
Improving Robot Navigation in Structured Outdoor
Environments by Identifying Vegetation from Laser Data

Kai M. Wurm Rainer K̈ummerle Cyrill Stachniss Wolfram Burgard

Abstract— This paper addresses the problem of vegetation
detection from laser measurements. The ability to detect veg-
etation is important for robots operating outdoors, since it
enables a robot to navigate more ef�ciently and safely in such
environments. In this paper, we propose a novel approach for
detecting low, grass-like vegetation using laser remission values.
In our algorithm, the laser remission is modeled as a function
of distance, incidence angle, and material. We classify surface
terrain based on 3D scans of the surroundings of the robot.
The model is learned in a self-supervised way using vibration-
based terrain classi�cation. In all real world experiments we
carried out, our approach yields a classi�cation accuracy of
over 99%. We furthermore illustrate how the learned classi�er
can improve the autonomous navigation capabilities of mobile
robots.

I. I NTRODUCTION

Autonomous outdoor navigation is an active research �eld
in robotics. In most of the outdoor navigation scenarios in-
cluding autonomous cars, autonomous wheelchairs, surveil-
lance robots, or transportation vehicles, the classi�cation of
the terrain plays an important role as most of the robots have
been designed for navigation on streets or paved paths rather
than on natural surfaces covered by grass or vegetation. The
navigation outside of paved paths might be uncomfortable
for passengers and might even introduce the risk of the robot
getting stuck. Furthermore, driving on grass will in general
increase wheel slippage and in this way increase potential
errors in the odometry. Accordingly, the robust detection of
vegetated areas is an important requirement for robots in any
of the above-mentioned situations.

In this paper, we propose a novel laser-based classi�cation
approach that is especially suited for detecting low vegetation
typically found in structured outdoor environments such as
parks or campus sites. We classify surface terrain based on
3D scans of the surrounding of the robot in order to allow
the robot to take the classi�cation result into account during
trajectory planning. It exploits an effect that is well known
from satellite image analysis: Chlorophyll which is found
in living plants strongly re�ects near-IR light [13]. Often
used laser scanners such as the SICK LMS 291-S05 scanner
emit near-IR light and return the re�ectivity of the object
they hit. Our approach models this remission value of the
laser scanner as a function of terrain class, incidence angle,
and measured distance. Classi�cation is done using a support
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Fig. 1. Picture of a street and vegetation (top) and typical classi�cation
results obtained based on range differences (middle) and remission values
(bottom). Shown is a bird's eye view of a 3D scan of the area depicted at the
top with a maximum range of 5 m. Whereas points classi�ed as streetare
depicted in blue, points corresponding to vegetation are colored in green.

vector machine. To integrate classi�cation results, we apply
a probabilistic mapping method similar to occupancy grid
mapping [12]. The model is learned in a self-supervised
way using a vibration-based classi�cation approach to label
training data. In our experiments, we demonstrate that our
approach can be used to accurately map vegetated areas and
do so with a higher accuracy than standard techniques that
are solely based on range values (see Fig. 1). We furthermore
present an application to autonomous navigation in structured
outdoor environments in which a robot bene�ts from the
knowledge about the vegetation in its surroundings.

This paper is organized as follows. After discussing related
work, we will brie�y describe Support Vector machines
which are employed for classi�cation in our approach.
Sec. IV then discusses the properties of the remission values.
In Sec. V we then present our approach for self-supervised
learning of the terrain classi�cation. Finally, in Sec. VI we
describe the experimental results obtained with real data and
with real robots navigating through our university campus.



II. RELATED WORK

There exist several approaches for detecting vegetation
using laser measurements. Wolf et al. [23] use hidden
Markov models to classify scans from a tilted laser scanner
into navigable (e.g., street) and non-navigable (e.g., grass)
regions. The main feature for classi�cation is the variance
in height measurements relative to the robot height. Other
approaches analyze the distribution of 3D endpoints in a
sequence of scans [8], [9], [10]. However, �at vegetation
such as a freshly mowed lawn can not be reliably detected
using this feature alone.

