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Abstract— The designer of a mapping system for mobile robots
has to choose how to model the environment of the robot.
Popular models are feature maps and grid maps. Depending
on the structure of the environment, each representation has
certain advantages. In this paper, we present an approach that
maintains feature maps as well as grid maps of the environment.
This allows a robot to update its pose and map estimate based
on the representation that models the surrounding of the robot
in the best way. The model selection procedure is obtained by
reinforcement learning and takes a decision based on the current
observation. As we will illustrate in simulation as well as in real
world experiments, this allows a robot to learn accurate maps in
a more robust way than approaches using only feature or only
grid maps.

I. INTRODUCTION

Building maps is one of the fundamental tasks of mobile

robots. In the literature, the mobile robot mapping problem is

often referred to as the simultaneous localization and mapping

(SLAM) problem. It is considered to be a complex problem,

because for localization a robot needs a consistent map and

for acquiring a map a robot requires a good estimate of its

location. This mutual dependency between the pose and the

map estimates makes the SLAM problem hard and requires

searching for a solution in a high-dimensional space.

A large variety of different estimation techniques has been

proposed. Extended Kalman filter, sparse extended informa-

tion filters, maximum likelihood methods, particle filter, and

several other techniques have been applied to estimate the

pose of the robot as well as a map of the environment.

Most approaches to mapping use sets of features to model

the environment, grid maps, or topological maps. Each repre-

sentation has its own advantages. The environment the robot

is deployed in mainly influences the decision which model

to chose. For example, in large open spaces with predefined

landmarks, feature-based approaches are likely to outperform

mapping techniques based on grid maps. In dense and cluttered

environment, however, grids offer substantial advantages.

In our system, we maintain the joint posterior about the

trajectory of the robot and the map of the environment using

a Rao-Blackwellized particle filter. The contribution of this

paper is a novel approach which combines feature-based

models with occupancy grid maps. Our approach allows a

robot to perform its corrections based on both representations.

It selects the model that is currently the best one to map

the surroundings of the robot. The model selection process

is obtained using reinforcement learning. It makes a decision

based on the current sensor observations and the state of the

filter. As we will demonstrate in the experiments, our approach

(a) Feature-based mapping system (no features inside the buildings)

(b) Grid-based mapping system (few structural information outside)

(c) Combining features and grid maps

Fig. 1. When mapping environments that contain large open spaces with
few landmarks as well as dense structures, a combination of feature maps
and grids maps outperforms the individual techniques.

outperforms pure grid and pure feature-based approaches. A

motivating example is shown in Figure 1.

This paper is organized as follows. After a discussion

of related work, we briefly introduce mapping with Rao-

Blackwellized particle filters in Section III. Section IV presents

our filter for mapping which maintains the dual model of the

environment. Section V explains our model selection process

based on reinforcement learning. Experiments carried out in

simulation and on real robots are presented in Section VI.

II. RELATED WORK

Mapping techniques for mobile robots can be roughly

classified according to the map representation and the under-

lying estimation technique. One popular map representation

is the occupancy grid. Whereas such grid-based approaches

are computationally expensive and typically require a huge

amount of memory, they are able to represent arbitrary objects.

Feature-based representations are attractive because of their

compactness. However, they rely on predefined feature extrac-

tors, which assumes that some structures in the environments

are known in advance.

The model of the environment and the applied state esti-

mation technique are often coupled. One of the most popular

approaches are extended Kalman filters (EKFs) in combination



with landmarks. The effectiveness of the EKF approaches

comes from the fact that they estimate a fully correlated

posterior about landmark maps and robot poses [10, 15].

Their weakness lies in the strong assumptions that have to

be made on both the robot motion model and the sensor

noise. Moreover, the landmarks are assumed to be uniquely

identifiable. There exist techniques [14] to deal with unknown

data association in the SLAM context, however, if these

assumptions are violated, the filter is likely to diverge [5, 9,

19].

Thrun et al. [18] proposed a method that uses the inverse of

the covariance matrix. The advantage of the sparse extended

information filters (SEIFs) is that they make use of the

approximative sparsity of the information matrix and in this

way can perform predictions and updates in constant time.

Eustice et al. [4] presented a technique to make use of exactly

sparse information matrices in a delayed-state framework.

In a work by Murphy, Doucet, and colleagues [2, 13], Rao-

Blackwellized particle filters (RBPF) have been introduced as

an effective means to solve the SLAM problem. Each particle

in a RBPF represents a possible robot trajectory and a map.

