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Abstract—This paper addresses the problem of vegetation
detection from laser measurements. The ability to detect veg-
etation is important for robots operating outdoors, since it
enables a robot to navigate more ef ciently and safely in such
environments. In this paper, we propose a novel approach for
detecting low, grass-like vegetation using laser remission values.
In our algorithm, the laser remission is modeled as a function :
of distance, incidence angle, and material. We classify surface | street
terrain based on 3D scans of the surroundings of the robot. — -
The model is learned in a self-supervised way using vibration-
based terrain classi cation. In all real world experiments we
carried out, our approach yields a classi cation accuracy of
over 99%. We furthermore illustrate how the learned classi er
can improve the autonomous navigation capabilities of mobile
robots.

I. INTRODUCTION

Autonomous outdoor navigation is an active research eld
in robotics. In most of the outdoor navigation scenarios in-
cluding autonomous cars, autonomous wheelchairs, surveil
lance robots, or transportation vehicles, the classiaratbf
the terrain plays an important role as most of the robots have
been designed for navigation on streets or paved pathg rathe
than on natural surfaces covered by grass or vegetation. The - — =
navigation outside of_paved pqths might be .uncomfortabll-el . 1. Picture of a street and vegetation (top) and typitaéss cation
for passengers and might even introduce the risk of the b s obtained based on range differences (middle) ancssimivalues
getting stuck. Furthermore, driving on grass will in gemherabottom). Shown is a bird's eye view of a 3D scan of the areadegiat the
increase wheel slippage and in this way increase potenttdp With a maximum range of 5m. Whereas points classi ed as sawet

. . . epicted in blue, points corresponding to vegetation atered in green.
errors in the odometry. Accordingly, the robust detectiébn o
vegetated areas is an important requirement for robotsyin amector machine. To integrate classi cation results, welapp
of the above-mentioned situations. a probabilistic mapping method similar to occupancy grid

In this paper, we propose a novel laser-based classi cationapping [12]. The model is learned in a self-supervised
approach that is especially suited for detecting low veg®eta way using a vibration-based classi cation approach to llabe
typically found in structured outdoor environments such aaining data. In our experiments, we demonstrate that our
parks or campus sites. We classify surface terrain based spproach can be used to accurately map vegetated areas and
3D scans of the surrounding of the robot in order to allowlo so with a higher accuracy than standard techniques that
the robot to take the classi cation result into account dgri are solely based on range values (see Fig. 1). We furthermore
trajectory planning. It exploits an effect that is well know present an application to autonomous navigation in stradtu
from satellite image analysis: Chlorophyll which is foundoutdoor environments in which a robot bene ts from the
in living plants strongly re ects near-IR light [13]. Often knowledge about the vegetation in its surroundings.
used laser scanners such as the SICK LMS 291-S05 scanner
emit near-IR light and return the re ectivity of the object
they hit. Our approach models this remission value of the
laser scanner as a function of terrain class, incidenceeangYV
and measured distance. Classi cation is done using a stipp

This paper is organized as follows. After discussing relate
ork, we will briey describe Support Vector machines
hich are employed for classication in our approach.
ec. IV then discusses the properties of the remission salue
All authors are with the University of Freiburg, DepartmefiComputer  In Sec. V we then present our approach for self-supervised
Science, D-79110 Freiburg, Germany _learning of the terrain classi cation. Finally, in Sec. View
This work has partly been supported by the German Researciditian d ibe th . | | btained with | dada
(DFG) under contract number SFB/TR-8 (A3) and by the EC undetract escribe the experimental results obtained with rea a

number FP7-231888-EUROPA. with real robots navigating through our university campus.



Il. RELATED WORK is then used to train a laser-based vegetation classi eth Bo

classi ers used in our approach have been implemented using

There exist several approaches for detecting vegetatiQynnort vector machines which will be introduced in the
using laser measurements. Wolf et al. [23] use hiddel’?)llowing.

