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Abstract. In this paper we present a vision-based approach to mo-
bile robot localization, that integrates an image retrieval system with
Monte-Carlo localization. The image retrieval process is based on fea-
tures that are invariant with respect to image translations, rotations,
and limited scale. Since it furthermore uses local features, the system
is robust against distortion and occlusions which is especially important
in populated environments. The sample-based Monte-Carlo localization
technique allows our robot to efficiently integrate multiple measurements
over time. Both techniques are combined by extracting for each image
a set of possible view-points using a two-dimensional map of the envi-
ronment. Our technique has been implemented and tested extensively
using data obtained with a real robot. We present several experiments
demonstrating the reliability and robustness of our approach.

1 Introduction

Localization is one of the fundamental problems of mobile robots. The knowledge
about its position allows a mobile robot to efficiently fulfill different useful tasks
like, for example, office delivery. In the past, a variety of approaches for mobile
robot localization has been developed. They mainly differ in the techniques used
to represent the belief of the robot about its current position and according to
the type of sensor information that is used for localization. In this paper we
consider the problem of vision-based mobile robot localization. Compared to
proximity sensors, which are used by a variety of successful robot systems, cam-
eras have several desirable properties. They are low-cost sensors that provide
a huge amount of information and they are passive so that vision-based navi-
gation systems do not suffer from the interferences often observed when using
active sound- or light-based proximity sensors. Moreover, if robots are deployed
in populated environments, it makes sense to base the perceptional skills used
for localization on vision like humans do.

Over the past years, several vision-based localization systems have been de-
veloped. They mainly differ in the features they use to match images. For ex-
ample, Basri and Rivlin [1] extract lines and edges from images and use this
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information to assign a geometric model to every reference image. Then they
determine a rough estimate of the robots position by applying geometric trans-
formations to fit the data extracted from the most recent image to the models
assigned to the reference images. Dudek, Zhang, and Sim [5,18] use a neural net-
work to learn the position of the robot given a reference image. One advantage
of this approach lies in the interpolation between the different positions from
which the reference images were taken. Kortenkamp and Weymouth [10] extract
vertical lines from camera images and combine this information with data ob-
tained from ultrasound sensors to estimate the position of the robot. Paletta
et al. as well as Winters et al. [14,22] consider trajectories in the Eigenspaces
of features. A recent work presented by Se et al. [16] uses scale-invariant fea-
tures to estimate the position of the robot within a small operational range.
Furthermore, there are different approaches [11,12,20] that use techniques also
applied for image-retrieval to identify the current position of the robot. Whereas
all these approaches use sophisticated feature-matching techniques, they are not
applying any filtering techniques to estimate the pose of the robot. The approach
presented by Dellaert et al. [4] apply a probabilistic method for mobile robot pose
estimation denoted as Monte-Carlo localization. Their system, however, requires
an accurate ceiling mosaic of the robot’s environment.

In this paper we present an approach that combines techniques from image
retrieval with Monte-Carlo localization and thus leads to a robust vision-based
mobile robot localization system. Our image retrieval system uses features that
are invariant with respect to image translations, image rotations, and scale (up
to a factor of two) in order to find the most similar matches. These features
consist of histograms based on features of the local neighborhood of each pixel.
This makes the localization system robust against occlusions and dynamics such
as people walking by. To incorporate sequences of images and to deal with the
motions of the robot our system applies Monte-Carlo localization which uses a
sample-based representation of the robot’s belief about its position. During the
filtering process the weights of the samples are computed based on the similar-
ity values generated by the retrieval system and according to the visibility area
computed for each reference image using a given map of the environment. The
advantage of our approach is that the system is able to globally estimate the
position of the robot and to recover from possible localization failures. Our sys-
tem has been implemented and tested on a real robot system in a dynamic office
environment. In different experiments it has been shown to be able to globally
estimate the position of the robot and to accurately keep track of it.

This paper is organized as follows. In the following section we present the
techniques of the image-retrieval system used to compare the images grabbed
with the robot’s cameras with the reference images stored in the database. In
Section 3 we briefly describe Monte-Carlo localization that is used by our system
to represent the belief of the robot. In Section 4 we describe how we integrate the
image retrieval system with the Monte-Carlo localization system. Finally, in Sec-
tion 5 we present various experiments illustrating the reliability and robustness
of the overall approach.



110 Jürgen Wolf et al.

2 Image Retrieval Based on Invariant Features

In order to use an image database for mobile robot localization, one has to
consider that the probability that the position of the robot at a certain point
in time exactly matches the position of an image in the database is virtually
zero. Accordingly, one cannot expect to find an image that exactly matches
the search pattern. In our case, we therefore are interested in obtaining similar
images together with a measure of similarity between retrieved images and the
search pattern.

