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Abstract

One important design decision for the development of autonomously navigating mobile robots is the choice of the

representation of the environment. This includes the question which type of features should be used or whether a

dense representation such as occupancy grid maps is more appropriate. In this paper, we present an approach which

performs SLAM using multiple representations of the environment simultaneously. It uses reinforcement to learn

when to switch to an alternative representation method depending on the current observation. This allows the robot

to update its pose and map estimate based on the representation that models the surrounding of the robot in the

best way. The approach has been implemented on a real robot and evaluated in scenarios, in which a robot has to

navigate in- and outdoors and therefore switches between a landmark-based representation and a dense grid map. In

practical experiments, we demonstrate that our approach allows a robot to robustly map environments which cannot

be adequately modeled by either of the individual representations.
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1. Introduction

Building maps is one of the fundamental tasks of
mobile robots. In the literature, the mobile robot
mapping problem is often referred to as the simul-
taneous localization and mapping (SLAM) problem.
It is considered to be a complex problem, because
for localization a robot needs a consistent map of
the environment and for acquiring a map a robot re-
quires a good estimate of its location. This mutual
dependency between the estimates about the pose
of the robot and the map of the environment makes
the SLAM problem hard and involves searching for
a solution in a high-dimensional space.

A large variety of different estimation techniques
has been proposed to address the SLAM problem.
Extended Kalman filters, sparse extended informa-
tion filters, maximum likelihood methods, particle
filters, and several other techniques have been ap-
plied to estimate the trajectory of the robot as well
as a map of the environment. Most approaches to

mapping use a single scheme for representing the
environment. Among the most popular ones are
feature-based models such as sets of landmarks or
dense representations such as occupancy grids. In
a practical robotic application, the decision which
model to use is largely influenced by the type of
the environment the robot is deployed in. In large
open spaces with predefined landmarks, for exam-
ple, feature-based approaches often are preferred,
whereas occupancy grid maps have widely been
used in unstructured environments. In real world
scenarios, however, one generally cannot assume
that the environment is uniformly covered by spe-
cific features. Consider, for example, a surveillance
system which can operate both inside of buildings
and outside on parking spaces or large outdoor
storage areas. Such a system has to be capable of
dynamically choosing the best representation in
each area to maximize its robustness.

The contribution of this paper is a novel approach
which allows a mobile robot to utilize different rep-
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resentations of the environment. At the example of
a combination of feature-based models with occu-
pancy grid maps we describe how a robot can per-
form the mapping process using both types of repre-
sentation. It applies reinforcement learning to select
the representation that is best suited to model the
area surrounding the robot based on the current sen-
sor observations and the state of the filter. We apply
the approach in the context of a Rao-Blackwellized
particle filter to maintain the joint posterior about
the trajectory of the robot and the map of the envi-
ronment.

As we will demonstrate in the experiments, our
approach outperforms pure grid and pure feature-
based approaches. Furthermore, our approach al-
lows for modeling heterogeneous environments
which cannot be adequately represented by either
of the single representations. A motivating example
is shown in Figure 1. Here, the environment con-
sists of outdoor and indoor parts. A feature-based
representation is well suited to model the outdoor
part (Figure 1a) but cannot be used to correct
odometry errors inside the buildings due to the lack
of relevant features. A grid-based representation, in
contrast, leads to false matches in the outdoor parts
due to the sparsity of non max-range measurements
there but accurately represents the inside of the
buildings (see Figure 1b). Our system combines the
advantages of both representations to generate a
consistent map (Figure 1c).

This paper is organized as follows. After a dis-
cussion of related work, we briefly introduce the
SLAM approach utilized in this paper, namely Rao-
Blackwellized particle filters, in Section 3. Whereas
Section 4 presents our approach for mapping with
a dual representation of the environment, Section 5
explains our model selection technique based on re-
inforcement learning. Finally, we present experimen-
tal results obtained in simulation and on real robots
in Section 6.

2. Related Work

Mapping techniques for mobile robots can be
roughly classified according to the map represen-
tation and the underlying estimation technique.
One popular map representation is the occupancy
grid [16]. Whereas such grid-based approaches are
computationally expensive and typically require a
huge amount of memory, they are able to represent
arbitrary objects. It should be noted that to correct

the robot pose estimate a certain amount of obsta-
cles in the range of the robot’s sensor is needed.
This can be a problem if the range of the sensor is
short as is the case with small scale laser scanners
or if the environment is a large open area.

