
OctoMap: A Probabilistic, Flexible, and Compact

3D Map Representation for Robotic Systems

Kai M. Wurm Armin Hornung Maren Bennewitz Cyrill Stachniss Wolfram Burgard

Abstract—In this paper, we present an approach for mod-
eling 3D environments based on octrees using a probabilistic
occupancy estimation. Our technique is able to represent full
3D models including free and unknown areas. It is available
as an open-source library to facilitate the development of 3D
mapping systems. We also provide a detailed review of existing
approaches to 3D modeling. Our approach was thoroughly
evaluated using different real-world and simulated datasets.
The results demonstrate that our approach is able to model
the data probabilistically while, at the same time, keeping the
memory requirement at a minimum.

I. INTRODUCTION

Several robotic applications require a 3D model of the

environment. Three-dimensional models are relevant in many

airborne, underwater, or extra-terrestrial missions and may

also be needed in domestic scenarios, for mobile manipula-

tion tasks, or for navigation in multi-level environments.

In the past, various approaches for modeling environments

in 3D have been proposed. Figure 1 depicts a tree observed

in 3D laser range scans and modeled in three commonly used

representations, namely point clouds, elevation maps [7],

and multi-level surface maps [19]. It also shows the rep-

resentation of the tree using the structure proposed in this

paper which has been designed to meet the following four

requirements:

Full 3D model. The map should be able to model arbitrary

environments without prior assumptions about it. The

representation should model occupied areas as well as

free space. If no information is available about an area

(commonly denoted as “unknown” areas), this informa-

tion should be encoded as well. While the distinction

between free and occupied space is essential for safe

navigation, information about unknown areas is impor-

tant for the autonomous exploration of an environment.

Updatable. It should be possible to add new information

or sensor readings at any time. Modeling and updating

should be done in a probabilistic fashion. This will

account for sensor noise or measurements which result

from dynamic changes in the environment. Furthermore,

multiple robots should be able to contribute to the same

map and a previously recorded map should be extendable

when new areas are explored.

All authors are with the University of Freiburg, Department of Computer
Science, D-79110 Freiburg, Germany.

This work has been supported by the German Research Foundation (DFG)
under contract number SFB/TR-8 and by the EC within the 7th framework
programme under grant agreement no FP7-IST-213888-EUROPA and FP7-
IST-248258-First-MM.

Fig. 1. 3D representation of a tree as a point cloud (top left), elevation map
(top right), multi-level surface map (bottom left), and using our approach
(bottom right).

Flexible. The extent of the map should not have to be known

in advance. Instead, the map should be dynamically

expanded as needed. The map should be multi-resolution

so that, for instance, a high-level planner for navigation

will be able to use a coarse map, while a local planner,

e.g. for manipulation tasks, may operate using a fine

resolution. This will also allow for efficient visualizations

which scale from coarse overviews to detailed close-up

views.

Compact. The map should be stored efficiently, both in

memory and on disk. It should be possible to generate

compressed files for later usage or convenient exchange

between robots even under bandwidth constraints.

Although 3D mapping is an integral component of many

robotic systems, there exist very few readily available im-

plementations. Recently, the European Commission iden-

tified the lack of available software modules for robotic

applications as a limiting factor both in research and in

industrial applications, leading to the BRICS (Best Practice

in Robotics) project.

In this paper, we present an integrated mapping sys-

tem based on octrees for the representation of the three-

dimensional structure of the environment. The goal is to

combine the advantages of previous approaches to 3D

environment modeling to meet the requirements specified

above. The advantage of our approach is that it allows

for efficient and probabilistic updates while keeping the

memory consumption at a minimum. We implemented our

approach and thoroughly evaluated it on various simulated

and real datasets of both indoor and large-scale outdoor

environments. As a major contribution, our implementation

in form of a self-contained C++ library is freely available

at http://octomap.sf.net/ as open source with the aim of

facilitating future development of systems operating in three-

dimensional environments.

This paper is organized as follows. After providing a

detailed discussion of related work in this area, we present

our multi-resolution map structure that is able to model

arbitrary three-dimensional environments including their free

and unknown areas in Sec. III. In Sec. IV we then evaluate

our approach in different scenarios including large-scale

outdoor maps, as well as small-scale indoor environments.