A combination of camera and laser measurements has
been used to detect vegetation in several approaches [2],
[6], [11], [22]. In a combined system, Wellington et al. [22]
use the remission value of a laser scanner in addition
to density features and camera images as a classi�cation
feature. However, they do not model the dependency between
remission, measured range, and incidence angle. Probably
due to this fact, they found the feature to be only ”moderately
informative”.

The approach that is closest to our approach has been
proposed by Bradley et al. [2]. Chlorophyll-rich vegetation
is detected using a combination of laser range measurements,
regular and near-infrared cameras. Vegetation is recognized
by comparing measurements from the different types of
cameras. 3D laser measurements of the environment are
projected into the camera images. A classi�er is then trained
using the vegetation feature and features from the distribution
of 3D endpoints. According to the authors the approach
yields a classi�cation accuracy of up to 95% but requires
sophisticated camera equipment.

In contrast to those combined systems, our approach uses
a laser scanner as its sole sensor. It is thus independent of
lighting conditions and can be used on a variety of existing
robot systems. Additionally, hand-labeling of training data is
not required in our approach.

Terrain types have also been classi�ed using vibration
sensors on a robot [3], [7], [15], [21]. In these approaches,
the robot traverses the terrain and the induced vibration
is measured using accelerometers. The measurements are
usually analyzed in the Fourier domain. Sadhukhan et al. [15]
presented an approach based on neural networks. A similar
approach is presented by DuPont et al. [7]. Brooks and
Iagenemma [3] use a combination of principal component
analysis and linear discriminant analysis to classify terrain.
More recently, SVMs have been used by Weiss et al. [20],
[21].

Self-supervised learning has previously been used by
Dahlkamp et al. [5] in a vision-based road detection sys-
tem. Here, laser measurements are used to identify nearby
traversable surfaces. This information is then used to label
camera image patches in order to train a classi�er that is able
to predict traversability in the far range. In our approach,we
adopt the idea of self-supervision to generate labeled training
data. We apply a vibration-based classi�er to label laser
measurements recorded by the robot. This labeled dataset

is then used to train a laser-based vegetation classi�er. Both
classi�ers used in our approach have been implemented using
support vector machines which will be introduced in the
following.

III. SUPPORTVECTORMACHINES

Support vector machines (SVMs) are a kernel-based learn-
ing method which is widely used for classi�cation and
regression [16]. A SVM is essentially a hyperplane learning
algorithm. Two classes of data points are separated by a
hyperplane so that the margin between training points and
the plane is maximized:

max
w2 H;b 2 R

minfjj x � x i jj j x 2 H; hw; xi + b = 0g; (1)

whereH is some dot product space,x i are training points,
andw is a weighting vector. The following decision function
is used to determine the class labely:

f (x) = hw; xi + b (2)

y = sgn(f (x)) (3)

The hyperplane can be constructed ef�ciently by solving
a quadratic programming problem. To separate non-linear
classes, the so-called kernel trick is applied. The training
data is �rst mapped into a higher-dimensional feature space
using a kernel function. A separating hyperplane is then
constructed in this features space which yields a nonlinear
decision boundary in the input space. In practice, the Gaus-
sian Radial Basis Function (RBF) is often used as a kernel
function given by

k(x; x 0) = e
� ( x � x 0) 2

2 l 2 ; (4)

with the so-called length-scale parameterl .
There exist derivatives of the basic SVM-formulation

which allow for training errors. Among those,C-SVM is a
popular method. An addition parameter commonly denoted
asC has to be optimized which adjusts the trade-off between
maximizing the margin and minimizing the training error.

Throughout this work, we use the SVM implementation
of LibSVM [4].

IV. U SING REMISSION VALUES FOR

TERRAIN CLASSIFICATION

The goal of our terrain classi�cation algorithm is to pre-
cisely classify the area containing vegetation. This classi�ca-
tion has to be made early enough for the robot's planner to
take the classi�cation into account. For this reason, we focus
on classifying three-dimensional scans of the environment
surrounding the robot.