Markov models to classify scans from a tilted laser scanner
into navigable (e.g., street) and non-navigable (e.g.sgjra I1l. SUPPORTVECTORMACHINES

regions. The main feature for classi cation is the variance sypport vector machines (SVMs) are a kernel-based learn-
in height measurements relative to the robot height. Oth@fig method which is widely used for classication and
approaches analyze the distribution of 3D endpoints in ggression [16]. A SVM is essentially a hyperplane learning
sequence of scans [8], [9], [10]. However, at vegetationygorithm. Two classes of data points are separated by a
such as a freshly mowed lawn can not be reliably detectagperplane so that the margin between training points and

using this feature alone. the plane is maximized:
A combination of camera and laser measurements has oo o o
been used to detect vegetation in several approaches [2],, /&% Minfl X xijjj x 2 H;tw;xi + b=0g; (1)

[6], [11], [22]. In a combined system, Wellington et al. [22] hereH i dot oroduct _ traini int
use the remission value of a laser scanner in additioff ‘'€ 'S SOmMe dot product Spack; are training points,

to density features and camera images as a classi cati&qdw s aweightir)g vector. The following decision function
feature. However, they do not model the dependency betwebgnused to determine the class layel

remission, measured range, and incidence angle. Probably f(x) = hwvxi+b 2)
due to this fact, they found the feature to be only "modeyatel - f 3
informative”. y sg(f (x)) 3)

The approach that is closest to our approach has be&he hyperplane can be constructed ef ciently by solving
proposed by Bradley et al. [2]. Chlorophyll-rich vegetatio a quadratic programming problem. To separate non-linear
is detected using a combination of laser range measuremergi@sses, the so-called kernel trick is applied. The trginin
regular and near-infrared cameras. Vegetation is recednizdata is rst mapped into a higher-dimensional feature space
by comparing measurements from the different types afsing a kernel function. A separating hyperplane is then
cameras. 3D laser measurements of the environment @enstructed in this features space which yields a nonlinear
projected into the camera images. A classi er is then trdinedecision boundary in the input space. In practice, the Gaus-
using the vegetation feature and features from the digiobu sian Radial Basis Function (RBF) is often used as a kernel
of 3D endpoints. According to the authors the approacfunction given by
yields a classi cation accuracy of up to 95% but requires x x02
sophisticated camera equipment. k(x;x) = e” 22 (4)

In contrast to thos_e combined syster_ns, our _approach USRRh the so-called length-scale paramelter
a laser scanner as its sole sensor. It is thus independent ofrhere exist derivatives of the basic SVM-formulation
lighting conditions and can be used on a variety of existinghich allow for training errors. Among thos&-SVM is a
robot systems. Additionally, hand-labeling of trainingal& popular method. An addition parameter commonly denoted
not required in our approach. asC has to be optimized which adjusts the trade-off between

Terrain types have also been classied using vibratiomaximizing the margin and minimizing the training error.

sensors on a robot [3], [7], [15], [21]. In these approaches, Throughout this work, we use the SVM implementation
the robot traverses the terrain and the induced vibratiogf |ibSvM [4].

is measured using accelerometers. The measurements are

usually analyzed in the Fourier domain. Sadhukhan et &]. [15 IV. USING REMISSION VALUES FOR

presented an approach based on neural networks. A similar TERRAIN CLASSIFICATION

approach is presented by DuPont et al. [7]. Brooks and The goal of our terrain classi cation algorithm is to pre-

lagenemma [3] use a combination of principal componertisely classify the area containing vegetation. This ¢leass

analysis and linear discriminant analysis to classifyaierr tion has to be made early enough for the robot's planner to

More recently, SVMs have been used by Weiss et al. [20{ake the classi cation into account. For this reason, weufoc

[21]. on classifying three-dimensional scans of the environment
Self-supervised learning has previously been used tsurrounding the robot.