II. RELATED WORK

A popular approach to modeling environments in 3D is

to use a grid of cubic volumes of equal size (voxels) to

discretize the mapped area. Roth-Tabak and Jain [15] as

well as Moravec [10] presented early works using such a

representation. A major drawback of rigid grids is their large

memory requirement. The grid map needs to be initialized

so that it is at least as big as the bounding box of the mapped

area, regardless of the actual distribution of map cells in the

volume. In large-scale outdoor scenarios or when there is the

need for fine resolutions, the memory consumption becomes

prohibitive. Furthermore, the extent of the mapped area needs

to be known beforehand.

A discretization of the environment can be avoided by

using point clouds. In such maps, the endpoints returned by

range sensors such as laser range finders or stereo cameras

are used to model the occupied space in the environment.

Point clouds have been used in several 3D SLAM systems

such as [2], [12]. The drawbacks of this method are that

neither free space nor unknown areas are modeled and that

sensor noise and dynamic objects cannot directly be dealt

with. Thus, point clouds are only suitable for high precision

sensors. Furthermore, the memory consumption of this rep-

resentation increases with the number of measurements. This

is problematic, as there is no upper bound.

If certain assumptions about the mapped area can be made,

2.5D maps are sufficient to model the environment. Typically,

a 2D grid is used to store the measured height for each

cell. In its most basic form, this results in an elevation map

where the map stores exactly one value per cell [7]. One

approach in which such maps have been demonstrated to be

sufficient is the outdoor terrain navigation method described

in [6]. In fact, in most outdoor settings, only one level for

driving the vehicle exists. By ignoring all objects higher than

the vehicle, an elevation map can be used for navigation.

Elevation maps, however, are limited to one surface and are

not able to model bridges, underpasses, tunnels, or multi-

level buildings. This strict assumption can be relaxed by

allowing multiple surfaces per cell [19] or by using classes

of cells which correspond to different types of structure [5].

A general drawback of most 2.5D maps is the fact that

they cannot store free or unknown areas in a volumetric

way, which limits their use for localization or exploration.

A related approach was proposed by Ryde and Hu [16].

They store a list of occupied voxels for each cell in a 2D

grid. Although this representation is volumetric it does not

differentiate between free and unknown volumes.

Tree-based representations such as octrees have been used

in several previous approaches. They avoid one of the main

shortcomings of grid structures by delaying the initialization

of map volumes until measurements need to be integrated.

In this way, the extent of the mapped environment does

not need to be known beforehand. If inner nodes of a

tree are updated properly, the tree can also be used as a

multi-resolution representation since it can be cut at any

level to obtain a coarser subdivision. The use of octrees

for modeling was originally proposed by Meagher [9]. Early

works mainly focused on modeling one boolean property

such as occupancy [20]. Payeur et al. [14] used octrees to

adapt occupancy grid mapping from 2D to 3D and thereby

introduced a probabilistic way of modeling occupied and

free space. A similar approach was used in [4] and [13]. In

contrast to the approach presented in this paper, however, the

authors did not explicitly address the problems of memory

consumption or over-confidence in the map.

An octree-based 3D map representation was also proposed

by Fairfield et al. [3]. Their map structure called Deferred

Reference Counting Octree is designed to allow for efficient

map updates and for copying, especially in the context of

particle filter SLAM. In contrast to our approach, lossless

compression of trees is not described. Instead, a lossy

maximum-likelihood compression is performed periodically.

Furthermore, the problem of overconfident maps and multi-

resolution queries are not addressed.

Yguel et al. [22] presented a 3D map based on the Haar

wavelet data structure. This representation is also multi-

resolution and probabilistic. However, the authors did not

evaluate applications to 3D modeling in-depth. In their

evaluation, unknown areas are not modeled and only a single

simulated 3D dataset is used. Whether this map structure is

as memory-efficient as octrees is hard to assess.

Finally, to the best of our knowledge, no implementation

of a 3D mapping system which meets the requirements

specified in the introduction is freely available.

III. OCTOMAP MAPPING FRAMEWORK

The approach proposed in this paper uses a tree-based

representation to offer maximum flexibility with regard to

the mapped area and resolution. It performs a probabilistic

occupancy estimation to ensure updatability and to cope with

sensor noise. Furthermore, a lossless compression method

ensures the compactness of the resulting models.