We are interested in distinguishing �at vegetation such as
grass from drivable surfaces such as streets or paved paths.
For sake of brevity, we will call those classes of materials
”street” and ”vegetation” in the following.

Compared to an approach based purely on the scan point
distribution (see experiment in Sec. VI-A) a far better
classi�cation accuracy can be achieved when the remission
value of laser measurements is used to classify endpoints.



Fig. 2. Left: typical remission measurements of a SICK LMS 291-S05 for
street (blue) and vegetation class (green). Right: mean remission values for
both classes.

Fig. 3. Classi�cation of the scene depicted in Fig. 1 using the mean
remission value (see Fig. 2, right) to distinguish both classes.

The SICK LMS laser scanner uses light at a wavelength of
905 nm which is within the near-infrared range. Chlorophyll
which is found in living plants strongly re�ects near-IR
light [13]. The remission values returned by the scanner
depends on the material of the measured surface, on the
distance at which it is hit, and on the angle of incidence [1].
Unfortunately, this relation is non-linear as the example of
measurements in Fig. 2 shows. It is essential to take the
measured range as well as the angle of the measurement into
account. Averaging the remission value over all measured
ranges and angles will lead to wrong classi�cation results
especially in the near range of up to three meters. This can
be seen in Fig. 3. Here, the scene from Fig. 1 was classi�ed
using the mean remission value for both classes (see Fig. 2)
ignoring the range and incidence angle.

In our approach, we apply aC-SVM to classify laser
beams depending on the measured range, incidence angle,
and remission using a RBF-kernel. Other classi�cation meth-
ods might certainly be used instead of a SVM as long as
they are able to classify data which is only separable in
a non-linear way. The input to the learning algorithm is a
labeled set of laser measurements. Each data point consists
of a range measurement, incidence angle, and a remission
value. By determining the separating hyperplane between
both data sets, we implicitly model the remission functions
for the street and vegetation class.

V. SELF-SUPERVISEDLEARNING FOR

ROBUST TERRAIN CLASSIFICATION

To avoid tedious hand-labeling of dense three-dimensional
training data our algorithm uses a self-supervised training
method [5]. While the robot is moving it generates a 3D
model of the environment using the method described in
Sec. V-B. Incidence angles are estimated using the surface

normal in the 3D model as well as the angle of the laser
beam relative to the robot.

For each measured scan point the remission value, inci-
dence angle, and distance are stored. As the robot moves
through the environment it traverses previously scanned
surface patches. Those patches are labeled using the vibration
classi�er described below and are then fed to the SVM as
training data. The training is done of�ine. To optimize the
length-scale parameterl of the kernel as well as the soft-
margin parameterC, we perform a systematic grid search
on the gridlog2 l 2 f� 15; :::; 3g andlog2 C 2 f� 5; :::; 15g.
The optimal parameters are determined using 5-fold cross
validation.

Once the classi�er has been trained, the model can be
used on any robot which is using the same sensor in a
similar con�guration. More speci�cally, the laser should be
mounted so that the laser is measuring the surface at angles
and distances similar to those observed during the training
phase.

A. Terrain Classi�cation based on the Vibration of the
Vehicle

We use a vibration-based classi�er to label training data.
Different types of terrain induce vibrations of a different
characteristic to the robot. These vibrations can be measured
by an inertial measurement unit (IMU) and can be used
to classify the terrain the robot traverses. Note that such
classi�ers do not allow the prediction of terrain classes in
areas which have not been traversed yet. In our system,
we only need to differentiate between vegetation and streets
(non-vegetation) to generate training data for the SVM.
In our experiments, we use a XSens MTi to measure the
acceleration along the z-axis. We apply the Fourier transform
to the raw acceleration data. In our algorithm, a 128-point
FFT is used to capture the frequency spectrum of up to 25 Hz.