Feature-based representations are attractive be-
cause of their compactness. This is a clear advan-
tage in terms of memory consumption and process-
ing speed. However, such systems rely on predefined
feature extractors, which assumes that some struc-
tures in the environments are known in advance.
This clearly limits the field of action of a robot.

The model of the environment and the applied
state estimation technique are often coupled. One of
the most popular approaches are extended Kalman
filters (EKFs) in combination with predefined land-
marks. The effectiveness of the EKF approaches re-
sults from the fact that they estimate a fully cor-
related posterior about landmark maps and robot
poses [12,20]. Their weakness lies in the strong as-
sumptions that have to be made on both the robot
motion model and the sensor noise. Moreover, the
landmarks are assumed to be uniquely identifiable.
There exist techniques [18] to deal with unknown
data association in the SLAM context, however, if
these assumptions are violated, the filter is likely to
diverge [5,11,25].

Thrun et al. [24] proposed a method that uses the
inverse of the covariance matrix. The advantage of
the sparse extended information filters (SEIFs) is
that they make use of the approximative sparsity of
the information matrix and in this way can perform
predictions and updates in constant time. Eustice
et al. [4] presented a technique to make use of ex-
actly sparse information matrices in a delayed-state
framework.

In a work by Murphy, Doucet, and colleagues [2,17],
Rao-Blackwellized particle filters (RBPF) have
been introduced as an effective means to solve the
SLAM problem. Each particle in a RBPF repre-
sents a possible trajectory of the robot and a map
of the environment. The framework has been sub-
sequently extended by Montemerlo et al. [14,15]
for approaching the SLAM problem with land-
mark maps. To learn accurate grid maps, RBPFs
have been used by Eliazar and Parr [3] and Hähnel
et al. [8]. Whereas the first work describes an effi-
cient map representation, the second presents an
improved motion model that reduces the number
of required particles. The work of Grisetti et al. [6]
describes an improved variant of the algorithm
proposed by Hähnel et al. [8] combined with the
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(a) Feature-based mapping system (no features inside the buildings). Features are illustrated by circles.

(b) Grid-based mapping system (few structural information outside)

(c) Combining features and grid maps

Figure 1. When mapping environments that contain large open spaces with few landmarks as well as dense structures, a
combination of feature maps and grids maps outperforms the individual techniques.

ideas of FastSLAM2 [14]. Instead of using a fixed
proposal distribution, the algorithm computes an
improved Gaussian proposal distribution on a per-
particle basis on the fly. A further extension of
this method which overcomes the limitation of the
Gaussian assumption has recently been presented
by Stachniss et al. [21]. Additional improvements
concerning both runtime and memory requirements
have been achieved by Grisetti et al. [7] by reusing
already computed proposal distributions.

So far, there exist only very few methods that
try to combine feature-based models with grid
maps. One is the hybrid metric map (HYMM) ap-
proach [10]. It estimates the location of features
and performs a triangulation between them. In this
triangulation, a so called dense map is maintained
which can be transformed according to the update of
the corresponding landmarks. This allows the robot
to obtain a dense map by using a feature-based
mapping approach. However, it is still required that
the robot is able to reliably extract landmarks.

A hybrid map is also used in [19]. Sim et al. pro-
pose a vision-based SLAM system which extracts 3D
point landmarks from stereo camera images. In ad-
dition to the map of landmarks, an occupancy grid
map is constructed which is used for safe navigation
of the robot. In contrast to the approach described in
this paper, the SLAM-system is only using the fea-
ture map for pose estimation, while the grid map is
used for path planning in an exploration task. A sim-
ilar approach is described by Makarenko et al. [13].
Here, an decision-theoretic exploration algorithm is
described which uses a feature map for SLAM and
maintains a grid map to determine known and un-
known regions of the environment. However, the grid
map is not used to correct the estimate of the robot’s
pose. Another combination of grid and feature maps
has been proposed by Ho and Newman [9]. They use
grid maps and visual features in a SLAM system.
While the grid map generated from laser scans is
used for pose estimation, visual features are used to
improve the detection of loop closures.
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3. Mapping with Rao-Blackwellized Particle

Filters

According to Murphy [17], the key idea of the Rao-
Blackwellized particle filter for SLAM is to estimate
the joint posterior p(x1:t,m | z1:t, u1:t−1) about the
map m and the trajectory x1:t = x1, . . . , xt of the
robot. This estimation is performed given the obser-
vations z1:t = z1, . . . , zt and the odometry measure-
ments u1:t−1 = u1, . . . , ut−1 obtained by the mo-
bile robot. The Rao-Blackwellized particle filter for
SLAM makes use of the following factorization

p(x1:t,m | z1:t, u1:t−1) =

p(m | x1:t, z1:t) · p(x1:t | z1:t, u1:t−1). (1)

This factorization allows us to first estimate only
the trajectory of the robot and then to compute the
map given that trajectory. This technique is often
referred to as Rao-Blackwellization.