(a)

(b)

(c)

Fig. 2. Example of an octree storing free (shaded white) and occupied
(black) cells (a), the corresponding tree representation (b), and the corre-
sponding bitstream for compact storage in a file (c). The complete octree
structure can be stored using only six bytes, 2 bits per child of a node.

Fig. 3. By limiting the depth of a query, multiple resolutions of the
same map can be obtained at any time. The occupied cells are displayed in
resolutions 0.08 m, 0.64 , and 1.28 m.

A. Octrees

An octree is a hierarchical data structure for spatial subdi-

vision in 3D [9], [20]. Each node in an octree represents the

space contained in a cubic volume, usually called a voxel.

This volume is recursively subdivided into eight subvolumes

until a given minimum voxel size is reached, as illustrated in

Fig. 2. This minimum voxel size determines the resolution of

the octree. Since an octree is a hierarchical data structure, the

tree can be cut at any level to obtain a coarser subdivision.

An example of an octree map queried for occupied voxels

at several depths is shown in Fig. 3.

In its most basic form, octrees can be used to model a

boolean property. In the context of robotic mapping, this

is usually the occupancy of a volume. If a certain volume

is measured as occupied, the corresponding node in the

octree is initialized. Any uninitialized node could be free or

unknown in this boolean setting. To resolve this ambiguity,

free cells can be explicitly represented as free nodes in

the tree. Subvolumes which are not initialized implicitly

model unknown areas. An illustration of a laser scan and

the corresponding octree map can be seen in Fig. 4. Using

boolean occupancy states (or labels) allows for compact

representations of the octree: If all children of a node are

occupied (or all are free) they can be pruned. This leads to

a substantial reduction in the number of nodes that need to

be maintained in the tree.

In robotic systems, one typically has to cope with sensor

noise and temporarily or permanently changing environ-

Fig. 4. A single 3D scan of the corridor dataset recorded with a tilting
scanner (left) is converted to a maximum-likelihood map (right). Free cells
are shown in white, occupied cells in black.

ments. In such cases, a discrete occupancy label will not be

sufficient to perform sensor fusion. Instead, occupancy has to

be modeled probabilistically. Occupancy grid mapping [11]

can be used to represent occupancy as a binary random

variable. However, such a probabilistic model lacks the

possibility of lossless compression by pruning.

The approach presented in this paper offers a means of

combining the compactness of octrees that use discrete labels

with the updatability and flexibility of probabilistic modeling

as we will discuss in Sec. III-C.

B. Sensor Fusion

Sensor readings are integrated using occupancy grid map-

ping as introduced by Moravec and Elfes [11]. The proba-

bility P (n | z1:t) of a leaf node n being occupied given the

sensor measurements z1:t is estimated according to

P (n | z1:t) = (1)
[

1 +
1 − P (n | zt)

P (n | zt)

1 − P (n | z1:t−1)

P (n | z1:t−1)

P (n)

1 − P (n)

]

−1

.

The inverse sensor model P (n | zt) is specific to the

sensor used for mapping. Under the common assumption of

a uniform prior (P (n) = 0.5) and by using the logOdds (L)

notation, Eq. 1 can be simplified to

L(n | z1:t) = L(n | z1:t−1) + L(n | zt). (2)

Note that logOdds values can be directly converted into

probabilities and vice versa [11]. The logOdds formulation

typically allows for faster updates in case of precomputed

sensor models.

As we stated in the introduction, we require the map to

remain updatable in order to react to temporary or permanent

changes in the environment. From Eq. (2) it is evident,

however, that any change in the state of a node requires

as many observation as were integrated to define its current

state. To overcome this overconfidence in the map, Yguel et

al. [21] propose a clamping update policy:

L(n | z1:t) = (3)

max (min (L (n | z1:t−1) + L (n | zt) , lmax) , lmin)

with the upper and lower bounds lmax and lmin. Applying

the clamping update policy in our approach ensures that the

confidence in the map remains bounded. As a consequence

the model of the environment remains updatable.