The frequency spectrum also depends on the speed of the
robot. To account for this dependency, it has been suggested
to train several classi�ers at different speeds [20]. In our
system, however, we decided to treat the forward velocity
as a training feature instead. In addition to this, we also use
the rotational velocity as a feature to account for vibrations
which result from the skid-steering of our robot.

To classify the acceleration and velocity data, we again use
a C-SVM with a RBF-kernel. Our feature vectorx consists
of the �rst 32 Fourier magnitudesjFm j, the mean forward
velocity �vt and the mean rotational velocity�vr of the robot
over the sample period

jFm j =
p

(Re Fm )2 + ( Im F m )2; m 2f 0;:::; 31g (5)

x = fj F0j; :::; jF31 j; �vt ; �r t g; (6)

whereFm denotes the m-th Fourier component. The classi-
�er was trained by recording short tracks of about 50 m at
varying speeds both on a street and on vegetation. Parameter
optimization was done using grid search and 5-fold cross
validation.



In our experiments, we achieved a high classi�cation
accuracy and thus this data is well suited to label the training
data for the laser-based classi�cation.

B. Mapping of Vegetation

We use multi-level surface maps [18] to model the envi-
ronment. This representation uses a 2D grid and stores in
each cell a set of patches representing individual surfaces
at different heights. In our approach, we additionally store
the probability of each surface patch to contain vegetation.
Let P(vi ) denote this probability of patchi . In general,
surface patches will be observed multiple times. Therefore,
we need to probabilistically combine results from several
measurements. In this way, the uncertainty in classi�cation
is explicitly taken into account.

Let zt be a laser measurement at timet. Analogous to
Moravec [12], we obtain an update rule forP(vi j z1:t ).
First we apply Bayes' rule and obtain

P(vi j z1:t ) =
P(zt j vi ; z1:t � 1)P(vi j z1:t � 1)

P(zt j z1:t � 1)
: (7)

We then compute the ratio

P(vi j z1:t )
P(: vi j z1:t )

=
P(zt j vi ; z1:t � 1)

P(zt j : vi ; z1:t � 1)
P(vi j z1:t � 1)

P(: vi j z1:t � 1)
: (8)

Similarly, we obtain

P(vi j zt )
P(: vi j zt )

=
P(zt j vi )

P(zt j : vi )
P(vi )

P(: vi )
;

which can be transformed to

P(zt j vi )
P(zt j : vi )

=
P(vi j zt )

P(: vi j zt )
P(: vi )
P(vi )

: (9)

If we apply the Markov assumption that the current observa-
tion is independent of previous observations given we know
that a patch contains vegetation

P(zt j vi ; z1:t � 1) = P(zt j vi ) (10)

and utilize the fact thatP(: vi ) = 1 � P(vi ), we obtain

P(vi j z1:t )
1 � P(vi j z1:t )

=

P(vi j zt )
1 � P(vi j zt )

P(vi j z1:t � 1)
1 � P(vi j z1:t � 1)

1 � P(vi )
P(vi )

: (11)

This equation can be transformed into the following update
formula:

P(vi j z1:t ) =
�
1 +

1 � P(vi j zt )
P(vi j zt )

1 � P(vi j z1:t � 1)
P(vi j z1:t � 1)

P(vi )
1 � P(vi )

� � 1

(12)

To perform the update step, we need an inverse sensor model
P(vi j z). In our system, this sensor model is based on the
remission value of the laser. The SVM-classi�er is used to
model the measurement probabilities as described in the next
section. Here, the prior probability ofP(vi ) was set to0:5.

Fig. 4. Robots used in our experiments.

C. Class Probabilities

The decision function of Support Vector Machines (see
Eq. 3) produces a class labely which is not a probability (y
is either 1 or -1).

