. Feature matrix obtained for the image shown in Figure 2 and the
kernel depicted in Figure 1.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  50  100  150  200  250

red
green

blue

Fig. 4. Histogram obtained for the feature matrix depicted in Figure 3.

Fig. 5. The nine images with the highest similarity to the query image.
The similarities from left to right, top-down are 81.67%, 80.18%, 77.49%,
77.44%, 77.43%, 77.19%, 77.13%, 77.06%, and 76.42%.

σMiλ

robot

Fig. 6. Visibility area σM extracted for a reference image. The circle
corresponds to the position of the robot when the image was grabbed in
the environment depicted in Figure 8 (lower left portion). The position of the
closest occupied grid cell in the direction of the optical axis is indicated by
λi.

note that the individual features can be computed with sub-
linear complexity (based on a Monte-Carlo integration over the
Euclidean motion). Additionally, during the integration over
the angle ϕ weighted means can be computed to deal with
potential discretization errors.

The similarity between the global feature q of a query image
and the global feature d of a database image is then computed
using the intersection-operator normalized by the sum over all
m histogram bins of the query image:

⋂

norm
(q,d) =

∑
k∈{0,1,...,m−1}

min(qk, dk)

∑
k∈{0,1,...,m−1}

qk
(5)

Compared to other operators, the normalized intersection has
the major advantage that it also allows to match partial views
of a scene with an image covering a larger fraction. To achieve
the invariance with respect to limited scale the image retrieval
system also stores global features for scaled variants (up to a
factor of two) of the individual kernel functions.

Figures 2 and 5 show an example of a database query and
the corresponding answer. All images were recorded by our
mobile robot in our department. The images in the answer are
ordered by their similarity with the query image.



V. USING RETRIEVAL RESULTS FOR ROBOT
LOCALIZATION

The image retrieval system described above yields such
images that are most similar to a given sample. In order to in-
tegrate this system with a Monte-Carlo localization approach,
we need a technique to weight the samples according to the
results of the image retrieval process. The key idea of our
approach is to extract a visibility region σM for each image
M in the image database. To determine the visibility regions
for the individual images we use an occupancy grid map that is
computed beforehand using the system developed by Hähnel
et al. [38]. Given such a map we compute the visibility area
of an image M corresponds as all positions in that map from
which the closest occupied cell λi along the optical axis of
M.

We represent each σM by a discrete grid of poses and
proceed in two steps: First we apply ray-casting to compute
λi. Then we use a constrained region growing technique to
determine the free grid cells in the occupancy grid map from
which λi is visible. Figure 6 shows a typical example of the
visibility area for one of the images stored in our database.

In Monte-Carlo localization one of the crucial aspects is
the computation of the weight ωi of each sample. Typically
this weight corresponds to the likelihood p(o | li) [17], [25]
where li is the position represented by the sample and o is
the measurement obtained by the robot. If we apply the law
of total probability, we can compute p(o | li) according to

p(o | li) =

n∑

j=1

p(o | li,Mj) · p(Mj | li) (6)

where Mj , j = 1, . . . , n, are the images stored in the database.
In our system we compute p(o | li,Mj) as the degree of simi-
larity (see Equation (5)) denoted by ξj between the image Mj

and the observation o. To determine the quantity p(Mj | li) we
consider whether the location li of sample i lies in the visibility
area σi of image Mi. Since each sample represents a possible
pose of the robot, i.e., a three-dimensional state consisting
of the position 〈xi, yi〉 and orientation φi, we also have to
incorporate φi to compute p(Mj | li). For example, if φi
differs largely from the direction towards λi, the image stored
in the database cannot be visible for the robot. Accordingly,
the likelihood p(o | li) turns into

p(o | li) =
1

Ki

n∑

j=1

ξj · I(〈xi, yi〉, σj) · d(ψi), (7)

where

Ki =

n∑

j=1

I(〈xi, yi〉, σj) · d(ψi). (8)

In these equations ψi ∈ [−180; 180) is the deviation of the
heading φi of the sample from the direction to λj . Further-
more, d is a function which computes a weight according to
the angular distance ψi. Finally, I(〈xi, yi〉, σj) is an indicator
function which is 1 if 〈xi, yi〉 lies in σj and 0, otherwise. In
our current implementation we use a step function for d(ψi)
such that only such areas are chosen, for which the angular

distance |ψ| does not exceed 5 degrees. Note that Equation (7)
computes the average likelihood of the current image o over all
images stored in the database. If no database image is visible
from the position of a sample, in which case Ki turns out to
be 0, we assume p(o | li) to be equal to the prior probability
of observations o. This quantity corresponds to the average
similarity of perceived images to the images in the database.

stereo camera system
motorized face

speakers

ultrasound sensors
bump sensors

infrared sensors
laser range sensor

bump sensors
ultrasound sensors

Fig. 7. The mobile robot Albert, a B21r robot equipped with Sony XC-999
cameras and standard TV cards used for image acquisition.