Dahlkamp et al. [5] in a vision-based road detection sys- We are interested in distinguishing at vegetation such as

tem. Here, laser measurements are used to identify neanpsass from drivable surfaces such as streets or paved paths.

traversable surfaces. This information is then used tol labEor sake of brevity, we will call those classes of materials

camera image patches in order to train a classi er that is abfstreet” and "vegetation” in the following.

to predict traversability in the far range. In our approaeh, Compared to an approach based purely on the scan point

adopt the idea of self-supervision to generate labeleditrgi distribution (see experiment in Sec. VI-A) a far better

data. We apply a vibration-based classi er to label lasetlassi cation accuracy can be achieved when the remission

measurements recorded by the robot. This labeled datasetue of laser measurements is used to classify endpoints.



vegetation : normal in the 3D model as well as the angle of the laser
10500 seet - beam relative to the robot.
10000 For each measured scan point the remission value, inci-
: dence angle, and distance are stored. As the robot moves
through the environment it traverses previously scanned
surface patches. Those patches are labeled using theiibrat
classi er described below and are then fed to the SVM as
training data. The training is done of ine. To optimize the

! 2 3 4 5 6 7 street veg. length-scale parametérof the kernel as well as the soft-

range [l class mean margin parameteC, we perform a systematic grid search

Fig. 2. Left: typical remission measurements of a SICK LMS 285-®r  On the gridlog, | 2f 15/:::;3g andlog, C 2f  5;:::; 15g.
street (blue) and vegetation class (green). Right: mean s@misalues for The optimal parameters are determined using 5-fold cross
both classes. validation.

Once the classier has been trained, the model can be
used on any robot which is using the same sensor in a
similar con guration. More speci cally, the laser shouléb
mounted so that the laser is measuring the surface at angles
and distances similar to those observed during the training
phase.
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A. Terrain Classi cation based on the Vibration of the

Fig. 3. Classication of the scene depicted in Fig. 1 using thean .
9 P g ¢ Vehicle

remission value (see Fig. 2, right) to distinguish both @ass

The SICK LMS laser scanner uses light at a wavelength of We use a vibration-based classi er to label training data.
905 nm which is within the near-infrared range. ChlorophylPifferent types of terrain induce vibrations of a different
which is found in living plants strongly re ects near-IR characteristic to the robot. These vibrations can be medsur
light [13]. The remission values returned by the scanndty an inertial measurement unit (IMU) and can be used
depends on the material of the measured surface, on the classify the terrain the robot traverses. Note that such
distance at which it is hit, and on the angle of incidence [1[classi ers do not allow the prediction of terrain classes in
Unfortunately, this relation is non-linear as the examdle c@reas which have not been traversed.ykt our system,
measurements in Fig. 2 shows. It is essential to take ti¢e only need to differentiate between vegetation and street
measured range as well as the angle of the measurement ifl@n-vegetation) to generate training data for the SVM.
account. Averaging the remission value over all measurdd Our experiments, we use a XSens MTi to measure the
ranges and angles will lead to wrong classi cation resultgcceleration along the z-axis. We apply the Fourier transfo
especially in the near range of up to three meters. This c4@ the raw acceleration data. In our algorithm, a 128-point
be seen in Fig. 3. Here, the scene from Fig. 1 was classi &gF T is used to capture the frequency spectrum of up to 25 Hz.
using the mean remission value for both classes (see Fig. 2)The frequency spectrum also depends on the speed of the
ignoring the range and incidence angle. robot. To account for this dependency, it has been suggested
In our approach, we apply &£-SVM to classify laser 10 train several classiers at different speeds [20]. In our
beams depending on the measured range, incidence angkstem, however, we decided to treat the forward velocity
and remission using a RBF-kernel. Other classi cation meth2s a training feature instead. In addition to this, we als® us
ods might certainly be used instead of a SVM as long d$e rotational velocity as a feature to account for vibragio
they are able to classify data which is only separable iwhich result from the skid-steering of our robot.
a non-linear way. The input to the learning algorithm is a To classify the acceleration and velocity data, we again use
labeled set of laser measurements. Each data point cons&t€-SVM with a RBF-kernel. Our feature vectarconsists
of a range measurement, incidence angle, and a remissi@hthe rst 32 Fourier magnitudef~n,j, the mean forward
value. By determining the separating hyperplane betwestelocity v; and the mean rotational velocity of the robot
both data sets, we implicitly model the remission functionsver the sample period
for the street and vegetation class.