Typically, Eq. (1) can be calculated efficiently
since the posterior about maps p(m | x1:t, z1:t)
can be computed analytically using “mapping with
known poses” [16] since x1:t and z1:t are known.

To estimate the posterior p(x1:t | z1:t, u1:t−1)
about the potential trajectories, one can apply a
particle filter. Each particle represents a potential
trajectory of the robot. Furthermore, an individual
map is associated with each sample. The maps are
built from the observations and the trajectory hy-
pothesis represented by the corresponding particle.

This framework allows a robot to learn models of
the environment and estimate its trajectory but it
leaves open how the environment is represented. So
far, this approach has been applied using feature-
based models [14,15] or grid maps [3,6,8,17]. Each
representation has its advantages and one typically
needs some prior information about the environment
to select the appropriate model. In this paper, we
combine both types of maps to represent the envi-
ronment. This allows us to combine the advantages
of both worlds. Depending on the most recent obser-
vation, the robot selects that model which is likely
to be the best model in the current situation. In
case the environment suggests the use of one single
model, the result is the same as using the original
approach.

4. Dual Model of the Environment

Our mapping system applies such a Rao-
Blackwellized particle filter to maintain the joint
posterior about the trajectory of the robot and the
map of the environment. In contrast to previous al-
gorithms, each particle carries a grid map as well as
a map of features. The key idea is to maintain both
representations simultaneously and to select in each
step the model that is best suited to update the
pose and map estimate of the robot. Our approach
is independent of the actual features that are used.
In our current system, we use a laser range finder
and extract clusters of beam end points which are
surrounded by free space. In this way, we obtain fea-
tures from trees, street lamps, etc. Note that other
feature detectors can be transparently integrated
into our approach. The detector itself is completely
transparent to the algorithm.

In each step, our algorithm considers the current
estimate as well as the current sensor and odometry
observation to select either the grid or the feature
model to perform the next update step. This deci-
sion affects the proposal distribution in the particle
filter used for mapping. The proposal distribution
is used to obtain the next generation of particles as
well as to compute the importance weights of the
samples.

In the remainder of this section, we first introduce
the characteristics of our particle filter. We then ex-
plain in the subsequent section how to actually se-
lect the model for the current step.

If the grid map is to be used, we draw the new
particle poses from an improved proposal distribu-
tion as introduced by Grisetti et al. [6]. This pro-
posal performs scan-matching on a per particle basis
and then approximates the likelihood function by a
Gaussian. This technique has been shown to yield
accurate grid maps of the environment, given that
there is enough structure to perform scan-matching
for an initial estimate.

When using feature maps, we apply the proposal
distribution as done by Montemerlo et al. [15] in the

FastSLAM algorithm. For each particle s
(i)
t−1 in the

current particle set a new hypothesis of the robot’s
pose is generated by sampling from the probabilistic
motion model:

s
(i)
t ∼ p(st | ut, s

(i)
t−1) (2)

After the proposal is used to obtain the next gener-
ation of samples, the importance weights are com-
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puted according to Grisetti et al. [6] and Monte-
merlo et al. [15] respectively. Note that we compute

for each sample i two weights w
(i)
g (based on the grid

map) and w
(i)
f (based on the feature map). For re-

sampling, one weight is required but we need both
values in our decision process as explained in the
following section.

To carry out the resampling step, we apply the
adaptive resampling strategy originally proposed by
Doucet [1]. It computes the so-called effective sam-
ple size or effective number of particles (Neff ) to de-
cide whether to resample or not. This is done based
on the weights resulting from the proposal used to
obtain this generation of samples.

5. Model Selection

The probably most important aspect of our pro-
posed algorithm is to decide which representation
to choose given the current sensor readings and the
filter. In the following, we describe different strate-
gies we investigated and which are evaluated in the
experimental section of this paper.