Our image retrieval system simultaneously fulfills both requirements. The key
idea of this approach, which is described in more detail in [17,21], is to compute
features that are invariant with respect to image rotations, translations, and
limited scale (up to a factor of two). To compare a search pattern with the
images in the database it uses a histogram of local features. Accordingly, if
there are local variations, only the features of some points of the image are
disturbed, so that there is only a small change in the histogram shape. An
alternative approach might be to use color histograms. However, this approach
suffers from the fact that all structural information of the image is lost, as each
pixel is considered without paying attention to its neighborhood. Our database,
in contrast, exploits the local neighborhood of each pixel and therefore provides
better search results [17,21].

In the remainder of this section we give a short description of the retrieval pro-
cess for the case of grey-value images. To apply this approach to color images, one
simply considers the different channels independently. Let M = {M(x0, x1), 0 ≤
x0 < N0, 0 ≤ x1 < N1} be a grey-value image, with M(i, j) representing the
grey-value at the pixel-coordinate (i, j). Furthermore let G be a transformation
group with elements g ∈ G acting on the images. For an image M and an ele-
ment g ∈ G the transformed image is denoted by gM. Throughout this paper
we consider the group of Euclidean motions:

(gM)(i, j) = M(k, l) with
(
k
l

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

) (
i
j

)
−

(
t0
t1

)
, (1)

where all indices are understood modulo N0 resp. N1.
In the context of mobile robot localization we are especially interested in

features F (M) that are invariant under image transformations, i.e., F (gM) =
F (M)∀g ∈ G. For a given grey-value image M and a complex valued function
f(M) we can construct such a feature by integrating over the transformation
groupG [15]. In particular, the features are constructed by generating a weighted
histogram from a matrix T which is of the same size as M and is computed
according to

(T[f ](M))(x0, x1) =
1
P

P−1∑
p=0

f

(
g(t0 = x0, t1 = x1, ϕ = p

2π
P

)M
)

. (2)

Since we want to exploit the local neighborhood of each pixel, we are inter-
ested in functions f that have a local support, i.e., that only use image values
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Fig. 1. Calculation of T[f ](M) for f = M(0, 3) ·M(4, 0)), feature matrix (upper
right image) and histogram (lower right image)

from a local neighborhood. Our system uses a set of different functions F with
f(M) = M(0, 0)M(0, 1) as one member.

The kernel function defines the impact of surrounding pixels on the local
feature of each coordinate. Obviously, for f = M(0, 0) the matrix of local features
is given by T[f ](M) = M and hence the global feature F (M) simply is a grey-
level histogram.

Figure 1 illustrates the calculation of T[f ](M) for the kernel function f =
M(0, 3) ·M(4, 0)). This function considers for each pixel (t0, t1) all neighboring
pixels with distance 3 and 4 and with a phase shift of π/2 in polar representation.
The corresponding grey-levels are multiplied and (T[f ](M))(t0, t1) is the average
over all angles ϕ.

For each monomial f ∈ F , we generate a weighted histogram over T[f ](M).
These histograms are invariant with respect to image translations and rota-
tions and robust against distortion and overlapping and therefore well-suited
for mobile robot localization based on images stored in a database. The upper
resp. lower right image of Figure 1 shows the feature matrix resp. the resulting
histogram for f = M(0, 3) ·M(4, 0) extracted from the upper left image of Fig-
ure 2. In this figure each color channel has been calculated separately so that
the chart contains an overlay of three histograms.

The global feature F (M) of an image M consists of a multi-dimensional his-
togram constructed out of all histograms computed for the individual features
T[f ](M) for all functions in F . Please note that the invariant features may be ex-
tracted with sub-linear complexity (based on a Monte-Carlo integration over the
Euclidean motion) without the need of any feature extraction or segmentation.

The similarity between the global feature F (Q) of a query image Q and
the global feature F (D) of a database image D is then computed using the
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intersection-operator normalized by the sum over all m histogram bins of F (Q):

⋂
norm

(F (Q), F (D)) =

∑
k∈{0,1,...,m−1}

min(F (Q)k, F (D)k)

∑
k∈{0,1,...,m−1}

F (Q)k
, (3)

where F (M)k denotes the value of the k-th (linear ordered) bin of the multi-
dimensional histogram. Compared to other operators, the normalized intersec-
tion has the major advantage that it also allows to match partial views of a
scene with an image covering a larger fraction. Figure 2 shows an example of a
database query (upper left image) and the corresponding answer.