VI. EXPERIMENTS

The system described above has been implemented on
our mobile robot Albert and tested intensively in real robot
experiments as well as in off-line runs using recorded data.
Albert (see Figure 7) is an RWI B21 robot equipped with a
stereo camera system. The image database used throughout
the experiments contained 936 images. They were obtained
by steering the robot through the environment and grabbing
sets of images from different positions in the environment.
The positions were determined with a localization system that
uses laser range data [39]. The corresponding visibility areas
covered approximately 80% of the state space that can be
attained by the robot in this environment. Figure 5 shows 9
typical images stored in the database. Our system is highly
efficient since it only stores the histograms representing the
global features. The overall space used for all 936 images
therefore does not exceed 4MB. Furthermore, the entire re-
trieval process for one query image usually takes less than .6
secs on an 800MHz Pentium III [40]. Please note that each
update of the belief can be realized in O(n · k), where k is
the number of samples contained in the sample set and n is
the number of reference images stored in the database.

The goal of the experiments described in the remainder of
this section is to demonstrate that our system allows the robot
to reliably estimate the pose of a mobile robot. Furthermore,
we present a simulation experiment carried out with recorded
data that illustrates the robustness of our approach against large
noise in the odometry.

A. Tracking Capability

The first experiment was carried out to analyze the ability to
keep track of a robot’s pose while it is moving with speeds up



Fig. 8. Map of the office environment used to carry out the experiments and
trajectory of the robot (ground truth). The size of the environment is 37 m
times 14 m.

Fig. 9. Trajectory of the robot according to the odometry data.

to 30cm/sec through our office environment. In this experiment
we steered the robot through the corridor and several rooms
of our department. Figure 8 shows a part of the map of the
environment and the trajectory of the robot during this exper-
iment. This trajectory has been determined using laser range
data. The accuracy of this localization procedure is below 5
cm. Also shown in green/gray is an outline of the environment.
The significant error in the odometry obtained from the robot’s
wheel encoders is shown in Figure 9. Figure 10 shows the first
16 images captured by the robot. As can be seen from the
figure, the lighting conditions are different at different places
in the environment. Furthermore, the images contain dynamic
objects such as doors as well as students present in the lab.

Fig. 10. Images captured by Albert during the experiment

Fig. 11. Trajectory obtained by tracking the position of the robot using our
system.

Fig. 13. Positions of the robot estimated by our system during global
localization.

We initialized the sample set consisting of 5000 samples
with a Gaussian centered at the starting pose of the robot. The
trajectory estimated by our system is shown in Figure 11. As
this figure illustrates, the system is able to correct the errors in
odometry and to keep track of the position of the robot despite
of the dynamic aspects. In this experiment the maximum pose
error was less than 82 cm and 17 degrees.

B. Global Localization

The next experiment is designed to demonstrate the ability
of the system to globally estimate the position of the robot. In
this case we used the data obtained in the previous experiment
and initialized the sample set, which again consisted of 5000
samples, with a uniform distribution. Figure 12 shows how
the samples converge during the global localization process. In
the beginning they are randomly distributed over the environ-
ment. After integrating four images the samples have almost
concentrated on the true position of the robot (center image).
The right image shows a typical sample set observed when
the system has uniquely determined the position of the robot.

Figure 13 shows the trajectory estimated by our system.
As can be seen, the system is able to quickly determine
the position of the robot and to reliably keep track of it
afterwards. Please note that we currently use the sample mean
to estimate the robot’s pose, so that, in the beginning, the
estimated position is always close to the center of the map,
which is not shown entirely in this figure. Because of the



Fig. 12. Typical sample sets during global localization: At the beginning (left), after integrating 4 (center) and 35 (right) images.

Fig. 14. Trajectory of the robot and kidnaping operation during the kidnapped
robot experiment.
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Fig. 15. Typical localization error during a kidnapped robot experiment.

high uncertainty in the robot pose which typically results in
multi-modal beliefs during global localization, the estimated
trajectory of the systems often contain lines leading towards
the current hypothesis about the robot’s pose. Figure 13 only
contains one such line leading from the center of the robot
to the true position of the robot. After the integration of the
fourth image in this particular run the belief consisted of a
single mode.

C. Kidnapped Robot

The third experiment demonstrates the ability of our sys-
tem to recover from localization failures. We initialized and
started this experiment like the global localization experiment
described above. After integrating 60 images, when the system
already had determined the robot’s position, we provided
data corresponding to a completely different location, which

α’

β’

d’

final pose
α

d

measured pose
β

initial pose

path

Fig. 16. Parameters of the probabilistic motion model.