Several methods have been proposed to map the output
of SVMs to posterior class probabilities [14], [19]. Among
those a popular approach is Platt's method [14]. It uses a
parametric model to �t the posterior given by

P(y = 1 j f ) = (1 + exp( Af + B )) � 1: (13)

The parametersA andB are determined using maximum
likelihood estimation from a training set(f i ; yi ), wheref i

are the outputs of the function given in Eq. 2 andyi are the
corresponding class labels. For details of the optimization
step see [14]. In our approach, this method is used to obtain
the inverse sensor modelP(vi j z).

VI. EXPERIMENTS

Our approach has been implemented and evaluated in
several experiments. The experiments are designed to demon-
strate that our approach is suitable to allow robots to reliably
detect vegetation and thus improves robust navigation in
structured outdoor environments.

We used two different robot systems (see Fig. 4). The self-
supervised learning approach is evaluated using an ActivMe-
dia Pioneer 2 AT, which is able to traverse low vegetation.
For mapping large environments and for an autonomous
driving experiment, we use an ActivMedia Powerbot plat-
form. This robot cannot safely traverse grass since its castor
wheels will block the robot due to its weight. Both robots
are equipped with SICK LMS S291-S05 laser scanners on
pan-tilt units. In addition to that, the Pioneer robot carries an
XSens MTi IMU to measure vibrations. Three-dimensional
scans are gathered by tilting the laser scanner from 50
degrees upwards to 30 degrees downwards. We use the raw
(unnormalized) remission values provided by the scanner.

We limit the classi�cation to scans with a range smaller
than 5.0 meters. The approach itself is not limited in range.
However, at a laser resolution of one degree and a low height
of the sensor relative to the ground (approx. 0.5 m), long
range data will be too sparse both to gather training data
and to reliably detect drivable surfaces and obstacles.

A. Vegetation detection using range differences

In a �rst experiment, we implemented a vegetation de-
tection algorithm based purely on the range differences of



Fig. 5. Self-supervised learning. Left: the data set which is used to train
the classi�er. Right: test set recorded at a different location.

neighboring laser measurements similar to the one proposed
by Wolf et al. [23]. This method is only used for a com-
parison with our proposed classi�cation approach. Three-
dimensional data is acquired by gathering a sweep of 2D
scans. For each 2D scan the 2D endpointspi = hx i ; yi i are
computed from the range and angle measurementshr i ; � i i .
A local featuredi is then determined for every scan point

di = x i � x i � 1: (14)

This feature captures the local roughness of the terrain. To
cope with �at but tilted surfaces we classify scans based
on the absolute difference indi between neighboring range
measurements as suggested in [11]. Furthermore, we also use
the measured range as a training feature to account for the
varying data density from near to far scans. A SVM is used
to train a classi�er based on these features.

In our experiments, we achieve a classi�cation accuracy
of about 75% using the described method. An example of
the classi�cation results can be seen in Fig. 1. Similar results
have been reported by other researchers [2].

B. Self-supervised Learning

To train our remission-based classi�er, we manually
steered the Pioneer AT robot through an outdoor environment
consisting of a street and an area covered with grass. We
acquired 3D scans approximately every 4 m. While the robot
was driving the IMU measured the vibration induced to
the robot. To correct odometry errors of the robot, we em-
ployed a state-of-the-art SLAM approach [17] and 3D scan-
matching. We trained our classi�er using the self-supervised
approach described in Sec. V. The training set is visualizedin
Fig. 5a. The data recorded at the border region between street
and vegetation were ignored since the precise location of the
border cannot be determined using the vibration sensor. The
model for the laser-based classi�er was trained using 19,989
vegetation and 11,248 street samples.

To further evaluate the precision of the classi�er, we
recorded separate test data at a different location (see Fig. 5b
and Fig. 6). The test set contains 36,304 vegetation and
28,883 street measurements. Again, the labeling of the data
was carried out using the vibration-based classi�er. The
previously trained classi�er reached a precision of 99.9 % on
the test data; the recall is 99.6 %. The confusion matrix is
given in Table I. Note that such accurate classi�cation results
are not due to over�tting. Fig. 2 illustrates that a non-linear
function (as learned by the SVM in our approach) can clearly
separate the classes.