Probabilistic updates are performed for the leaf nodes

only. To obtain a multi-resolution map, however, inner nodes

have to be updated as well. To determine the occupancy

probability of a node n given its eight subvolumes ni, several

strategies could be pursued [8]. Depending on the application

at hand, either the mean occupancy

l̄(n) =
1

8

8
∑

i=1

L(ni) (4)

or the maximum occupancy

l̂(n) = max
i

L(ni) (5)

could be used. Here, L(n) returns the current logOdds

occupancy value of a node n. Using l̂(n) to update inner

nodes can be regarded as a conservative strategy which is

well suited for robot navigation. By assuming a volume to

be occupied if parts of it have been measured occupied,

collision-free paths can be planned at coarser resolutions and

thus computationally efficient. For this reason it is used in our

system. Note that in an even more conservative setting, L(n)
can be defined to return a positive occupancy probability for

unknown cells as well.

C. Tree Compression

Whenever the logOdds value of a node reaches either

the threshold lmin or lmax, we consider the node stable in

our approach. Intuitively, stable nodes have been measured

free or occupied with high confidence. We combine the

advantages of probabilistic occupancy mapping and octrees

that use discrete labels by pruning stable parts of the tree. If

all children of a node are stable leafs with the same occu-

pancy state, then the children can be pruned. Should future

measurements be integrated that contradict the node’s state,

its children will be re-generated. Applying this compression

does not lead to a loss of information in the probabilistic

model. It does, however, lead to a considerable reduction in

the number of nodes as we will show in the experiments.

D. Memory-Efficient Implementation

In general, octree nodes need to maintain an ordered list

of its children. This can be naively achieved by using eight

pointers per node. If sparse data are modeled, the memory

requirement of those pointers (8×4 byte = 32 byte on a 32 bit

architecture) will lead to a significant memory overhead [20].

With an implementation trick, however, one can overcome

this by using only one pointer per node that points to an array

of eight pointers. This array is only allocated if children need

to be initialized.

E. Map File Generation

Whenever maps need to be stored for later usage or have

to be exchanged between robots, a compact representation is

required in order to minimize the consumption of disk space

and communication bandwidth.

The most compact files can be generated whenever a

maximum likelihood estimate of the map is sufficient for

the task at hand. In this case the per-node probabilities

are discarded. As motivated above, volumes in which no

information has been recorded can be of special interest

in robotic systems, for example, during exploration. For

this reason, we explicitly differentiate between free and

unknown areas and encode nodes as either occupied, free,

unknown, or as inner nodes in our map files. Using these

labels, octree maps can be encoded as a compact bit stream.

Each node is represented by the eight labels of its children.

Beginning at the root node, each child that is not a leaf

is recursively added to the bit stream. Leaf nodes do not

have to be added since they can be reconstructed from their

label during the decoding process. Fig. 2(c) illustrates the

bitstream encoding. Each row represents one node with the

upper row corresponding to the root node. The lower row

only contains leafs so no further nodes are added.

In this maximum likelihood representation, each node

occupies 16 bits of memory, 2 bits per child. In our exper-

iments, file sizes never exceeded 2 MB even for fairly large

outdoor environments with a size of 292 m × 167 m × 28 m

(see Sec. IV-C).

There exist applications, in which all information in a map

needs to be stored and maintained. This often requires the

use of hard disk space as secondary memory, where maps

are temporarily saved to disk until they need to be accessed

again. Another important demand may be the storage of

additional node data such as terrain information which would

be lost in a maximum likelihood encoding as introduced

above. In these cases, we encode nodes by storing their data

(occupancy, terrain data, etc.) and eight bits per node which

specify whether a child node exists. This, however, results in

considerably larger files as we will show in the experiments.

IV. EXPERIMENTS

The approach presented in this paper was evaluated us-

ing several real world datasets as well as simulated ones.

The experiments are designed to verify that the proposed

representation is meeting the requirements formulated in

the introduction. More specifically, we demonstrate that

our approach is able to adequately model various types of

environments and that it is an updatable and flexible map

structure which can be compactly stored.

A. Sensor Model for Laser Range Data

In general, the map representation introduced in the pre-

vious section can be used in conjunction with any kind

of distance sensor. Since our real-world datasets have been

acquired using laser range finders (SICK LMS and Hokuyo

30LX), we employ a beam-based inverse sensor model. To

efficiently determine the cells which need to be updated,

a ray-casting operation is performed using a 3D variant of

the Bresenham algorithm [1]. Volumes along the beam are

updated as described in Sec. III-B using the following inverse

Fig. 5. A simulated noise-free 3D laser scan (left) is integrated into
our 3D map structure. Sensor sweeps at shallow angles lead to undesired
discretization effects (center). By updating each volume at most once, the
map correctly represents the environment (right). For clarity, only occupied
cells are shown.