The framework has been subsequently extended by Monte-

merlo et al. [11, 12] for approaching the SLAM problem with

landmark maps. To learn accurate grid maps, RBPFs have been

used by Eliazar and Parr [3] and Hähnel et al. [7]. Whereas the

first work describes an efficient map representation, the second

presents an improved motion model that reduces the number

of required particles. The work of Grisetti et al. [6] describes

an improved variant of the algorithm proposed by Hähnel et

al. [7] combined with the ideas of FastSLAM2 [11]. Instead

of using a fixed proposal distribution, the algorithm computes

an improved proposal distribution on a per-particle basis on

the fly.

So far, there exist only very few methods that try to combine

feature-based models with grid maps. One is the hybrid metric

map (HYMM) approach [8]. It estimates the location of

features and performs a triangulation between them. In this

triangulation, a so called dense map is maintained which can

be transformed according to the update of the corresponding

landmarks. This allows the robot to obtain a dense map by

using a feature-based mapping approach. However, it is still

required that the robot is able to reliably extract landmarks.

III. MAPPING WITH

RAO-BLACKWELLIZED PARTICLE FILTERS

According to Murphy [13], the key idea of the Rao-

Blackwellized particle filter for SLAM is to estimate the joint

posterior p(x1:t,m | z1:t, u1:t−1) about the map m and the

trajectory x1:t = x1, . . . , xt of the robot. This estimation is

performed given the observations z1:t = z1, . . . , zt and the

odometry measurements u1:t−1 = u1, . . . , ut−1 obtained by

the mobile robot. The Rao-Blackwellized particle filter for

SLAM makes use of the following factorization

p(x1:t,m | z1:t, u1:t−1) =

p(m | x1:t, z1:t) · p(x1:t | z1:t, u1:t−1). (1)

This factorization allows us to first estimate only the trajectory

of the robot and then to compute the map given that trajectory.

Since the map strongly depends on the pose estimate of

the robot, this approach offers an efficient computation. This

technique is often referred to as Rao-Blackwellization.

Typically, Eq. (1) can be calculated efficiently since the

posterior about maps p(m | x1:t, z1:t) can be computed

analytically using “mapping with known poses” since x1:t and

z1:t are known.

To estimate the posterior p(x1:t | z1:t, u1:t−1) about the po-

tential trajectories, one can apply a particle filter. Each particle

represents a potential trajectory of the robot. Furthermore, an

individual map is associated with each sample. The maps are

built from the observations and the trajectory represented by

the corresponding particle.

This framework allows a robot to learn models of the

environment and estimate its trajectory but it leaves open how

the environment is represented. So far, this approach has been

applied using feature-based models [11, 12] or grid maps [3,

6, 7, 13]. Each representation has its own advantages and one

typically needs some prior information about the environment

to select the appropriate model. In this paper, we combine

both types of maps to represent the environment. This allows

us to combine the advantages of both worlds. Depending on

the most recent observation, the robot selects that model which

is likely to be the best model in the current situation.

IV. DUAL MODEL OF THE ENVIRONMENT

Our mapping system applies such a Rao-Blackwellized

particle filter to maintain the joint posterior about the trajectory

of the robot and the map of the environment. In contrast

to previous algorithms, each particle carries a grid map as

well as a map of features. The key idea is to maintain both

representations simultaneously and to select in each step the

model that is best suited to update the pose and map estimate

of the robot. Our approach is independent of the actual features

that are used. In our current system, we use a laser range finder

and extract clusters of beam end points which are surrounded

by free space. In this way, we obtain features from trees, street

lamps, etc. Note that other feature detectors can be directly

integrated into our approach. The detector itself is completely

transparent to the algorithm.

In each step, our algorithm considers the current estimate

as well as the current sensor and odometry observation to

select either the grid or the feature model to perform the next

update step. This decision affects the proposal distribution in

the particle filter used for mapping. The proposal distribution

is used to obtain the next generation of particles as well as to

compute the importance weights of the samples.

In the remainder of this section, we first introduce the

particularities of our particle filter. We then explain in the

subsequent section how to actually select the model for the

current step.

If the grid map is to be used, we draw the new particle

poses from an improved proposal distribution as introduced

by Grisetti et al. [6]. This proposal performs scan-matching

on a per particle basis and then approximates the likelihood

function by a Gaussian. This technique has been shown to

yield accurate grid maps of the environment, given that there



is enough structure to perform scan-matching for an initial

estimate.

When using feature maps, we apply the proposal distribution

as done by Montemerlo et al. [12] in the FastSLAM algorithm.