Fig. 2. Query image (upper left image) and the seven images with the highest
similarity to it. The similarities from left to write, top-down are 81.67%, 80.18%,
77.49%, 77.44%, 77.43%, 77.19%, and 77.13%

3 Monte-Carlo Localization

To estimate the pose l ∈ L of the robot in its environment, we apply a Bayesian
filtering technique also denoted as Markov localization [2] which has successfully
been applied in a variety of successful robot systems. The key idea of Markov
localization is to maintain the probability density of the robot’s own location
p(l). It uses a combination of the recursive Bayesian update formula to inte-
grate measurements o and of the well-known formula coming from the domain
of Markov chains to update the belief p(l) whenever the robot performs a move-
ment action a:

p(l | o, a) = α · p(o | l) ·
∑

p(l | a, l′) · p(l′). (4)

Here α is a normalization constant ensuring that the p(l | o, a) sum up to one
over all l. The term p(l | a, l′) describes the probability that the robot is at
position l given it executed the movement a at position l′. Furthermore, the
quantity p(o | l) denotes the probability of making observation o given the robot’s
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current location is l. It highly depends on the information the robot possesses
about the environment and the sensors used. Different kinds of realizations can
be found in [13,8,19,2,9]. In this paper, p(o | l) is computed using the image
retrieval system described in Section 2.

To represent the belief of the robot about its current position we apply
a variant of Markov localization denoted as Monte-Carlo localization [4,6]. In
Monte-Carlo localization, which is a variant of the well-known Condensation al-
gorithm [7], the update of the belief generally is realized by the following two
alternating steps:

1. In the prediction step, we draw for each sample a new sample according
to the weight of the sample and according to the model p(l | a, l′) of the
robot’s dynamics given the action a executed since the previous update.

2. In the correction step, the new observation o is integrated into the sample
set. This is done by bootstrap resampling, where each sample is weighted
according to the likelihood p(o | l) of making observation o given sample l is
the current state of the system.

σMiλ

robot

Fig. 3. Visibility area σM extracted for a reference image. The circle corresponds
to the position of the robot when the image was grabbed in the environment
depicted in Figure 4 (lower left portion). The position of the closest obstacle in
the direction of the optical axis is indicated by λi

4 Using Retrieval Results for Robot Localization

The image retrieval system described above yields images that are most similar to
a given sample. In order to integrate this system with a Monte-Carlo localization
approach, we need a technique to weight the samples according to the results of
the image retrieval process. The key idea of our approach is to extract a visibility
region σM for each image M in the image database. In our current system, the
visibility area of an image M corresponds to all positions in a given metric map
of the environment from which the closest object in M in the direction of the
optical axis is visible.

We represent each σM by a discrete grid of poses and proceed in two steps:
First we apply ray-tracing to compute the position λi of the closest object on the
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optical axis according to the position of the robot when this image was grabbed.
Then we use a constrained region growing technique to compute the visibility
area σM for M. Throughout this process only those points are expanded, from
which λi is visible. Figure 3 shows a typical example of the visibility area for
one of the images stored in our database.

In Monte-Carlo localization one of the crucial aspects is the computation of
the weight ωi of each sample. In many systems this weight is chosen as the likeli-
hood p(o | li) [4,6] where li is the position represented by the sample and o is the
measurement obtained by the robot. In the context of vision-based localization,
however, p(o | li) generally is hard to assess because of the high dimensionality
of the image space. In our system, we use the similarity measure ξi of each image
Mi to weight the samples in the corresponding visibility area σMi . Before we
assign a similarity measure ξi to a sample, we need to check, whether the sample
lies in the visibility area σi of image Mi. At this point it is important to note,
that each sample represents a possible pose of the robot, i.e., a three-dimensional
state consisting of the 〈x, y〉-position and orientation φ. Thus, in order to ap-
propriately weight the samples we also have to consider the orientation of that
sample. For example, if the heading direction of pose represented by a sample is
too far off, the image stored in the database cannot be visible for the robot.

In our system we compute the weight ω of a sample according to

ω =
n∑

i=1

I(〈x, y〉, σi) · d(ψ) · ξi, (5)

where ψ ∈ [−180; 180) is the deviation of the heading φ of the sample from the
direction to λi. Furthermore, d is a function which computes a weight according
to the angular distance ψ. Finally, I(〈x, y〉, σi) is an indicator function which
is 1 if 〈x, y〉 lies in σi and 0, otherwise.

In our current implementation we use a step function so that only such areas
are chosen, for which the angular distance |ψ| does not exceed 5 degrees. Please
note that Equation (5) rests on the assumption that the images in the database
cover different aspects of the environment. For example, if the database contains
two images taken from the same or a similar pose, then the weights of the
samples lying in the intersection of both visibility areas would be weighted too
high compared to other samples for which there is only one image. Although
this independence assumption is not always justified, we did not observe any
evidence in our experiments, that this made the robot overly confident in being
at a certain position.