Fig. 6. A tabletop in real world (left) and visualized as 3D map (right).

sensor model:

L(n | zt) =

{

locc , if ray is reflected within volume

lfree , if ray traversed volume
(6)

The occupancy probability of all volumes is initialized to the

uniform prior of P (n) = 0.5. Throughout our experiments,

we used logOdds values of locc = 0.85 and lfree = −0.4,

corresponding to probabilities of 0.7 and 0.4 for occupied

and free volumes, respectively. The clamping thresholds are

set to lmin = −2 and lmax = 3.5, corresponding to the

probabilities of 0.12 and 0.97. By lowering these thresholds,

a stronger compression can be achieved but this obviously

trades off map confidence for compactness.

Discretization effects of the ray-casting operation can lead

to undesired results when mapping environments in 3D using

a sweeping sensor. During a sensor sweep over flat surfaces

at a shallow angle, volumes measured occupied in one 2D

scan may be marked as traversed volumes in the ray-casting

of following scans. This effect usually creates holes, e.g., in

the floor and is illustrated using a simulated, noise-free 3D

scan in Fig. 5. To overcome this problem, we treat a complete

3D scan as one measurement and update each map volume at

most once. By taking care that volumes measured occupied

are preserved within one 3D measurement, the described

effect can be prevented.

B. Full 3D models

In this experiment, we demonstrate the ability of our

approach to model real-world environments. A variety of

different datasets is used.

Two indoor datasets were recorded using a Pioneer2 AT

platform equipped with a SICK LMS laser range finder on a

pan-tilt unit. Odometry errors were corrected using 3D scan

matching. The first dataset was recorded in a small-scale

indoor environment designed as a test-bed for humanoid

robots (see Fig. 7). The environment features a staircase

Fig. 7. A small-scale indoor environment with two floors connected by a
staircase in real world (left) and visualized as 3D map (right).

Fig. 8. 3D map of the corridor of building 079 on the Freiburg campus,
as seen from the top. The structure of the adjacent rooms has been partially
observed through the glass doors (size of the scene: 43.8 m × 18.2 m ×
3.3 m).

and two different levels. The data set consists of eleven

3D measurements recorded at different poses. Considerable

interpolation noise of the laser scanner at sharp edges exists

in the individual scans. The second dataset was recorded in

a corridor of building 079 at the Freiburg campus. The robot

traversed the corridor three times and the resulting dataset

consists of 66 scans.

A further indoor data set was recorded using a Hokuyo

30LX laser range finder on a pan-tilt unit (see Fig. 6). Here,

the environment consists of a tabletop with several objects,

which represents a typical environment for a manipulation

task.

A fairly large outdoor dataset was recorded at the com-

puter science campus in Freiburg1. It consists of 81 dense

3D scans covering an area of 292 m × 167 m.

In addition, we use laser range data of the New College

data set [18]. This data was recorded in a large-scale outdoor

environment with two laser scanners sweeping to the left

and right side of the robot as it advances. For this dataset,

an optimized estimate of the robot’s trajectory generated by

visual odometry was used [17].

A visualization of the resulting models can be seen in

Fig. 6, 7, 8, and 9. Note that the free space is modeled but

not shown in the figures.

C. Memory Consumption

In this experiment, we evaluate the memory consumption

of our approach. Several datasets are processed at various

1Courtesy of B. Steder and R. Kümmerle, available at http://ais.
informatik.uni-freiburg.de/projects/datasets/fr360/

Fig. 9. Resulting octree maps of two outdoor environments at 0.2 m resolution. For clarity, only occupied volumes are shown with height visualized by a
color (gray scale) coding. Top: Freiburg campus (size of the scene: 292 m×167 m×28 m), bottom: New College (size of the scene: 250 m×161 m×33 m).

tree resolutions. We analyze the memory usage of our repre-

sentation with and without performing lossless compression.

For comparison, we also give the amount of memory that

would be required by a minimal full 3D grid which is

initialized linearly in memory. Each map is furthermore

written to disk using the full probabilisitc model and the

binary format described in Sec. III-E, and the resulting file

size is given.

The memory usage for exemplary resolutions are dis-

played in Table I. It can be seen that high compression ratios

can be achieved especially in large outdoor environments.

