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Abstract— This paper addresses the problem of exploring
an unknown environment with a team of mobile robots. The
key issue in coordinated multi-robot exploration is how to
assign target locations to the individual robots such that the
overall mission time is minimized. In this paper, we propose a
novel approach to distribute the robots over the environment
that takes into account the structure of the environment.
To achieve this, it partitions the space into segments, for
example, corresponding to individual rooms. Instead of only
considering frontiers between unknown and explored areas as
target locations, we send the robots to the individual segments
with the task to explore the corresponding area. Our approach
has been implemented and tested in simulation as well as
in real world experiments. The experiments demonstrate that
the overall exploration time can be significantly reduced by
considering our segmentation method.

I. INTRODUCTION

Autonomous robots that are designed to create a map

of their environment require the capability to effectively

cover the space. There are several applications in which

robots have been designed to autonomously explore their

environment such as planetary exploration or in disaster

missions. Using a coordinated team of robots instead of a

single robot has often been suggested to be advantageous [4],

[7] and cooperating robots have the potential to accomplish

a task faster than a single robot [11]. By using several

robots, redundancy can be explicitely introduced so that such

a team can be expected to be more fault-tolerant than a

single robot. Another advantage of robot teams arises from

merging overlapping sensor information, which can help to

compensate for sensor uncertainty. However, when robots

operate in teams there is the risk of interference between

them [10], [20]. For example, if the robots have the same

type of active sensors such as ultrasound sensors, the overall

performance can be reduced due to cross-talk. The more

robots are used, the more time each robot may spend on

detours in order to avoid collisions with other members of

the team.

In this paper, we consider the problem of efficient explo-

ration with teams of mobile robots that seek to minimize

the overall time required to complete the mission. The entire

task of coordinating a team of robots during exploration can

roughly be separated into two subsequent tasks. First, one

needs to identify potential exploration targets for the robots.

Second, one needs to assign the individual robots to the target

locations calculated in the previous step.
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Fig. 1. Typical coordination of robots obtained by assigning them to
different segments of the partial map.

A popular method for generating potential exploration

targets has been proposed by Yamauchi et al. [26]. In

this approach, robots are sent to so-called frontiers, which

are given as the borders between the explored and the

unexplored space. In a multi-robot context, it is important

to carefully assign robots to targets so that redundant work

and interference between robots is minimized. Therefore, it

is the exploration strategy which affects the efficiency of the

robot team the most. In many approaches, the robots are

assigned directly to frontier targets based on a cost function

that takes into account the expected path costs or travel time

as well as a utility function that covers aspects such as the

expected gain in information [3], [9], [21], [24], [28].

The coordination strategies described there consider in-

dividual locations rather than segments of the environment.

Segmentation approaches which have recently received an

increased amount of attention [2], [8], [23], [27] have origi-

nally been designed to facilitate topological localization and

loop closing or have been used to reduce planning costs. In

this paper, we introduce a new online coordination strategy

for multi-robot exploration. It uses a segmentation of the

already explored area to assign robots to segments instead

of directly assigning them to frontier targets. Based on this

segmentation, the robots are distributed over the environment

more effectively which leads to a reduction of redundant

work and the avoidance of interference between robots. As

a result, the exploration time is significantly reduced.



This paper is organized as follows. After discussing re-

lated work, we describe the Hungarian Method for target

assignment in Section III. In Section IV, we introduce a

graph-based method for map segmentation while in Section

V we present our coordination approach. Finally, we describe

simulated and real world experiments conducted to evaluate

our approach.

II. RELATED WORK

The problem of exploring unknown terrains with teams

of mobile robots has received considerable attention in the

past. Yamauchi [26] presented a technique to learn maps

with a team of mobile robots. He introduced the concept of

frontiers between known and unknown areas in a grid map,

which are widely used to select potential target locations

during exploration. In this paper, we also consider frontiers

but additionally utilize the structure of the environment for

defining potential target locations. Koenig et al. [14] analyze

different terrain coverage methods for small robots with

limited sensing and computational capabilities. Furthermore,

there has been research on how to deal with limited commu-

nication in the context of multi-robot exploration [3], [19].