jFmj = p(ReFm)2+(Im Fm)z;meO;:::;3lg (5)

V. SELF-SUPERVISEDLEARNING FOR . . . .
X fj Foj; 25 jFa1); Vs 1t 0 (6)

RoBUST TERRAIN CLASSIFICATION

To avoid tedious hand-labeling of dense three-dimensionalhereF,, denotes the m-th Fourier component. The classi-
training data our algorithm uses a self-supervised trgininer was trained by recording short tracks of about 50 m at
method [5]. While the robot is moving it generates a 3Dvarying speeds both on a street and on vegetation. Parameter
model of the environment using the method described ioptimization was done using grid search and 5-fold cross
Sec. V-B. Incidence angles are estimated using the surfaealidation.



In our experiments, we achieved a high classi cation
accuracy and thus this data is well suited to label the mgini
data for the laser-based classi cation.

B. Mapping of Vegetation

We use multi-level surface maps [18] to model the envi-
ronment. This representation uses a 2D grid and stores in
each cell a set of patches representing individual surfaces
at different heights. In our approach, we additionally stor
the probability of each surface patch to contain vegetation
Let P(v') denote this probability of patch. In general,
surface patches will be observed multiple times. Therefor€. Class Probabilities

we need to probabilistically combine results from several The decision function of Support Vector Machines (see

measurements. In this way, the uncertainty in classi cratioEq_ 3) produces a class labelwhich is not a probabilityy
is explicitly taken into account. is either 1 or -1).

Let z be a laser measurement at timeAnaIiogous 10 several methods have been proposed to map the output
Moravec [12], we obtain an update rule f&¥(v' | z1.t). of SVMs to posterior class probabilities [14], [19]. Among

Fig. 4. Robots used in our experiments.

First we apply Bayes' rule and obtain those a popular approach is Platt's method [14]. It uses a
PO | 20 = P(zjV;zi4 .1)p(vu j Z14 1): @ parametric mod.el to t the posterior given by
P(zjzt 1) P(y=1jf)=(+exp( Af +B)) % (13)
We then compute the ratio The parameteré andB are determined using maximum

likelihood estimation from a training s€f;;yi), wheref;
(8) are the outputs of the function given in Eq. 2 andare the
corresponding class labels. For details of the optimimatio
Similarly, we obtain step see [14]. In our approach, this method is used to obtain
. L
PV z) _ Pzjv) PW) the inverse sensor modeI(V' j z).

PGVijz) P(zj: V)P V)’ VI|. EXPERIMENTS

Our approach has been implemented and evaluated in
o . . several experiments. The experiments are designed to demon
P(zjv) _ P(Vjz) PCV). (9) strate that our approach is suitable to allow robots tobbjia
P(zj:v) PCVjz) P(V) detect vegetation and thus improves robust navigation in

If we apply the Markov assumption that the current observaiructured outdoor environments.

tion is independent of previous observations given we know e used two different robot systems (see Fig. 4). The self-
that a patch contains vegetation supervised learning approach is evaluated using an ActivMe

dia Pioneer 2 AT, which is able to traverse low vegetation.

