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Abstract

In this paper we present a vision-based approach to mo-
bile robot localization, that integrates an image retrieval sys-
tem with Monte-Carlo localization. The image retrieval pro-
cess is based on features that are invariant with respect to
image translations, rotations, and limited scale. Since it fur-
thermore uses local features, the system is robust against dis-
tortion and occlusions which is especially important in popu-
lated environments. By using the sample-based Monte-Carlo
localization technique our robot is able to globally localize it-
self, to reliably keep track of its position, and to recover from
localization failures. Both techniques are combined by ex-
tracting for each image a set of possible view-points using a
two-dimensional map of the environment. Our technique has
been implemented and tested extensively. We present several
experiments demonstrating the reliability and robustness of
our approach even in the context of dynamics in the environ-
ment and larger errors in the odometry.

1. Introduction
Localization is one of the fundamental problems of mobile

robots. The knowledge about its position allows a mobile
robot to fulfill different useful tasks such as office delivery,
for example. In the past, a variety of approaches for mobile
robot localization has been developed. They mainly differ in
the techniques used to represent the belief of the robot about
its current position and according to the type of sensor infor-
mation that is used for localization. In this paper we con-
sider the problem of vision-based mobile robot localization.
Compared to proximity sensors, which are used by a large set
of successful robot systems, cameras have several desirable
properties. They are low-cost sensors that provide a huge
amount of information and they are passive so that vision-
based navigation systems do not suffer from the interferences
often observed when using active sound- or light-based prox-
imity sensors. Moreover, if robots are deployed in populated
environments, it makes sense to base the perceptional skills
used for localization on vision like humans do.

Over the past years, several vision-based localization sys-
tems have been developed. They mainly differ in the fea-
tures they use to match images. For example, [1] extract lines
and edges from images and use this information to assign a
geometric model to every reference image. Then they de-
termine a rough estimate of the robots position by applying
geometric transformations to fit the data extracted from the
most recent image to the models assigned to the reference
images. [4, 17] apply a neural network to learn the position
of the robot given a reference image. One advantage of this
approach lies in the interpolation between the different posi-
tions from which the reference images were taken. [9] ex-
tract vertical lines from camera images and combine this in-
formation with data obtained from ultrasound sensors to es-
timate the position of the robot. [13, 21] consider trajecto-
ries in the Eigenspaces of features. A recent work presented
in [15] uses scale-invariant features to estimate the position
of the robot within a small operational range. Furthermore,
there are different approaches [10, 11, 19] that use techniques
also applied for image-retrieval to identify the current posi-
tion of the robot. Whereas all these approaches use sophisti-
cated feature-matching techniques, they are not applying any
filtering techniques to represent a belief of the robot about
its current position and to update this belief whenever new
measurements arrive and when the robot moves. In [3] the
images obtained by the robot are matched to a ceiling mosaic
by comparing grey values. The mosaic has to be constructed
in advance, which itself is a complex problem. The key con-
tribution lies in the proposed probabilistic method for mobile
robot pose estimation denoted as Monte-Carlo localization,
which provides an efficient means for representing the belief
of the robot and to update it appropriately.

In this paper we present an approach that combines tech-
niques from image retrieval with Monte-Carlo localization
and thus leads to a robust vision-based mobile robot localiza-
tion system. Our image retrieval system uses features that are
invariant with respect to image translations, image rotations,
and scale (up to a factor of two) in order to find the most sim-
ilar matches. These features consist of histograms based on
features of the local neighborhood of each pixel. This makes



the localization system robust against occlusions and dynam-
ics such as people walking by. To incorporate sequences of
images and to deal with the motions of the robot our system
applies Monte-Carlo localization which uses a sample-based
representation of the robot’s belief about its position. During
the filtering process the weights of the samples are computed
based on the similarity values generated by the retrieval sys-
tem and according to the visibility area computed for each
reference image using a given map of the environment. The
advantage of our approach is that the system is able to glob-
ally estimate the position of the robot and to recover from
possible localization failures.

Our system has been implemented and tested on a real
robot system in a dynamic office environment. In different
experiments it has been shown to be able to globally estimate
the position of the robot and to accurately keep track of it. We
furthermore present experiments illustrating that our system
is able to estimate the position of the robot even in situations
in which the odometry suffers from serious noise.