5.1. Observation Likelihood Criterion

A mapping approach that relies on scan-matching
is most likely to fail if laser readings cannot be
aligned to the map generated so far. For example,
this will probably be the case in large open space
with sparse observations. In such a situation it is
often better to use a pre-defined feature extractor
(in case there are feature) to estimate the pose of
the robot.

A measure that can be used to detect such a situa-
tion is the observation likelihood that scan-matching
seeks to maximize

l(zt, xt,mg,t) = max
xt

p(zt | xt,mg,t). (3)

To point-wise evaluate the observation likelihood
of a laser observation, we use the so called “beam
endpoint model” [23]. In this model, the individual
beams within a scan are considered to be indepen-
dent. The likelihood of a beam is computed based
on the distance between the endpoint of the beam
and the closest obstacle in the map from that point.

Calculating the average likelihood for all particles
results in a value that can be used as a heuristic to
decide which map representation to use in a given
situation:

l =
1

N

∑

i

l(zt, x
(i)
t ,m

(i)
g,t) (4)

A heuristic for selecting the feature-based represen-
tation instead of the grid map can be obtained based
on a threshold (l ≤ c1).

However, care has to be taken when choosing c1.
If this threshold is not chosen optimally the feature
map might be used even if it offers no advantage over
the grid map. This will increase the likelihood of a
poor state estimate and therefore of inconsistencies
in the map.

5.2. Neff Criterion

As described above, each particle i carries two

weights w
(i)
g and w

(i)
f , one for the grid-map and one

for the feature-map. These weights can be seen as an
indicator of how well a particle explains the data and
therefore can be also used as a heuristic for model
selection. Since the weights of a particle are based
on different types of measurement, they cannot be
compared directly. What can be compared, however,
is the weight distribution over the filter.

One way to measure this difference in the individ-
ual weights is to compute the variance of the weights.
Intuitively a set of weights with low variance does
not strongly favor any of the hypothesis represented
by the particles, while a high variance indicates that
some hypotheses are more likely than others.

This suggests that a strategy based on the Neff

value, which is strongly related to the variance of
the weights, can be a reasonable heuristic. Neff is
computed for both sets of weights as

N
g
eff =

1
∑N

i=1(w
(i)
g )2

and N
f
eff =

1
∑N

i=1(w
(i)
f )2

. (5)

It can be easily seen, that a higher variance in the
weights yields a lower Neff value. Assuming that a
set of particles with a higher variance in the weights
is usually more discriminative, it seems reasonable
to switch to the feature-based model whenever
N

f
eff < N

g
eff .

In our experiments, this heuristic generally led
to good results. Nevertheless, there are two aspects
which have to be considered.

Firstly the variance in particles weights usually
does not change abruptly but gradually. For this
reason, the Neff criterion might fail to indicate the
optimal point in time to switch the actively used
representation. This will most notably happen at
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junctions between areas where one is best modeled
using grid maps and the other is best modeled using
feature maps. Note that such a behavior can also
be advantageous for example in case of false feature
detections.

A second problem arises from the fact that fre-
quent resampling in a particle filter can lead to par-
ticle depletion [1]. Since our implementation uses
adaptive resampling based on the Neff value, choos-
ing the representation with the lower Neff will in
general also lead to more frequent resampling ac-
tions.

5.3. Reinforcement Learning for Model Selection

Both approaches described above are clearly
heuristics. In this section, we describe how to use
reinforcement learning to combine the strengths of
both heuristics while avoiding their pitfalls. The
basic idea of reinforcement learning is to find a
mapping from states S to actions A which maxi-
mizes a numerical reward signal r (see [22] for an
introduction). Such a mapping is called a policy and
can be learned by interacting with the environment.
Inspired by the human learning method of trial and
error, this class of learning algorithms performs a
series of actions and analyzes the obtained reward.

There exist a number of algorithms for reinforce-
ment learning. Depending on the prior knowledge an
agent has about its environment some approaches
may be more appropriate than others. For exam-
ple, if it can be modeled as an Markov decision pro-
cess, techniques such as policy iteration can be uti-
lized. In case no model of the environment is avail-
able, Monte Carlo methods or Temporal-Difference
Learning (TD learning) can be applied.