P(Vi_j Z11) _ P(thVi_;Zl:t 1) P(Vi_j Zit 1) .
PV jzit) P(zej: Vi;zae 1) P( V' Z1y 1).

which can be transformed to

P(zejVizie 1)= P(zjV) (10) For mapping large environments and for an autonomous
N . ) ] driving experiment, we use an ActivMedia Powerbot plat-
and utilize the fact thaP(: v') =1 P (V'), we obtain form. This robot cannot safely traverse grass since itocast
PV j z1+) wheels yvill bloc_k the robot due to its weight. Both robots
m = are equipped with SICK LMS S291-S05 laser scanners on

PV | 21) PV iz 1) 1 P(V) pan-tilt unit.s. In addition to that_, the_Pioneer robo_t aasra_n
— — 2. (11) XSens MTi IMU to measure vibrations. Three-dimensional
1 P(Vjz)l PV jzir 1) P(V) scans are gathered by tilting the laser scanner from 50
This equation can be transformed into the following updatéegrees upwards to 30 degrees downwards. We use the raw

formula: (unnormalized) remission values provided by the scanner.
. We limit the classi cation to scans with a range smaller
P(V'jzi1) = than 5.0 meters. The approach itself is not limited in range.

1 PVjz)l P(Vjziy 1) P(V) 1 However, at a laser resolution of one degree and a low height

P(Vijz) P(Vijzit 1) 1 P(V) (12)  of the sensor relative to the ground (approx. 0.5m), long
' range data will be too sparse both to gather training data

To perform the update step, we need an inverse sensor mogglj to reliably detect drivable surfaces and obstacles.
P (V' j z). In our system, this sensor model is based on the

remission value of the laser. The SVM-classi er is used td\- Vegetation detection using range differences
model the measurement probabilities as described in the nexIn a rst experiment, we implemented a vegetation de-
section. Here, the prior probability &f(v') was set ta0:5.  tection algorithm based purely on the range differences of

1+
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Fig. 5. Self-supervised learning. Left: the data set whiclised to train
the classi er. Right: test set recorded at a different |awat

neighboring laser measurements similar to the one proposed
by Wolf et al. [23]. This method is only used for a com-
parison with our proposed classication approach. Three-
dimensional data is acquired by gathering a sweep of 2D
scans. For each 2D scan the 2D endpopats hx;;y;i are h Sy

computed from the range and angle measuremiants ji. g N i3 . »
e -

/ A 3
P i 7 IS

A local featured; is then determined for every scan point
d = X X 1 (14)
This feature captures the local roughness of the terrain. - % /?)erial view of the computerf sciﬁnce campl(Js gjn yFéIeibﬁmro]roxi-
: : : ated robot trajectories are shown for the training (toploygland the test
cope with - at bUt_mted sur_faces we CIaS_SIfy Sqans base@-:‘t (bottom, red). Courtesy of Google Maps, Copyright 2008it&lGlobe.
on the absolute difference ith between neighboring range _
measurements as suggested in [11]. Furthermore, we also se3D Mapping

the measured range as a training feature to account for they, this experiment, the Powerbot robot was steered across
varying data density from near to far scans. A SVM is usethe computer science campus at the University of Freiburg.
to train a classi er based on these features. The scanning laser of the robot was tilted to a xed angle

In our experiments, we achl_eve a classi cation accuracys og degrees downwards. In this way, a fairly large area
of about 75% using the described method. An example @fyig be mapped in less than 15 minutes. The length of
the classi cation results can be seen in Fig. 1. Similar ltssu ¢ trajectory is 490m. The vegetation classi er was used
have been reported by other researchers [2]. to map vegetation in the three-dimensional model of the
B. Self-supervised Learning environment. To properly integrate multiple measurements