5 Experiments

The system described above has been implemented on our mobile robot Al-
bert, an RWI B21 robot equipped with a stereo camera system, and tested
intensively in real robot experiments. The image database used throughout the
experiments contained 936 images. They were obtained by steering the robot
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Fig. 4. Map of the office environment used to carry out the experiments and
trajectory of the robot (ground truth) (left image). Trajectory of the robot ac-
cording to the odometry data (center image). Positions of the robot estimated
by our system during global localization (right image)

through the environment and grabbing sets of images from different positions
in the environment. Our system is highly efficient since it only stores the his-
tograms representing the global features. The overall space required for all 936
images therefore does not exceed 4MB. Furthermore, the retrieval process for one
image usually takes less than .6 secs on an 800MHz Pentium III. Our current
implementation (described in detail in [23]) updates the belief in each iteration
in time O(k2 + n · k), where k is the number of samples contained in the sample
set and n is the number of reference images stored in the database.

Fig. 5. Typical images captured by Albert during the global localization exper-
iment

5.1 Global Localization

The experiment described in this section is designed to demonstrate that our sys-
tem allows the robot to reliably estimate the global position of a mobile robot
within its environment and to reliably keep track of it afterwards. During the
experiment the robot was moving with speeds up to 30cm/sec through our office
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environment. The left image of Figure 4 shows a part of the map of the envi-
ronment and the trajectory of the robot during this experiment. Also shown in
green/grey is an outline of the environment. The significant error in the odome-
try obtained from the robot’s wheel encoders is shown by the center image of the
same figure. In this experiment we used a sample set consisting of 5000 samples
that were initialized using a uniform distribution. Some of the images perceived
by the robot during this experiment are depicted in Figure 5. The right image of
Figure 4 shows the trajectory estimated by our system. Obviously, the system
is able to quickly determine the position of the robot and to reliably keep track
of it afterwards despite of the dynamic aspects. Please note that since we use
the sample mean to estimate the robot’s pose, in the beginning the estimated
position is always in the center of the map, which is not shown entirely in this
figure. One side-effect of using the sample mean is that the trajectories estimated
by our system during global localization generally contain a line going from the
center from the map to the true position of the robot. This corresponds to the
situation in which the system has discovered the true position of the robot and
happens after the integration of the fourth image in this particular example.

5.2 Effect of the Image Retrieval System

The visibility areas extracted for the reference images (see Section 4) introduce
constraints on the possible locations of the robot while it is moving through
the environment. In principle, the visibility areas characterize the free space
in the environment. Therefore, just by knowing the odometry information one
can often infer the position of the system. Since a robot cannot move through
obstacles, the trajectory that minimizes the tradeoff between the deviation from
the odometry data and the number of times the robot moves through obstacles
corresponds to the most likely path of the robot and thus indicates the most
likely position of the vehicle. In fact, it has already been demonstrated that
these constraints can be sufficient to globally localize a robot [3].

The goal of the experiment described in this section therefore is to demon-
strate that the localization capabilities significantly depend on the exploitation
of the image retrieval results. Again, we evaluated the global localization ca-
pabilites but without utilizing the results from image retrieval process. More
specifically, all samples obtained the same weight as long as the were located
within an arbitrary visibility region. Accordingly, the outcome resulted only
from the odometry data and from the constraints introduced by the visibility
areas. The left image of Figure 6 shows a typical plot of the localization error
if only the constraints imposed by the visibility regions are used (left image).
As can be seen from the figure, the system is unable to localize the robot solely
based on this information. However, if the image retrieval results are used, the
localization accuracy is quite high and the robot is quickly able to determine its
absolute position in the environment (see right image of Figure 6).
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Fig. 6. Typical localization error during the global localization experiment af-
fected by implied constraints (left picture) and additional using of retrieval re-
sults

6 Conclusions

In this paper we presented a new approach to vision-based localization of mobile
robots. Our method uses an image retrieval system based on invariant features.
These features are invariant with respect to translation, rotation, and scale (up
to a factor of two) so that the system is able to retrieve similar images even if
only a small part of the corresponding scene is seen in the current image. This
approach is particularly useful in the context of mobile robots, since a robot of-
ten observes the same scene from different view-points. Furthermore, the system
uses local features and therefore is robust to changes in the scene. To represent
the belief of the robot about its pose, our system uses a probabilistic approach
denoted as Monte-Carlo localization. The combination of both techniques yields
a robust vision-based localization system with several desirable properties pre-
vious approaches are lacking. It is able to globally estimate the position of the
robot and to reliably keep track of it.
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