After the proposal is used to obtain the next generation of

samples, the importance weights are computed according to

Grisetti et al. [6] and Montemerlo et al. [12] respectively. Note

that we compute for each sample i two weights w
(i)
g (based

on the grid map) and w
(i)
f (based on the feature map). For

resampling, one weight is required but we need both values

in our decision process as explained in the remainder of this

paper.

To carrying out the resampling step, we apply the adaptive

resampling strategy originally proposed by Doucet [1]. It com-

putes the so-called effective sample size or effective number

of particles (Neff ) to decide whether to resample or not. This

is done based on the weights resulting from the proposal used

to obtain this generation of samples.

V. MODEL SELECTION

The probably most important aspect of our proposed al-

gorithm is to decide which representation to choose given

the current sensor readings and the filter. In the following,

we describe different strategies we investigated and which are

evaluated in the experimental section of this paper.

A. Observation Likelihood Criterion

A mapping approach that relies on scan-matching is most

likely to fail if laser readings cannot be aligned to the map

generated so far. This is likely to be the case in large open

space with sparse observations. In such a situation it is often

better to use a pre-defined feature extractor (in case there are

feature) to estimate the pose of the robot.

A measure that can be used to detect such a situation is

the likelihood l(zt, xt,mg,t) that the scan-matching seeks to

maximize. To point-wise evaluate the observation likelihood

of a laser observation, we use the so called “beam endpoint

model” [17]. In this model, the individual beams within a scan

are considered to be independent. The likelihood of a beam is

computed based on the distance between the endpoint of the

beam and the closest obstacle from that point.

Calculating the average likelihood for all particles results in

a value that can be used as a heuristic to decide which map

representation to use in a given situation:

l =
1

N

∑

i

l(zt, x
(i)
t ,m

(i)
g,t) (2)

A heuristic for selecting the feature-based representation in-

stead of the grid map can be obtained based on a threshold

(l ≤ c1).

B. Neff Criterion

As described above, each particle i carries two weights

w
(i)
g and w

(i)
f , one for the grid-map and one for the feature-

map. These weights can be seen as an indicator of how well

a particle explains the data and therefore can be used as a

heuristic for model selection. Since the weights of a particle

are based on different types of measurement, they cannot be

compared directly. What can be compared, however, is the

weight distribution over the filter.

One way to measure this difference in the individual weights

is to compute the variance of the weights. Intuitively a set of

weights with low variance does not strongly favor any of the

hypothesis represented by the particles, while a high variance

indicates that some hypotheses are more likely than others.

This suggests that a strategy based on the Neff value, which

is strongly related to the variance of the weights, can be a

good heuristic. Neff is computed for both sets of weights as

N
g
eff =

1
∑N

i=1(w
(i)
g )2

and N
f
eff =

1
∑N

i=1(w
(i)
f )2

. (3)

It can be easily seen, that a higher variance in the weights

yields a lower Neff value. Assuming that a set of particles with

a higher variance in the weights is usually more discriminative,

it seems reasonable to switch to the feature-based model

whenever N
f
eff < N

g
eff .

C. Reinforcement Learning for Model Selection

Both approaches described above are clearly heuristics. In

this section, we describe how to use reinforcement learning to

combine the heuristics while avoiding their pitfalls. The basic

idea of reinforcement learning is to find a mapping from states

S to actions A which maximizes a numerical reward signal

r (see [16] for an introduction). Such a mapping is called a

policy and can be learned by interacting with the environment.

Inspired by the human learning method of trial and error, this

class of learning algorithms perform a series of actions and

analyze the obtained reward.

There exist a number of algorithms for reinforcement

learning that differ most notably in the knowledge available

about the environment. If it can be modeled as an Markov

decision process for example, technics such as policy iteration

can be applied. If no model of the environment is available,

Monte Carlo methods or Temporal-Difference Learning (TD

learning) should be applied. For our approach, we use the

Sarsa algorithm [16] which is a popular algorithm among the

TD methods and does not require a model of the environment.

It learns an action-value function Q(s, a) which assigns a value

to state-action pairs. Those values can then be used to generate

a policy (e.g., choose the action that has the highest value in

a given state).

To apply this method to our model selection problem, we

have to define the states S, the actions A, and the reward

r : S → R. Defining the actions is straight forward as A =
{ag, af}, where ag defines the use of the grid map and af the

use of the feature map.