An approach towards cooperation in heterogeneous robot

systems has been presented by Singh and Fujimura [21].

If a robot is too big to pass through a narrow passage, it

informs other robots about this task. Howard et al. [12]

presented an incremental deployment approach that explicitly

deals with obstructions, i.e., situations in which the path of

one robot is blocked by another. Zlot and colleagues [28]

proposed an architecture for mobile robot teams in which the

exploration is guided by a market economy. They consider

sequences of potential target locations for each robot and

trade tasks between the robots using single-item first-price

sealed-bid auctions. Such auction-based techniques have also

been applied by Gerkey and Matarić [9] to efficiently solve

the task allocation problem with a group of robots.

Matarić and Sukhatme [17] consider different strategies for

task allocation in robot teams and analyze the performance

of the team in extensive experiments. Ko et al. [13] present

an approach that uses the Hungarian method [15] to compute

the assignments of frontier cells to robots. In contrast to our

work, Ko et al. mainly focus on finding a common frame

of reference in case the start locations of the robots are not

known.

In a previous work [24], we considered the problem

of integrating semantic background information into the

coordination procedure. This technique is related to the

method proposed in this paper, even if the methodology

is substantially different. Compared to our previous ap-

proach [24], we obtain a significantly reduced exploration

time also for small teams of robot. The map segmentation

technique used throughout this work is related to the spatial

semantic hierarchy introduced by Kuipers and Byun [16].

The difference lies in the fact that we do not learn a model

based on distinct places but utilize this information for a

better coordination. Learning topological maps is itself a

research field on its own and different methods have been

proposed [2], [8], [25], [27]. These approaches are related to

the technique described in this paper as they can be applied

to separate the environment into appropriate regions that are

then assigned to the individual robots.

III. TARGET ASSIGNMENT

USING THE HUNGARIAN METHOD

In 1955, Kuhn [15] presented a general method, which is

often referred to as the Hungarian method, to assign a set of

jobs to a set of machines given a fixed cost matrix. Consider

a given n × n cost matrix which represents the cost of all

individual assignments of jobs to machines. The Hungarian

method, which is able to find the optimal solution with the

minimal cost given this matrix, can be summarized by the

following three steps:

1) Compute a reduced cost matrix by subtracting from

each element the minimal element in its row. After-

wards, do the same with the minimal element in each

column.

2) Find the minimal number of horizontal and vertical

lines required to cover all zeros in the matrix. In case

exactly n lines are required, the optimal assignment is

given by the zeros covered by the n lines. Otherwise,

continue with Step 3.

3) Find the smallest nonzero element in the reduced cost

matrix that is not covered by a horizontal or vertical

line. Subtract this value from each uncovered element

in the matrix. Furthermore, add this value to each

element in the reduced cost matrix that is covered by

a horizontal and a vertical line. Continue with Step 2.

The computationally difficult part lies in finding the mini-

mum number of lines covering the zero elements (Step 2).

The overall algorithm has a complexity of O(n3). The

method described above can directly be applied to assign

a set of target locations (tasks) to the individual robots

(machines). Here, each entry in the cost matrix can be the

length of the path the corresponding robot has to travel to

reach the designated target point.

Since the implementation of the Hungarian method de-

scribed above requires the number of jobs and the number

of machines to be equal, we need to slightly adapt the

cost matrix computed in that way. This can be achieved

by expanding the cost matrix using “dummy machines”

(which will result in target locations that are not approached

by any of the robots) and by duplicating existing targets.

The Hungarian Method is then able to compute the optimal

assignment, given the cost matrix.