To train our remission-based classier, we manuallyVe used the mapping approach described in Sec. V-B with
steered the Pioneer AT robot through an outdoor environme@tcell size of 0.1 m.
consisting of a street and an area covered with grass. WeDue to a signi cantly different hardware setup than on the
acquired 3D scans approximately every 4 m. While the robdtioneer AT, we were not able to use the model generated in
was driving the IMU measured the vibration induced to>€C- VI-B. Instead, we recorded a training set of 12,153gyras
the robot. To correct odometry errors of the robot, we ennd 10,448 street samples by placing the robot in front of at
ployed a state-of-the-art SLAM approach [17] and 3D scarffeas containing only street and only vegetation. This atkth
matching. We trained our classi er using the self-supesstis iS only applicable if such example data can be gathered
approach described in Sec. V. The training set is visualized and thus should be considered inferior to the self-supeavis
Fig. 5a. The data recorded at the border region betweert stré@Proach described in Sec. V.
and vegetation were ignored since the precise locationedf th o ctected vegetation ™ g
border cannot be determined using the vibration sensor. The [ detected street
model for the laser-based classi er was trained using 19,98
vegetation and 11,248 street samples.

To further evaluate the precision of the classier, we
recorded separate test data at a different location (se®Fig
and Fig. 6). The test set contains 36,304 vegetation and
28,883 street measurements. Again, the labeling of the data :;
was carried out using the vibration-based classier. The
previously trained classi er reached a precision of 99.966 o
the test data; the recall is 99.6 %. The confusion matrix is
given in Table I. Note that such accurate classi cation hssu
are n,Ot due to over tting. Fig. 2 I,HUStrates that a non-tne Fig. 7. Mapping of a large outdoor environment. The laser wslitat a
function (as learned by the SVM in our approach) can clearlyed angle of 20 degrees while the robot was moving. The guhewss a
separate the classes. 2D projection of the 3D map.

b



we will investigate whether the described approach can also
be applied to classify tall vegetation such as trees or lsushe
We will also look into using remission values provided by
the recently introduced Hokuyo UTM-30LX. With a weight
of 3709 this sensor could allow vegetation detection on an
even broader range of robots including humanoids and small

scale robots.

[1]
[2]
Fig. 8. Autonomous navigation experiment. Although the sfsirbbstacle-
free path from the start to the goal position led over grass,robot could
reliably avoid the vegetated areas by using our vegetatiassicer and E]

traveled over the paved streets to reach its goal.

Compared to the aerial image of the campus site in Fig. 6[4]
the mapping result shown in Fig. 7 is highly accurate. Eveng;
small amounts of vegetation, for example between tiles on a
path, can be identi ed. To evaluate the accuracy of the map

. . ) 6]
created during this experiment, we manually marked Wrongl)}
classi ed cells. Of a total of 271,638 cells (75,622 vegetat
196,016 street), we found 547 false positives and 194 fals#]
negatives. This corresponds to a precision of 99.23% and a
recall of 99.74 %.

(8]
D. Autonomous Navigation

As mentioned above, the Powerbot cannot safely traversp]
vegetated areas. In the experiment depicted in Fig. 8 (see
also our video attachment), the robot was told to navigajgo
to a goal position 80 m in front while avoiding vegetation.
Since the robot did not have a map, it explored the envL—1 :
ronment in the process of reducing its distance to the go ]11
location. Thereby, it used the vegetation classi er to dete
vegetation. The environment was represented as described’?!
Sec. V-B. Without knowledge about the speci ¢ terrain, thg;g;
shortest obstacle-free path would have led the robot aeross
large area containing grass. By considering the classooat
results in the path costs, however, the planner chose a sgf‘g

trajectory over the street.
[15]

VIl. CONCLUSION

In this paper, we proposed a new approach to vegetatid¥f]
detection using the remission values of a laser scann&y’
By predicting vegetation in the surrounding of a robotjig]
our approach improves robot navigation in structured out-
door environments. The laser classi er is learned in a sel{-lg]
supervised fashion by means of a support vector machine]
using a vibration-based terrain classi er to gather tnagni
data. The approach has been implemented and evalua
in several real-world experiments. The experiments show
that our approach is able to accurately detect low, grass-
like vegetation with an accuracy of more than 99%. We alsh?
demonstrated that the terrain classi cation can be used to
improve the navigation behavior of a robot. [23]

Our current approach is limited to detecting at vegetation
due to the self-supervised training method. In future work,
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