TABLE I

CONFUSION MATRIX FOREXP. VI-B ( NUMBER OF DATA POINTS)

vegetation street
vegetation 36,300 138
street 4 28,745

Fig. 6. Aerial view of the computer science campus in Freiburg.Approxi-
mated robot trajectories are shown for the training (top, yellow) and the test
set (bottom, red). Courtesy of Google Maps, Copyright 2008, DigitalGlobe.

C. 3D Mapping

In this experiment, the Powerbot robot was steered across
the computer science campus at the University of Freiburg.
The scanning laser of the robot was tilted to a �xed angle
of 20 degrees downwards. In this way, a fairly large area
could be mapped in less than 15 minutes. The length of
the trajectory is 490 m. The vegetation classi�er was used
to map vegetation in the three-dimensional model of the
environment. To properly integrate multiple measurements,
we used the mapping approach described in Sec. V-B with
a cell size of 0.1 m.

Due to a signi�cantly different hardware setup than on the
Pioneer AT, we were not able to use the model generated in
Sec. VI-B. Instead, we recorded a training set of 12,153 grass
and 10,448 street samples by placing the robot in front of �at
areas containing only street and only vegetation. This method
is only applicable if such example data can be gathered
and thus should be considered inferior to the self-supervised
approach described in Sec. V.

Fig. 7. Mapping of a large outdoor environment. The laser was tilted at a
�xed angle of 20 degrees while the robot was moving. The �gure shows a
2D projection of the 3D map.



Fig. 8. Autonomous navigation experiment. Although the shortest obstacle-
free path from the start to the goal position led over grass, the robot could
reliably avoid the vegetated areas by using our vegetation classi�er and
traveled over the paved streets to reach its goal.

Compared to the aerial image of the campus site in Fig. 6,
the mapping result shown in Fig. 7 is highly accurate. Even
small amounts of vegetation, for example between tiles on a
path, can be identi�ed. To evaluate the accuracy of the map
created during this experiment, we manually marked wrongly
classi�ed cells. Of a total of 271,638 cells (75,622 vegetation,
196,016 street), we found 547 false positives and 194 false
negatives. This corresponds to a precision of 99.23 % and a
recall of 99.74 %.

D. Autonomous Navigation

As mentioned above, the Powerbot cannot safely traverse
vegetated areas. In the experiment depicted in Fig. 8 (see
also our video attachment), the robot was told to navigate
to a goal position 80 m in front while avoiding vegetation.
Since the robot did not have a map, it explored the envi-
ronment in the process of reducing its distance to the goal
location. Thereby, it used the vegetation classi�er to detect
vegetation. The environment was represented as described in
Sec. V-B. Without knowledge about the speci�c terrain, the
shortest obstacle-free path would have led the robot acrossa
large area containing grass. By considering the classi�cation
results in the path costs, however, the planner chose a safe
trajectory over the street.

VII. C ONCLUSION

In this paper, we proposed a new approach to vegetation
detection using the remission values of a laser scanner.
By predicting vegetation in the surrounding of a robot,
our approach improves robot navigation in structured out-
door environments. The laser classi�er is learned in a self-
supervised fashion by means of a support vector machine
using a vibration-based terrain classi�er to gather training
data. The approach has been implemented and evaluated
in several real-world experiments. The experiments show
that our approach is able to accurately detect low, grass-
like vegetation with an accuracy of more than 99%. We also
demonstrated that the terrain classi�cation can be used to
improve the navigation behavior of a robot.

Our current approach is limited to detecting �at vegetation
due to the self-supervised training method. In future work,

we will investigate whether the described approach can also
be applied to classify tall vegetation such as trees or bushes.
We will also look into using remission values provided by
the recently introduced Hokuyo UTM-30LX. With a weight
of 370 g this sensor could allow vegetation detection on an
even broader range of robots including humanoids and small
scale robots.
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