Here, pruning will merge considerable amounts of free space

volumes. On the other hand, the map structure is also able

to model fine-graded indoor environments with moderate

memory requirements. In very confined spaces, an optimally

aligned 3D grid may take less memory than an uncompressed

mapping octree. However, this effect is diminished as soon

as compression techniques are used.

For the 079 corridor dataset we also analyze the evolution

of memory consumption during mapping (Fig. 10, left). The

robot explored new areas up to scan number 22 and from

scan number 39 to 44. In the remaining time, previously

mapped areas were revisited where memory usage remained

nearly constant. A slight increase can still be noticed which is

due to new information gathered by scanning from different

viewpoints.

As expected, memory usage increases exponentially with

the tree resolution. Figure 10 (right) illustrates this using

the Freiburg outdoor dataset. Please note that a logarithmic

scaling is used in the plot.

Map files generated using the bitstream encoding are

comparably small. For example, the visualization of the

Freiburg outdoor dataset given in Fig. 9 uses 816 kB as

a PNG file while the full 3D model including free and

TABLE I

MEMORY CONSUMPTION OF VARIOUS 3D DATASETS

Map dataset
Mapped Resolution Memory consumption [MB] File size [MB]

area [m3] [m] Full grid No compression Lossless compression All data Binary

Small scale indoor 3.5× 5.2× 1.7 0.05 1.03 1.91 1.38 0.54 0.02

FR-079 corridor 43.8× 18.2× 3.3
0.05 80.54 73.64 41.70 15.80 0.67

0.1 10.42 10.90 7.25 2.71 0.14

Freiburg outdoor 292× 167× 28
0.20 654.42 188.09 130.39 49.75 2.00
0.80 10.96 4.56 4.13 1.53 0.08

New College (Epoch C) 250× 161× 33
0.20 637.48 91.43 50.70 18.71 0.99
0.80 10.21 2.35 1.81 0.64 0.05

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

m
em

o
ry

 [
M

B
]

scan number

full 3D grid
no compression

lossless compression

 1

 10

 100

 0.2 0.4 0.8 1 2

m
em

o
ry

 [
M

B
]

resolution [m]

full 3D grid
no compression

lossless compression

Fig. 10. Left: Evolution of the memory usage while mapping the FR-079 corridor dataset (resolution 0.05 m). Right: Effect of resolution on memory
usage of the Freiburg outdoor dataset. Note that a logarithmic scaling is used.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

in
se

rt
 t

im
e

[s
]

resolution [m]

freiburg campus
building 079

Fig. 11. Average time to insert 100,000 data points from the Freiburg
campus dataset (red) and the FR-079 indoor dataset (green).

unknown areas requires 2 MB.

Table I shows the file sizes of the binary maximum likeli-

hood map (denoted with “Binary”) and the full probabilistic

model (“All data”). Note that map files can be compressed

even further by using standard file compression methods.

D. Runtimes

In this experiment, we analyze the time required to in-

tegrate range data using the proposed method. This time

depends on the map resolution and the length of the beams

that are integrated. We process the FR-079 indoor dataset

with a maximum range of 10 m and the Freiburg campus

dataset. Maps are computed at several resolutions. The

average insert times for 100,000 beams on a standard CPU

(Intel E8600, 3.3 GHz) are given in Fig. 11.

In our experiments, single 3D scans usually consist of

about 90,000 non-maxrange measurements and the time to

acquire the data using a SICK LMS on a pan-tilt unit is

about 6 s. Typically, such a scan can be integrated into the

map in less than one second. Even with long measurement

beams and high map resolutions, updating the map will not

take longer than a few seconds.

V. CONCLUSION

In this paper, we presented an approach for the 3D

modeling of environments that is relevant for several robotic

tasks including robot mapping, navigation, and mobile ma-

nipulation. It builds upon a tree-based map structure which

facilitates multi-resolution map queries and leads to a com-

pact memory representation. Using probabilistic occupancy

estimation, our approach is able to represent full 3D models

including free and unknown areas. The proposed approach

uses a bounded per-volume confidence. This allows for an

lossless compression scheme which substantially reduces

memory usage. We evaluated our approach using both real-

world and simulated data sets. The results demonstrate that

our approach is able to model the environment in an accurate

way and at the same time minimizes memory requirements.