This paper is organized as follows. In the following sec-
tion we briefly describe Monte-Carlo localization that is used
by our system to represent the belief of the robot. Section 3
presents the techniques of the image-retrieval system used to
compare the images grabbed with the robot’s cameras with
the reference images stored in the database. In Section 4 we
describe how we integrate the image retrieval system with the
Monte-Carlo localization system. Finally, in Section 5 we
present various experiments illustrating the reliability and ro-
bustness of the overall approach.

2. Monte-Carlo Localization

To estimate the posel ∈ L of the robot in its environ-
ment, we apply a Bayesian filtering technique also denoted
asMarkov localization[2] which has successfully been ap-
plied in a variety of successful robot systems. The key idea
of Markov localization is to maintain the probability density
of the robot’s own locationp(l). It uses a combination of the
recursive Bayesian update formula to integrate measurements
o and of the well-known formula coming from the domain of
Markov chains to update the beliefp(l) whenever the robot
performs a movement actiona:

p(l | o, a) = α · p(o | l) ·
∑

p(l | a, l′) · p(l′) (1)

Hereα is a normalization constant ensuring that thep(l | o, a)
sum up to one over alll. The termp(l | a, l′) describes the
probability that the robot is at positionl given it executed
the movementa at position l′. Furthermore, the quantity
p(o | l) denotes the probability of making observationo given
the robot’s current location isl. It highly depends on the in-
formation the robot possesses about the environment and the
sensors used. Different kinds of realizations can be found
in [12, 7, 18, 2, 8]. In this paper,p(o | l) is computed using
the image retrieval system described in Section 3.

To represent the belief of the robot about its current po-
sition we apply a variant of Markov localization denoted as
Monte-Carlo localization [3, 5]. In Monte-Carlo localization,
the update of the belief generally is realized by the following
two alternating steps:

1. In theprediction step, we draw for each sample a new
sample according to the weight of the sample and ac-
cording to the modelp(l | a, l′) of the robot’s dynamics
given the actiona executed since the previous update.

2. In thecorrection step, the new observationo is inte-
grated into the sample set. This is done by bootstrap
resampling, where each sample is weighted according
to the likelihoodp(o | l) of making observationo given
samplel is the current state of the system.

3. Image Retrieval Based on Invariant Features

In this section we briefly describe our method for com-
paring color images obtained with the robot’s cameras with
the images stored in the image database. In order to use an
image database for mobile robot localization, one has to con-
sider that the probability that the position of the robot exactly
matches the position of an image in the database is virtually
zero. Accordingly, one cannot expect to find an image that ex-
actly matches the search pattern. In our case, we therefore are
interested in obtaining similar images together with a mea-
sure of similarity between retrieved images and the search
pattern.

Our image retrieval system simultaneously fulfills both re-
quirements. The key idea of this approach, which is described
in more detail in [16, 20], is to compute features that are in-
variant with respect to image rotations, translations, and lim-
ited scale (up to a factor of two). To compare a search pattern
with the images in the database it uses a histogram of local
features. Accordingly, if there are local variations, only the
features of some points of the image are disturbed, so that
there is only a small change in the histogram shape. An alter-
native approach might be to use color histograms. However,
this approach suffers from the fact that all structural informa-
tion of the image is lost, as each pixel is assigned without pay-
ing attention to its neighborhood. Our database, in contrast,
exploits the local neighborhood of each pixel and therefore
provides better search results [16, 20].

In the remainder of this section we give a short description
of the retrieval process for the case of grey-value images. To
apply this approach to color images, one simply considers the
different channels independently. LetM = {M(x0, x1), 0 ≤
x0 < N0, 0 ≤ x1 < N1} be a grey-value image, with
M(i, j) representing the grey-value at the pixel-coordinate
(i, j). Furthermore letG be a transformation group with el-
ementsg ∈ G acting on the images. For an imageM and
an elementg ∈ G the transformed image is denoted bygM.