IV. MAP SEGMENTATION

Several researchers investigated the problem of segment-

ing maps based on the partitioning of a graph [1], [8],

[16], [25], [27]. A very popular graph-based representation

in this context are Voronoi Graphs (VGs) [5]. To compute

the Voronoi Graph G(m) = (V,E) of a given map m, we

consider the set Op(m) which contain for each point p in

the free-space C of m the set of closest obstacle points. The



Voronoi Graph then is given by the set of points in Op(m)
for which there are at least two obstacle points with an equal

minimal distance:

V = {p ∈ C | |Op(m)| ≥ 2} (1)

E = {(p, q) | p, q ∈ V, p adjacent q in m} (2)

For each pair of nodes in G(m) we add an edge if their

corresponding points in m are adjacent. The Voronoi Graph

can be generated from metric maps of the environment such

as occupancy grid maps [6], [25]. In a practical implemen-

tation this can be efficiently done by applying the Euclidean

distance transformation [18] to an occupancy grid map. This

transformation results in a distance map which holds for each

grid cell the distance to the closest obstacle. A Voronoi Graph

can then be constructed using skeletonization on the distance

map. Figure 2 illustrates the process of generating a Voronoi

Graph for an example occupancy grid map.

After generating the Voronoi Graph we are now interested

in creating a partitioning of the graph into k disjoint sets

V1, V2, . . . , Vk with

V =
k

⋃

i=1

Vi (3)

such that each cluster of nodes Vi corresponds to a segment

we can assign robots to. Thrun et al. suggest the graph to

be separated at so-called critical points [25]. Here, critical

points are those nodes in the Voronoi Graph at which

the distance to the closest obstacle in the map is a local

minimum. This is usually the case in doorways or other

narrow passages.

Whereas this approach is able to reliably find doorways, it

also generates a lot of false positive candidates in cluttered

environments. To eliminate these false positives, we constrain

them in the following way: First, critical points have to be

nodes of degree 2 (two edges) and second, need to have

a neighbor of degree 3 (a junction node). In addition, we

require the points to lead from known into unknown areas,

since segments which do not contain unknown areas can

safely be ignored in an exploration task. To verify this

constraint, we compute the distance to the closest reachable

unknown cell for each point. This can be done efficiently

in a similar way as the computation of the distance map.

Figure 3 shows a pruned version of the Voronoi graph and

the critical points found by our algorithm. All doorways

have been selected as candidates and the number of false

positives is much smaller than the number of critical points

according to the definition of Thrun et al. [25] which includes

distance minima in the Euclidean distance transformation

within corridors and rooms.

In the practical experiments described in this paper we

found that this segmentation technique yields sufficient re-

sults and allows to nicely distribute the robots. In unmodified

office environments, we can typically reliably separate rooms

and segments of a corridor. Other, more complex environ-

ments may however suggest more sophisticated segmentation

algorithms which rely on hand-labeled training data [2], [8]

or more complex reasoning [1], [27].

Fig. 2. Generation of the Voronoi Graph. Left: Example grid-map. Center:
Map plus distance transform (the darker a point the larger the distance to
the closest obstacle). Right: Map and Voronoi Graph generated from the
distance transform using skeletonization.

Fig. 3. Example segmentation of a small fraction of an environment. The
marked nodes are the candidates for the partitioning of the graph calculated
by our approach.

V. ASSIGNMENT OF ROBOTS TO TARGET AREAS

Typical approaches to coordinated exploration seek to

minimize the time needed to cover the whole environment

with the robot’s sensors. Therefore, it is often sub-optimal to

explore the same (local) area with more than one robot. A

cluster of robots which has a serious overlap in the field of

view of the robots’ sensors does not exploit its full potential.

In practice, it is generally much more efficient to explore

separate regions of the environment instead. For this reason,

it is important to assign robots to exploration targets such

that the robots do not get too close to each other during

exploration.

Indoor environments are in general structured environ-

ments. Buildings are usually divided into rooms which can be

reached via corridors. In many cases, it can be a disadvantage

to assign more than one robot to one room. The room might,

for example, be too small for a second robot to speed up

it’s exploration even though there initially is more than one

frontier in the room. When the room is fully explored, robots

might even block each other while trying to leave the room

which will result in an increase in exploration time.



In our approach, we assign individual robots to different

segments of unexplored space. Segments could be separate

rooms, corridors, or parts of larger corridors or rooms. This

takes into account the structure of the environment and

prevents the forming of inefficient clusters of robots.