For our approach, we use the SARSA algo-
rithm [22] which is a popular algorithm among
the TD methods and does not require a model of
the environment. It learns an action-value func-
tion Q(s, a) which assigns a value to state-action
pairs. Those values can then be used to generate a
policy (e.g., choose the action that has the highest
value in a given state). The basic steps are given in
Algorithm 1.

To apply this method to our model selection prob-
lem, we have to define the states S, the actions A,
and the reward r : S → R. Defining the actions is
straight forward as A = {ag, af}, where ag defines
the use of the grid map and af the use of the feature
map.

Algorithm 1 The SARSA Algorithm

Initialize Q(s, a) arbitrarily
for all episodes do

initialize s

choose a from s using policy derived from Q

repeat

take action a, observe r, s′

choose a′ from s′ using policy derived from Q

Q(s, a) = Q(s, a)+α[r+γQ(s′, a′)−Q(s, a)]
s = s′; a = a′

until s is a terminal state
end for

The state set has to be defined in a way that it rep-
resents all necessary information about the sensor
input and the filter to make a decision. To achieve
this, our state consists of the average scan matching
likelihood l, a boolean variable given by N

f
eff < N

g
eff ,

and a boolean variable indicating if a known feature
has currently been detected or not. This results in

S := {l} × {1
N

f

eff
<N

g

eff

} × {1 feature detected}. (6)

The value of l is divided into (here seven) discrete
intervals (0.0−0.15, 0.16−0.3, 0.31−0.45, 0.46−0.6,
0.61−0.75, 0.76−0.9, 0.91−1.0), resulting in 7×2×
2 = 28 states. It is important to keep the number of
states small since learning the policy otherwise may
require too many computational resources, even as a
preprocessing step which needs to be executed only
once.

The policy is learned on simulated data where the
true robot pose x∗

t is available in every time step
t. We use the weighted average deviation from the
true pose to define our reward-function. To avoid
a punishment that result from wrong decisions in
the past (e.g., a wrong rotation), we only use the
deviation accumulated since the last evaluation step
t − 1:

r(st) = r(st−1) −
N∑

i=1

w
(i)
t ||x

(i)
t − x∗

t || (7)

Deviations from the simulated path result in nega-
tive rewards. As mentioned in the previous section,
each particle stores two weights. For calculating the

weighted average, we use w
(i)
g if the last action taken

was ag and w
(i)
f if af was taken.

The environment for learning consists of building-
like structures with hallways and an outdoor part
that models a set of trees. We recorded a simulated
path and executed 1000 runs of the learning algo-
rithm. During learning, we us an ε-greedy policy. In
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state s, a greedy policy chooses the action a which
has the highest value Q(s, a). In contrast to this, an
ε-greedy policy allows exploratory actions by choos-
ing a random action with likelihood ε.

More exploration usually facilitates faster learn-
ing so a value of ε = 0.6 was used in our learning
experiments. The learning rate α was set to a fixed
value of 0.001, the discounting factor γ was set to
0.9, which are standard values and led to good re-
sults in our experiments.

This technique results in a policy that tells the
robot when to select the feature-based representa-
tion and when to choose the grid map. Note that our
approach to learn a strategy for making decisions
is independent of the actual feature detector used.
One could even use this approach to choose among
multiple feature detectors.

The overall mapping algorithm is depicted in Al-
gorithm 2.

6. Experiments

Our approach has been evaluated using simulated
and real robot data. The experiments have been de-
signed to verify that our mapping approach is able
to reduce the error compared to the purely feature-
based technique (FastSLAM [15]) and to the purely
grid-based approach [6]. We specifically considered
environments which cannot be mapped accurately
using one single model. In those cases the result is
the same as using the original approach.

6.1. Simulation Experiments

For generating the simulated data, we used the
Carnegie Mellon Robot Navigation Toolkit. The
simulated environment used to test our approach is
shown in Figure 2. It shows two symmetric build-
ings connected by an alley. The environment is
spanning 70 m in total. We simulated a laser range
finder with a maximum range of 4m which is less
than the distance between the trees in the alley
(5m). This limited sensor range is a realistic setting
since it corresponds to the maximum range of small
scale laser scanners such as the Hokuyo URG.