Throughout this paper we consider the group of Euclidean
motions:

(gM)(i, j) = M(k, l) (2)

with(
k
l

)
=
(

cosϕ − sinϕ
sinϕ cosϕ

)(
i
j

)
−
(
t0
t1

)
, (3)

where all indices are understood moduloN0 resp.N1.
In the context of mobile robot localization we are espe-

cially interested in featuresF (M) that are invariant under
image transformations, i.e.,F (gM) = F (M)∀g ∈ G. For
a given grey-value imageM and a complex valued function
f(M) we can construct such a feature by integrating over the
transformation groupG [14]. In particular, the features are
constructed by generating a histogram from a matrixT which
is of the same size asM and is computed according to

(T[f ](M))(x0, x1) =

1
P

P−1∑
p=0

f

(
g(t0 = x0, t1 = x1, ϕ = p

2π
P

)M
)
. (4)

Since we want to exploit the local neighborhood of each
pixel, we are interested in functionsf that have a local sup-
port, i.e., that only use image values from the local neighbor-
hood. Our system uses a set of different functionsF with
f(M) = M(0, 0)M(0, 1) as one member. For each such
monomial, we generate a weighted histogram overT[f ](M).
These histograms are invariant with respect to image transla-
tions and rotations and robust against distortion and overlap-
ping and therefore well-suited for mobile robot localization
based on images stored in a database.

The global featureF (M) of an imageM consists of
a multi-dimensional histogram constructed out of all his-
tograms computed for the individual featuresT[f ](M) for
all functions inF . Please note that the invariant features may
be extracted with sub-linear complexity (based on a Monte-
Carlo integration over the Euclidean motion) without the need
of any feature extraction or segmentation.

The similarity between the global featureq of a query im-
age and the global featured of a database image is then com-
puted using the intersection-operator normalized by the sum
over allm histogram bins of the query image:

⋂
norm

(q,d) =

∑
k∈{0,1,...,m−1}

min(qk, dk)∑
k∈{0,1,...,m−1}

qk
(5)

Compared to other operators, the normalized intersection has
the major advantage that it also allows to match partial views
of a scene with an image covering a larger fraction.

Figures 1 and 2 show a example of a database query and
the corresponding answer. All images were recorded by our
mobile robot in our department. The images in the answer are
ordered by their similarity with the query image.

Figure 1. Query image

Figure 2. The nine images with the highest similarity to the
query image. The similarities from left to write, top-down
are 81.67%, 80.18%, 77.49%, 77.44%, 77.43%, 77.19%,
77.13%, 77.06%, and 76.42%.

4. Using Retrieval Results for Robot Localiza-
tion

The image retrieval system described above yields such
images that are most similar to a given sample. In order to in-
tegrate this system with a Monte-Carlo localization approach,
we need a technique to weight the samples according to the
results of the image retrieval process. The key idea of our
approach is to extract a visibility regionσM for each image
M in the image database. In our current system, the visibility
area of an imageM corresponds to all positions in a given
metric map of the environment from which the closest object
in M in the direction of the optical axis is visible.

We represent eachσM by a discrete grid of poses and pro-
ceed in two steps: First we apply ray-tracing to compute the
positionλi of the closest object on the optical axis accord-
ing to the position of the robot when this image was grabbed.
Then we use a constrained region growing technique to com-
pute the visibility areaσM for M. Throughout this process
only those points are expanded, from whichλi is visible. Fig-
ure 3 shows a typical example of the visibility area for one of
the images stored in our database.

In Monte-Carlo localization one of the crucial aspects is
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Figure 3. Visibility areaσM extracted for a reference image.
The circle corresponds to the position of the robot when the
image was grabbed in the environment depicted in Figure 4
(lower left portion). The position of the closest obstacle in
the direction of the optical axis is indicated byλi.

the computation of the weightωi of each sample. In many
systems this weight is chosen as the likelihoodp(o | li) [3, 5]
whereli is the position represented by the sample ando is the
measurement obtained by the robot. In the context of vision-
based localization, however,p(o | li) generally is hard to as-
sess because of the high dimensionality of the image space.
In our system, we use the similarity measureξi of each image
Mi to weight the samples in the corresponding visibility area
σMi . Before we assign a similarity measureξi to a sample,
we need to check, whether the sample lies in the visibility
areaσi of imageMi. At this point it is important to note,
that each sample represents a possible pose of the robot, i.e.,
a three-dimensional state consisting of the〈x, y〉-position and
orientationφ. Thus, in order to appropriately weight the sam-
ples we also have to consider the orientation of that sample.
For example, if the heading direction of pose represented by a
sample is too far off, the image stored in the database cannot
be visible for the robot.