Fig. 17. Trajectory obtained after applying the noise according to 〈10, 5, 5〉 to
the odometry data (left image) and trajectory obtained after using our system
to global localization (right image).

corresponds to kidnaping the robot and taking it to a different
place in the environment. Thus, the system had to re-localize
itself. The trajectory and the kidnaping operation are indicated
in Figure 14. To enable the system to deal with such situations,
we randomly inserted 50 samples in each iteration. This
approach has previously also been applied by Fox et al. [41].
More sophisticated schemes for mobile robot re-localization
have recently been developed by Thrun et al. [34] as well as
Lenser and Veloso [15].

Figure 15 shows the localization errors of one typical run.
As can be seen, the system recovers the position approximately
20 steps after being kidnapped. We repeated this experiment
20 times and in all cases our system was able to re-localize
the robot.

D. Robustness

The previous three experiments illustrate situations, in
which the system is able to reliably estimate the position
of the robot. To obtain a more quantitative assessment of



Fig. 18. Trajectories obtained by adding noise according to 〈20, 20, 20〉
to the input data (left image) and trajectory obtained with our system after
global localization (right image).

the performance of our approach, we performed a series of
experiments using the data recorded in the tracking experi-
ment. In each experiment we artificially distorted the odometry
data by adding different amounts of noise to it. The model
for odometry errors we used is similar to that used by
Gutmann et al. [39] and is depicted in Figure 16. For each
incremental movement carried out by the robot, we introduced
a rotational error α′ − α at the beginning of the movement, a
translational error d′ − d to the measured distance d between
the final location and the starting position, and a rotational
error β′−β at the end of the movement. Each individual error
was normally distributed . Two typical trajectories that resulted
from this process are depicted as left images in Figures 17
and 18. The trajectories estimated by our system are shown
as right images in the corresponding figures. As can be seen,
the system is able to globally localize the robot and to reliably
keep track of its position even in the case of large noise in
odometry.

For different parameter sets we generated 20 different trajec-
tories and for each resulting trajectory we used our system to
estimate the pose of the vehicle. Then we counted the number
of cases in which the pose error was below 2m and 35 degrees.
Figure 19 shows the resulting statistics for nine different noise
values. As the figure demonstrates, our system is robust against
even large amounts of noise. Only for very large noise values,
the success rate starts to drop. Please note, that we did not
obtain a success-rate of 100%, because the system always
had to perform a global localization in the beginning of each
experiment.

E. Effect of the Image Retrieval System

The visibility areas extracted for the reference images (see
Section V) introduce constraints on the possible locations of
the robot while it is moving through the environment. In
principle, the visibility areas characterize the free space in
the environment. Therefore, just by knowing the odometry
information one can often infer the position of the system.
Since a robot cannot move through obstacles, the trajectory
that minimizes the tradeoff between the deviation from the
odometry data and the number of times the robot moves
through obstacles corresponds to the most likely path of
the robot and thus indicates the most likely position of the
vehicle. In the past it has already been demonstrated that these
constraints can be sufficient to globally localize a robot [42].
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Fig. 19. Number of times when the pose error was not larger than 2m and
35 degrees.
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Fig. 20. Typical localization error during the global localization experiment
using the constraints implied by the visibility areas.

The goal of the experiment described in this section therefore
is to demonstrate that the localization capabilities presented
in this paper significantly depend on the exploitation of the
image retrieval results.

To evaluate the contribution of the image retrieval system
we again evaluated the global localization capabilites but
without utilizing the results from image retrieval process.
More specifically, all samples obtained the same weight as
long as the were located within an arbitrary visibility region.
Accordingly, the outcome resulted only from the odometry
data and from the constraints introduced by the visibility areas.
The image depicted in Figure 20 shows a typical plot of
the localization error if only the constraints imposed by the
visibility regions are used. As can be seen from the figure,
the system is unable to localize the robot solely based on this
information. However, if the image retrieval results are used,
the localization accuracy is quite high and the robot is quickly
able to determine its absolute position in the environment (see
Figure 21).

VII. CONCLUSIONS

In this paper we presented a new approach for vision-based
localization of mobile robots. Our method uses an image
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Fig. 21. Localization error during the global localization experiment if
additionally the retrieval results are used.

retrieval system based on invariant features. These features
are invariant with respect to translation and scale (up to a
factor of two) so that the system is able to retrieve similar
images even if only a small part of the corresponding scene is
seen in the current image. This approach is particularly useful
in the context of mobile robots, since a robot often observes
the same scene from different view-points. Furthermore, the
system uses local features and therefore is robust to changes
in the scene. To represent the belief of the robot about its
pose, our system uses a probabilistic approach denoted as
Monte-Carlo localization. The combination of both techniques
yields a robust vision-based localization system with several
desirable properties. It is able to globally estimate the position
of the robot and to reliably keep track of it and to recover
from localization failures. Additionally, our system can deal
with dynamic aspects in the scenes such as people walking
by as well as with large amounts of noise in the odometry
data. In extensive experiments carried out on real robots and
in an unmodified office environment we have demonstrated
the general applicability of our technique.
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