Algorithm 1 Target Assignment Using Map Segmentation.

1: Determine segmentation S = {s1, ..., sn} of map.

2: Determine the set of frontier targets for each segment.

3: Compute for each robot i the cost Ci
s for reaching each

map segment s ∈ S.

4: Discount cost Ci
s if robot i is already in segment s.

5: Assign robots to segments using the Hungarian Method.

6: for all segments s do

7: Assign robot(s) to frontier targets in s w.r.t. path costs

using the Hungarian Method.

8: end for

Our assignment algorithm is summarized in Algorithm 1.

An assignment is determined whenever one of the robots

requests a new exploration target. First, a partition of the

partial map of the environment is created using the graph-

based method described in Section IV. To generate targets

within the segments, we then determine the set of frontier

cells. The cost Ci
s for reaching segment s with robot i is

defined as the expected path cost to the nearest frontier

cell within s. This cost is discounted by a constant factor

if robot i is already located in segment s. This has the

effect that the robots stay in their assigned segment until

it is completely explored. After computing the costs of

a segment, an assignment is calculated by applying the

Hungarian method (see Section III) based on the cost matrix.

The Hungarian method does not assign more than one

robot to the same segment unless there are more robots avail-

able than there are unexplored segments. To appropriately

handle those cases in which multiple robots are assigned to

a single segment, we apply a local assignment based on the

cost-optimal frontier within a segment. For this reason, our

algorithm is equivalent to a purely frontier-based assignment

if the environment cannot be partitioned, i.e., there is only

one segment.

By assigning robots to separate segments, an appropriate

distribution of the robots can be achieved. As we will

demonstrate in the experiments, this leads to a significant

reduction in exploration time. Instead of aiming at the closest

frontier, robots share work more efficiently. A typical office

environment, for example, contains corridors and rooms.

Using our approach, each of the corridors is explored com-

pletely by one of the robots. In this way, the rough structure

of the building will quickly be revealed. Meanwhile other

robots will be assigned to the rooms reachable from the

corridors, one at a time. This behavior does not only appear

to be a natural way of exploring an unknown environment,

our experiments also revealed that it significantly increases

the efficiency of the robot team compared to approaches

which ignore the structure of the building.

Fig. 4. Maps used in our simulated experiments: Building 079 of the
Freiburg University (top) and Bremen University Cartesium (bottom).

Note that our algorithm is not limited to homogenous

teams of robots. Consider the situation in which one par-

ticular robot cannot enter a certain part of the environment

while another robot can. The assignment algorithm described

above can be applied in this case by using modified segment

costs C̄i
s defined as:

C̄i
s =

{

Ci
s , if robot i can enter segment s

∞ , otherwise.
(4)

VI. EXPERIMENTAL RESULTS

Our approach has been implemented and evaluated using

simulated as well as with real teams of robots. The real

world experiments were conducted using two ActivMedia

Pioneer II robots equipped with a laser range finder with

a 180 degrees field of view. For generating the simulation

results, we used the Carnegie Mellon Robot Navigation

Toolkit. In all our experiments we assumed that the robots

share a joint occupancy grid map, which is generated based

on the sensor readings of all robots and under the assumption

that all positions of the vehicles are known. This map is used

for coordination, path planning, and path execution. We also

assume that there is a central planning component which

can communicate with all robot and can assign exploration

targets to them. If there is only a limited communication

range, then clusters of robots can be coordinated if one

selects one individual planning agent per cluster [13], [22].

The experiments have been designed to verify that our ex-

ploration approach leads to significantly shorter exploration

time compared to a standard frontier-based approach.

A. Simulation Results

To evaluate our robot coordination algorithm, we simu-

lated teams of robots in various environments. We com-

pared our segmentation-based approach to a frontier-based

approach in which each robot is assigned to the closest

frontier which has not been assigned to another robot yet.

Since this strategy does not consider the structure of the

environment, it will in general also assign more than one

robot to one room or corridor if they contain more than one

frontier.



To eliminate influences from the segmentation algorithm

used in the real world experiment, we assumed a given

segmentation of the environment into rooms and corridors

in our simulation experiments. As mentioned above, such

a segmentation could also be reliably generated from the

partial map alone.