The state set has to be defined in a way that it represents

all necessary information about the sensor input and the filter

to make a decision. To achieve this, our state consists of the

average scan matching likelihood l, a boolean variable given

by N
f
eff < N

g
eff , and a boolean variable if a known feature has

currently been detected or not. This results in

S := {l} × {1
N

f

eff
<N

g

eff

} × {1 feature detected}. (4)



The value of l is divided into (here seven) discrete intervals

(0.0 − 0.15, 0.16− 0.3, 0.31 − 0.45, 0.46− 0.6, 0.61− 0.75,

0.76−0.9, 0.91−1.0), resulting in 7×2×2 = 28 states. It is

important to keep the number of states small since learning the

policy otherwise may require too many computation resources

(even as a preprocessing step which needs to be executed only

once).

The policy is learned on simulated data where the true

robot pose x∗

t is available in every time step t. We use the

weighted average deviation from the true pose to define our

reward-function. To avoid a punishment that result from wrong

decisions in the past (e.g. a wrong rotation), we only use the

deviation accumulated since the last evaluation step t − 1:

r(st) = r(st−1) −

N∑

i=1

w(i) ||x(i) − x∗

t || (5)

Deviations from the simulated path result in negative rewards.

As mentioned in the previous section, each particle stores two

weights. For calculating the weighted average, we use w
(i)
g if

the last action taken was ag and w
(i)
f if af was taken.

The environment for learning consists of building-like struc-

tures with hallways and an outdoor part that models a set of

trees. We recorded a simulated path and executed the learning

algorithm for 1000 times. During learning, we us an ǫ-greedy

policy. In state s, a greedy policy chooses the action a which

has the highest value Q(s, a). In contrast to this, an ǫ-greedy

policy allows exploratory actions by choosing a random action

with likelihood ǫ.

This technique results in a policy that tells the robot when to

select the feature-based representation and when to choose the

grid map. Note that our approach to learn a strategy for making

decisions is independent of the actual feature detector used.

One could even use this approach to choose among multiple

feature detectors. The overall mapping algorithm is depicted

in Algorithm 1.

VI. EXPERIMENTS

Our approach has been evaluated using simulated and real

robot data. Real world experiments have been conducted using

an ActivMedia Pioneer 2-AT robot equipped with a SICK

LMS laser range finder. For generating the simulated data,

we used the Carnegie Mellon Robot Navigation Toolkit.

The experiments have been designed to verify that our

mapping approach is able to reduce the error compared to

the purely feature-based technique (FastSLAM [12]) and to

the purely grid-based approach [6]. In case the environment

suggests the use of one single model, the result is obviously

the same as using the original approach.

A. Simulation Experiments

The simulated environment used to test our approach is

shown in Figure 2. It shows two symmetric buildings con-

nected by an alley spanning 70 m in total. We simulated a

laser range finder with a maximum range of 4m which is

less than the distance between the trees in the alley (5m).

The motivating example in the introduction of this paper

Algorithm 1 Our combined approach

Require:
St−1, the sample set of the previous time step
zl,t, the most recent laser scan
zf,t, the most recent feature measurement
ut−1, the most recent odometry measurement

Ensure:
St, the new sample set

maptype = decide(St−1, zl,t, zf,t, ut−1)

St = {}

for all s
(i)
t−1 ∈ St−1 do

< x
(i)
t−1, w

(i)
g,t−1, w

(i)
f,t−1m

(i)
g,t−1, m

(i)
f,t−1 >= s

(i)
t−1

// compute proposal
if (maptype = grid) then

x
(i)
t ∼ P (xt | x

(i)
t−1, ut−1, zl,t)

else
x

(i)
t ∼ P (xt | x

(i)
t−1, ut−1)

end if

// update importance weights

w
(i)
g,t = updateGridWeight(w

(i)
g,t−1, m

(i)
g,t−1, zl,t)

w
(i)
f,t = updateFeatureWeight(w

(i)
f,t−1, m

(i)
f,t−1, zf,t)

// update maps

m
(i)
g,t = integrateScan(m

(i)
g,t−1, x

(i)
t , zl,t)

m
(i)
f,t = integrateFeatures(m

(i)
f,t−1, x

(i)
t , zf,t)

// update sample set

St = St ∪ {< x
(i)
t , w

(i)
g,t, w

(i)
f,t, m

(i)
g,t, m

(i)
f,t >}

end for

for i = 0 to N do
if (maptype = grid) then

w(i) = w
(i)
g

else
w(i) = w

(i)
f

end if
end for

Neff = 1
P

N
i=1(w(i))2

if Neff < T then
St = resample(St, {w

(i)})

end if

shows example results obtained with the different approaches.