We implemented the described system and made the

implementation available as an open source C++ library to

facilitate future developments in the context of 3D mapping.

REFERENCES

[1] J. Amanatides and A. Woo, “A fast voxel traversal algorithm for ray
tracing,” in Proceedings of Eurographics, Amsterdam, The Nether-
lands, August 1987.

[2] D. Cole and P. Newman, “Using laser range data for 3D SLAM in
outdoor environments,” in Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 2006, pp. 1556–1563.

[3] N. Fairfield, G. Kantor, and D. Wettergreen, “Real-time SLAM with
octree evidence grids for exploration in underwater tunnels,” Journal

of Field Robotics, 2007.

[4] J. Fournier, B. Ricard, and D. Laurendeau, “Mapping and exploration
of complex environments using persistent 3D model,” in Computer and

Robot Vision, 2007. Fourth Canadian Conf. on, 2007, pp. 403–410.

[5] J.-S. Gutmann, M. Fukuchi, and M. Fujita, “3D perception and
environment map generation for humanoid robot navigation,” Int. J.

Rob. Res., vol. 27, no. 10, pp. 1117–1134, 2008.

[6] R. Hadsell, J. A. Bagnell, and M. Hebert, “Accurate rough terrain
estimation with space-carving kernels,” in Proc. of Robotics: Science

and Systems (RSS), 2009.

[7] M. Hebert, C. Caillas, E. Krotkov, I. S. Kweon, and T. Kanade,
“Terrain mapping for a roving planetary explorer,” in Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), vol. 2, May 1989,
pp. 997–1002.

[8] G. Kraetzschmar, G. Gassull, and K. Uhl, “Probabilistic quadtrees for
variable-resolution mapping of large environments,” in Proc. of the 5th

IFAC/EURON Symposium on Intelligent Autonomous Vehicles, M. I.
Ribeiro and S. J. Victor, Eds., Lisbon, Portugal, July 2004.

[9] D. Meagher, “Geometric modeling using octree encoding,” Computer

Graphics and Image Processing, vol. 19, no. 2, pp. 129–147, 1982.

[10] H. Moravec, “Robot spatial perception by stereoscopic vision and 3D
evidence grids,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-
RI-TR-96-34, September 1996.

[11] H. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” in Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), St. Louis, MO, USA, 1985, pp. 116–121.
[12] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D

SLAM—3D mapping outdoor environments: Research articles,” J.

Field Robot., vol. 24, no. 8-9, pp. 699–722, 2007.
[13] K. Pathak, A. Birk, J. Poppinga, and S. Schwertfeger, “3D forward

sensor modeling and application to occupancy grid based sensor
fusion,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), 2007, pp. 2059–2064.
[14] P. Payeur, P. Hebert, D. Laurendeau, and C. Gosselin, “Probabilistic

octree modeling of a 3-d dynamic environment,” in Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 1997.
[15] Y. Roth-Tabak and R. Jain, “Building an environment model using

depth information,” Computer, vol. 22, no. 6, pp. 85–90, Jun 1989.
[16] J. Ryde and H. Hu, “3D mapping with multi-resolution occupied voxel

lists,” Autonomous Robots, pp. 1–17, 2010.
[17] G. Sibley, C. Mei, I. Reid, and P. Newman, “Adaptive relative bundle

adjustment,” in Proc. of Robotics: Science and Systems (RSS), 2009.
[18] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, “The

new college vision and laser data set,” International Journal for

Robotics Research (IJRR), vol. 28, no. 5, pp. 595–599, May 2009.
[19] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for

outdoor terrain mapping and loop closing,” in Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.
[20] J. Wilhelms and A. Van Gelder, “Octrees for faster isosurface gener-

ation,” ACM Trans. Graph., vol. 11, no. 3, pp. 201–227, 1992.
[21] M. Yguel, O. Aycard, and C. Laugier, “Update policy of dense maps:

Efficient algorithms and sparse representation,” in Field and Service

Robotics, Results of the Int. Conf., FSR 2007, vol. 42, 2007, pp. 23–33.
[22] M. Yguel, C. T. M. Keat, C. Braillon, C. Laugier, and O. Aycard,

“Dense mapping for range sensors: Efficient algorithms and sparse
representations,” in Proceedings of Robotics: Science and Systems,
June 2007.