In our system we compute the weightω of a sample ac-
cording to

ω =
n∑
i=1

I(〈x, y〉, σi) · d(ψ) · ξi, (6)

whereψ ∈ [−180; 180) is the deviation of the headingφ of
the sample from the direction toλi. Furthermore,d is a func-
tion which computes a weight according to the angular dis-
tanceψ. Finally, I(〈x, y〉, σi) is an indicator function which
is 1 if 〈x, y〉 lies inσi and0, otherwise.

In our current implementation we use a step function
so that only such areas are chosen, for which the angular
distance|ψ| does not exceed 5 degrees. Please note that
Equation (6) rests on the assumption that the images in the
database cover different aspects of the environment. For ex-
ample, if the database contains two images taken from the
same or a similar pose, then the weights of the samples lying
in the intersection of both visibility areas would be weighted
too high compared to other samples for which there is only
one image. Although this independence assumption is not
always justified, we did not observe any evidence in our ex-

periments, that this made the robot overly confident in being
at a certain position.

5. Experiments

The system described above has been implemented on our
mobile robot Albert and tested intensively in real robot ex-
periments as well as in off-line runs using recorded data. Al-
bert is an RWI B21 robot equipped with a stereo camera sys-
tem. The image database used throughout the experiments
contained 936 images. They were obtained by steering the
robot through the environment and grabbing sets of images
from different positions in the environment. Figure 2 shows
9 typical images stored in the database. Our system is highly
efficient since it only stores the histograms representing the
global features. The overall space used for all 936 images
therefore does not exceed 4MB. Furthermore, the retrieval
process for one image usually takes less than .6 secs on an
800MHz Pentium III. Our current implementation (described
in detail in [22]) updates the belief in each iteration in time
O(k2 +n ·k), wherek is the number of samples contained in
the sample set andn is the number of reference images stored
in the database.

The goal of the experiments described in the remainder of
this section is to demonstrate that our system allows the robot
to reliably estimate the pose of a mobile robot. Furthermore,
we present a long-term experiment designed to assess the reli-
ability of the overall approach with respect to increasing noise
in the odometry.

Figure 4. Map of the office environment used to carry out the
experiments and trajectory of the robot (ground truth).

5.1. Tracking Capability

The first experiment was carried out to analyze the ability
to keep track of a robot’s pose while it is moving with speeds
up to 30cm/sec through our office environment. In this exper-
iment we steered the robot through the corridor and several
rooms of our department. Figure 4 shows a part of the map
of the environment and the trajectory of the robot during this
experiment. Also shown in green/grey is an outline of the



Figure 5. Trajectory of the robot according to the odometry
data.

Figure 6. Images captured by Albert during the experiment

environment. The significant error in the odometry obtained
from the robot’s wheel encoders is shown in Figure 5. Fig-
ure 6 shows the first 16 images captured by the robot. As
can be seen from the figure, the lighting conditions are dif-
ferent at different places in the environment. Furthermore,
the images contain dynamic objects such as doors as well as
students present in the lab.

We initialized the sample set consisting of 5000 samples
with a Gaussian centered at the starting pose of the robot.
The trajectory estimated by our system is shown in Figure 7.
Obviously, the system is able to correct the errors in odometry
and to keep track of the position of the robot despite of the
dynamic aspects. In this experiment the maximum pose error
was less than 82 cm and 17 degrees.

5.2. Global Localization

The next experiment is designed to demonstrate the ability
of the system to globally estimate the position of the robot.
In this case we used the data obtained in the previous experi-
ment and initialized the sample set, which again consisted of
5000 samples, with a uniform distribution. Figure 8 shows
how the samples converge during the global localization pro-
cess. In the beginning they are randomly distributed over the

Figure 7. Trajectory obtained by tracking the position of the
robot using our system.

Figure 9. Positions of the robot estimated by our system dur-
ing global localization.

environment. After integrating four images the samples have
almost concentrated on the true position of the robot (center
image). The right image shows a typical sample set observed
when the system has uniquely determined the position of the
robot.