The motivating example in the introduction of
this paper shows example results obtained with the
different approaches. Figure 1 (a) is the result of
the purely feature-based FastSLAM approach. Since
no features are found inside the building structures,
the robot cannot correct its trajectory inside the

Algorithm 2 Our combined approach
Require:

St−1, the sample set of the previous time step
zl,t, the most recent laser scan

zf,t, the most recent feature measurement
ut−1, the most recent odometry measurement

Ensure:

St, the new sample set

maptype = decide(St−1, zl,t, zf,t, ut−1)

St = {}

for all s
(i)
t−1 ∈ St−1 do

< x
(i)
t−1, w

(i)
g,t−1, w

(i)
f,t−1

m
(i)
g,t−1, m

(i)
f,t−1

>= s
(i)
t−1

// compute proposal
if (maptype = grid) then

x
(i)
t ∼ P (xt | x

(i)
t−1, ut−1, zl,t)

else

x
(i)
t ∼ P (xt | x

(i)
t−1, ut−1)

end if

// update importance weights

w
(i)
g,t = updateGridWeight(w

(i)
g,t−1, m

(i)
g,t−1, zl,t)

w
(i)
f,t

= updateFeatureWeight(w
(i)
f,t−1

, m
(i)
f,t−1

, zf,t)

// update maps

m
(i)
g,t = integrateScan(m

(i)
g,t−1, x

(i)
t , zl,t)

m
(i)
f,t

= integrateFeatures(m
(i)
f,t−1

, x
(i)
t , zf,t)

// update sample set

St = St ∪ {< x
(i)
t , w

(i)
g,t, w

(i)
f,t

, m
(i)
g,t, m

(i)
f,t

>}
end for

for i = 1 to N do

if (maptype = grid) then

w(i) = w
(i)
g

else

w(i) = w
(i)
f

end if

end for

Neff = 1∑
N

i=1
(w(i))2

if Neff < T then

St = resample(St, {w(i)})

end if

buildings. In contrast, the trajectory through the
alley is well approximated using this approach.

The purely grid-based approach [6] is able to cor-
rectly map the buildings but introduces large errors
in the alley (see Figure 1 (b)). Due to the limited
range of the sensor, too few obstacles are observed
and therefore no accurate scan registration is pos-
sible and thus the grid-based approach fails to map
the alley appropriately.
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Figure 2. Simulated environment used to test our approach. Shown are the ground truth map and trajectory of the robot.
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Figure 3. Deviation of the weighted mean of the samples from
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using the combined approach. The error bars illustrate the
0.05 confidence level.
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Figure 4. Deviation of the weighted mean of the samples
from ground truth using the scan-match likelihood heuristic,
the Neff heuristic and our approach.

In contrast to this, our combined approach using
the learned policy is able to correct the trajectory of
the robot all the time by selecting the appropriate
model. It uses the grid maps inside the buildings and
the features outside. The resulting map is shown in
Figure 1 (c).

To evaluate our approach more quantitatively, we
repeated this experiment for 20 times with differ-
ent random seeds. We compared our approach to
the pure feature-based approach and the pure grid-
based approach. The results in Figure 3 show, that
the combined approach is significantly better than
both pure approaches (0.05 significance).

In addition to this, we compared the solution ob-
tained by SARSA with those of the scan-matching
heuristic and the Neff heuristic described above. We
measured the absolute deviation from ground truth
in every time step. Figure 4 illustrates that the av-

Figure 5. Typical mapping results when using the likeli-
hood-heuristic (left) and our SARSA-based approach (right).

erage error of the learned model selection policy is
lower than when using the heuristics. However, we
could not show that this improvement is significant.

One interesting fact can be observed when com-
paring the results of these three technique by man-
ual inspection. Even if the error measured as the
deviation from the ground truth is not significantly
smaller for the learned policy, the maps typically
look nicer. The scan-match heuristic for example re-
lies on a fixed threshold c1. If the threshold is not
optimally tuned, in can happen that the grid ap-
proach is not selected even though it would be the
better model. This leads to walls which are blurred
or slightly misaligned. Figure 5 depicts a magnified
view of two maps illustrating the difference. Unfor-
tunately, it is hard to design a measure that is able
to take this blurriness into account. A similar effect
can be observed when using the Neff criterion.

Figure 6 shows the decisions our algorithm made
while processing the simulated dataset. One can
clearly see that the grid map is used for pose esti-
mation inside the buildings while the feature map
is used outside of the buildings. At a first glance
it looks as if the system used the wrong model
around time-step 1000. Using features here is cor-
rect though since the robot entered the building to
the right only briefly and then moved in the outdoor
part again until approximately time-step 1100.