Figure 4 depicts two maps of real environments used

for the simulation (see also real world experiments). Both

of them are office environments, one at the University of

Freiburg and the other at the University of Bremen. To

make the maps more different, we added clutter to the map

representing the office environment located at the University

of Bremen.

We varied the size of the simulated team from two to six

robots (Freiburg map) respectively from two to eight robots

(Bremen map). Since the Bremen map is considerably bigger

than the Freiburg map, we simulated larger teams of robots

there. For each team size, we conducted a series of simulated

exploration runs starting from 20 different starting positions.

The results of our experiments can be seen in Figure 5.

We measured the runtime gain of our approach which

uses the assignment described in Section V compared to

the alternative assignment described above. We plotted the

runtime gain in percent of the total runtime against the size

of the robot team. The error bars in the plots indicate the

95% confidence level. It can be seen that our approach

significantly outperforms the approach which does not use a

segmentation based assignment.

The runtime gain is bigger for the Cartesium map since

this map features several large rooms. This observation can

be seen as an indicator as to when our approach will lead to

especially good results. Whenever the environment can be

divided into reasonably large and separated segments, our

technique substantially reduces the overall exploration time.

In general, our strategy assigns one robot to one segment.

As soon as there are more robots than segments multiple

robots may be assigned to the same segment as mentioned

in Section V. For this reason, the runtime gain of our

strategy will decrease for large teams of robots in small

environments. This can be seen in Figure 5. Note however,

that the overall time to complete the mission still gets smaller

the more robots are added to the task (the plot only shows

the improvement of our approach vs. the frontier-based

approach).

B. Real Robot Experiments

Our coordination algorithm has been evaluated using a

team of real robots. For this experiment, we used two

identical Pioneer II robots equipped with a laser range finder

and a standard laptop-computer. During the experiment both

robots were connected via a wireless network. The robot

localization was achieved using a standard scan-matching

approach. The relative starting poses of the robot were

manually set in the beginning. Figure 6 depicts the two robots

during their exploration mission.

The experiments were conducted in the lower floor of

building 079 of the Freiburg computer science campus. The
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Fig. 5. Exploration time gain of our approach compared to a frontier-
based approach for the AIS lab in Freiburg (top) and the Bremen Cartesium
(bottom).

Fig. 6. Two robots exploring the AIS laboratory of the University of
Freiburg using our coordination approach.

building has a size of approximately 37m x 14m and consists

of numerous office rooms and two long corridors divided by

a door.

The team of robots was able to successfully explore the

environment using our coordination approach. The result of

one of the experiments can be seen in Figure 7. The figure

shows the combined map of both robots after the exploration

had finished. It also shows the trajectories of both robots

during the exploration. The total exploration time was less

than nine minutes, each of the robots traveled approximately

120m.

It can be seen that each of the rooms was explored by

exactly one of the robots. It can also be seen that both

corridors have been explored completely by one of the robots

while the other one was exploring rooms reachable from the

corridor. Another interesting effect is that the robots did not



Fig. 7. Resulting map of the real world experiment including the trajectories
of the two individual robots.

block each other during the execution of their tasks.

VII. CONCLUSION

In this paper, we proposed a novel technique for coordinat-

ing a team of exploring robots. We use a segmentation of the

environment to determine exploration targets for the individ-

ual robots. By assigning each robot to a separate segment,

a balanced distribution of the robots over the environment

is achieved. This leads to a shorter overall exploration time

compared to an approach which does not use our segmen-

tation. Thus, our approach reduces the risk of interference

between robots and the amount of redundant work. We also

introduced an efficient graph-based segmentation technique

for partially explored environments. Our approach has been

implemented and evaluated in simulation as well as with

a team of real robots. The experiments show a significant

improvement of the segmentation-based approach compared

to a standard frontier-based approach for structured indoor

environments. Note that our approach is not limited to our

segmentation method. Using a heterogenous team of robots,

for example, such a segmentation can be defined based on

traversability constraints of the different robots.
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