Figure 1 (a) is the result of the purely feature-based FastSLAM

approach. Since no features are found inside the building

structures, the robot cannot correct its trajectory inside the

buildings. In contrast, the path through the alley is well

corrected.

The purely grid-based approach [6] is able to correctly

map the buildings but introduces large errors in the alley (see

Figure 1 (b)). Due to the limited range of the sensor, too few

obstacles are observed and therefore no scan registration is

possible and thus the grid-based approach fails to map the

alley appropriately.

In contrast to this, our combined approach using the learned

policy is able to correct the trajectory of the robot all the time

by selecting the appropriate model. It uses the grid maps inside



Fig. 2. Simulated environment used test our approach. This shows the ground truth map and trajectory of the robot.
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Fig. 3. Deviation of the weighted mean of the samples from ground truth
using grid- and feature-model on their own and using the combined approach.
The error bars illustrate the 0.05 confidence level.
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Fig. 4. Deviation of the weighted mean of the samples from ground truth
using the scan-match likelihood heuristic, the Neff heuristic and our approach.

the buildings and the features outside. The resulting map is

shown in Figure 1 (c).

To evaluate our approach more quantitatively, we repeated

this experiment for 20 times with different random seeds. We

compared our approach to the pure feature-based approach and

the pure grid-based approach. The results in Figure 3 show,

that the combined approach is significantly better than both

pure approaches (0.05 significance).

In addition, we compared the solution obtained by Sarsa

with those of the scan-matching heuristic and the Neff heuris-

tic. We measured the absolute deviation from ground truth in

every time step. Figure 4 illustrates that the average error of the

learned model selection policy is lower than when using the

heuristics. However, we could not show that this improvement

is significant.

One interesting fact can be observed when comparing the

results of these three technique by manual inspection. Even if

the error measured as the deviation from the ground truth is not

significantly smaller for the learned policy, the maps typically

Fig. 5. Typical mapping results when using the likelihood-heuristic (left)
and our Sarsa-based approach (right).

look nicer. The scan-match heuristic for example relies on a

fixed threshold c1. If the threshold is not optimally tuned, in

can happen that the grid approach is not selected eventhough

it would be better. This leads to walls which are more blurred

or slightly missaligned. Figure 5 depicts a magnified view of

two maps illustrating the difference. Unfortunately, it is hard

to design a measure that is able to take this blurriness into

account. A similar effect can be observed when using the Neff

criterion.

B. Real World Experiments

Real robot data has been recorded at Freiburg University.

The computer science campus includes a parking space of

about 50m by 120m (see Figure 6). Lamps are set in two

rows at a distance of 16m. The dataset was recorded at a time

when no cars were present and therefore only the lamps caused

reflections of the laser beam. The robot was steered manually

through a building, around the neighboring parking space, and

back into the building. The trajectory is plotted in Figure 7. To

evaluate our approach, we limited the maximum laser range

to 12m, which is less than the distance between two lamps.

Since no ground truth was available, we measured the error

to an approximated robot path which was generated using the

grid-based approach of Grisetti et al. [6] with the full 80m

sensor range (shown in red/dark gray in Figure 7). Due to

the 80m range, the robot always observed enough obstacles

to build an accurate map. Figure 8 shows the error of the

weighted mean trajectory over time. In summary, the real robot

experiment leads to similar results as simulated experiments.

The combined approach performed better compared to both

traditional SLAM techniques with 12m sensor range.

The computational requirements of the presented approach

are approximatively the sum of the individual techniques. On

a standard PC, our implementation runs online.

VII. CONCLUSIONS

In this paper, we presented an improved approach to learn-

ing models of the environment with a Rao-Blackwellized

particle filters. Our approach maintains feature maps as well



Fig. 6. Parking space at Freiburg campus.

Fig. 7. Grid map of parking space and neighboring building 078 at Freiburg
campus. The approximated robot trajectory is shown in red/dark gray, the
result of our combined mapping approach is shown in green/light gray.

as grid maps to represent spatial structures. This allows the

robot to select the model which provides the best expected

map estimate. The model selection procedure is obtained by

a reinforcement learning approach. The robot considers the

previous estimate as well as the current observations to chose

the model that will be used in the upcoming correction step.

The process itself is independent of the actual feature detector.

Our approach has been implemented and evaluated on real

robot data as well as in simulation experiments. We showed

that the presented technique allows a robot to more robustly

learn maps of different types of environments. It ourperforms

traditional approach that use only features or only grid maps.
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