Figure 9 shows the trajectory estimated by our system.
Obviously, the system is able to quickly determine the po-
sition of the robot and to reliably keep track of it afterwards.
Please note that we currently use the sample mean to estimate
the robot’s pose, so that, in the beginning, the estimated po-
sition is always in the center of the map, which is not shown
entirely in this figure. One side-effect of using the sample
mean is that the trajectories estimated by our system during
global localization generally contain a line going from the
center from the map to the true position of the robot. This cor-
responds to the situation in which the system has discovered
the true position of the robot and happens after the integration
of the fourth image in this particular example.

5.3 Kidnapped Robot

The third experiment demonstrates the ability of our sys-
tem to recover from localization failures. We initialized and
started this experiment like the global localization experiment



Figure 8. Typical sample sets during global localization: At the beginning (left), after integrating 4 (center) and 35 (right) images.
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Figure 10. Typical localization error during akidnapped robot
experiment.

described above. After integrating 60 images, when the sys-
tem already had determined the robot’s position, we provided
data corresponding to a completely different location, which
corresponds to kidnapping the robot and taking it to a dif-
ferent place in the environment. Please note that our system
had no information about the changed situation. To enable
the system to deal with such situations, we randomly inserted
50 samples in each iteration. Figure 10 shows the localiza-
tion errors of one typical run. As can be seen, the system
recovers the position approximately 20 steps after being kid-
napped. We repeated this experiment 20 times and in all cases
our system was able to re-localize the robot.

Figure 11. Trajectory obtained after applying the noise ac-
cording to〈10, 5, 5〉 to the odometry data (left image) and
trajectory obtained after using our system to global localiza-
tion (right image).

5.4. Robustness
The previous three experiments illustrate situations, in

which the system is able to reliably estimate the position of

Figure 12. Trajectories obtained by adding noise according to
〈20, 20, 20〉 to the input data (left image) and trajectory ob-
tained with our system after global localization (right image).

the robot. To obtain a more quantitative assessment of the
performance of our approach, we performed a series of ex-
periments using the data recorded in the tracking experiment.
In each experiment we artificially distorted the odometry data
by adding different amounts of noise to it. For each incremen-
tal movement carried out by the robot, we introduced a rota-
tional error at the beginning of the movement, a translational
error, and a rotational error at the end of the movement. Each
individual error was normally distributed (see also [6]). Two
typical trajectories that resulted from this process are depicted
as left images in Figures 11 and 12. The trajectories estimated
by our system are shown as right images in the corresponding
figures. As can be seen, the system is able to globally localize
the robot and to reliably keep track of its position even in the
case of large noise in odometry.

For different parameter sets we generated 20 different tra-
jectories and for each resulting trajectory we used our sys-
tem to estimate the pose of the vehicle. Then we counted the
number of cases in which the pose error was below 2m and
35 degrees. Figure 13 shows the resulting statistics for nine
different noise values. As the figure demonstrates, our sys-
tem is robust against even large amounts of noise. Only for
very large noise values, the success rate starts to drop. Please
note, that we did not obtain a success-rate of 100%, because
the system always had to perform a global localization in the
beginning of each experiment.

6. Conclusions

In this paper we presented a new approach for vision-based
localization of mobile robots. Our method uses an image re-
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Figure 13. Number of times when the pose error was not
larger than 2m and 35 degrees.

trieval system based on invariant features. These features are
invariant with respect to translation, rotation, and scale (up to
a factor of two) so that the system is able to retrieve similar
images even if only a small part of the corresponding scene is
seen in the current image. This approach is particularly useful
in the context of mobile robots, since a robot often observes
the same scene from different view-points. Furthermore, the
system uses local features and therefore is robust to changes
in the scene. To represent the belief of the robot about its
pose, our system uses a probabilistic approach denoted as
Monte-Carlo localization. The combination of both tech-
niques yields a robust vision-based localization system with
several desirable properties previous approaches are lacking.
It is able to globally estimate the position of the robot and to
reliably keep track of it and to recover from localization fail-
ures. Additionally, our system can deal with dynamic aspects
in the scenes such as people walking by as well as with large
amounts of noise in the odometry data. In extensive experi-
ments carried out on real robots and in an unmodified office
environment we have demonstrated the general applicability
of our technique.
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