6.2. Real World Experiments

Two real world data sets used in this experiment
have been recorded at Freiburg University. The ex-
periments have been conducted using an ActivMe-
dia Pioneer 2-AT robot equipped with a SICK LMS
laser range finder.
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Figure 6. Active Representation chosen by our learned ap-
proach.

Figure 7. Test environment with poles.

Figure 8. Grid map of environment and approximated robot
trajectory.

6.2.1. Poles
This experiment has been conducted in an office-

building and on the street in front of the building.
Since the outdoor environment does not contain a
sufficient amount of detectable features, 20 artifi-
cial landmarks (poles) have been placed there. We
used poles with a diameter of 15 cm and a height of
about 100 cm (see Figure 7). The robot was manu-
ally steered through the environment. It started out-
doors in front of the building, went through the land-

marks and then entered the building. After travers-
ing the building the robots returns to the outdoor
area and finishes its trajectory next to the starting
location. To prevent the laser-scanner from detect-
ing neighboring buildings, the sensor-range has been
limited to 5 m. Again, this maximum range is not
artificially bad but corresponds to small scale laser
range scanners.

Since no ground truth was available, we mea-
sured the error against an approximated robot path
which was generated using the grid-based approach
of Grisetti et al. [6] with the full sensor range of
the SICK laser scanner. Due to the 80 m sensing
range, the robot always observed enough obstacles
to build an accurate map. The resulting map and
the obtained trajectory can be seen in Figure 8.

We compared the results from our approach to
those generated by a pure grid- and feature-based
approach. Looking at the exemplary results in Fig-
ure 9 notable differences in the quality of the maps
can be seen. While the grid-based approach per-
forms very well inside of the building it introduces
numerous false matches in the outdoor area. In con-
trast, the feature based approach is able to map the
outdoor part well but is obviously not suited to cor-
rect odometry errors inside the building. Combin-
ing the strengths of both approaches, our combined
method leads to an overall consistent map.

To evaluate our approach quantitatively we re-
peated the mapping process for 20 times. Figure 10
plots the cumulative deviation from the approxi-
mated ground truth trajectory for each of the three
evaluated strategies. The results confirm the results
of the simulated experiment. They show that the
combined approach performs significantly better
than both pure approaches (0.05 significance).

6.2.2. Parking Lot
The Freiburg computer science campus includes a

parking lot of about 50 m by 120 m (see Figure 11).
Lamps are set in two rows at a distance of 16 m
in one direction and 25 m in the other direction.
The second dataset was recorded on this parking lot
at a time when no cars were present and therefore
only the lamps caused reflections of the laser beams.
The robot was steered manually through a building,
around the neighboring parking lot, and back into
the building again. The trajectory is plotted in Fig-
ure 12. To evaluate our approach, again we limited
the maximum laser range of the scanner to a range
which is considerably smaller than the distance be-

9



(a) Feature-based mapping system

(b) Grid-based mapping system

(c) Combined SLAM system using features and grid maps

Figure 9. Examples of resulting maps in the poles experi-

ment. Using only a feature map (a) or a grid map (b) leads

to inconsistent maps in this environment. Combining both

representation yields a consistent map (c).

 0

 1000

 2000

 3000

 4000

 5000

 0  100  200  300  400  500  600  700  800  900

cu
m

u
la

ti
v

e 
er

ro
r

timestep

Grisetti et al. (grid only)
FastSLAM (features only)

Our approach

Figure 10. Results of the poles experiment. Cumulative error
in the pose estimation measured against the approximated
ground truth trajectory. The error bars correspond to the
0.05 confidence level.

tween two lamps.
The approximated ground truth trajectory has

been generated in the same way as we did in the
first experiment. Figure 13 shows the error of the
weighted mean trajectory over time.

In summary, both real robot experiments lead to
similar results as the experiment using simulated
data. The combined approach performed signifi-
cantly better compared to both traditional SLAM
techniques using the limited sensor range.

The computational requirements of the presented
approach are approximatively the sum of the indi-
vidual techniques. On a notebook computer, our im-
plementation runs online.

7. Conclusions

In this paper, we presented an improved approach
to learning models of the environment with a Rao-
Blackwellized particle filter. Our approach main-
tains feature maps as well as grid maps simulta-
neously to represent spatial structures. This allows
the robot to select the model which provides the
best expected estimates online. The model selec-
tion procedure is obtained by a reinforcement learn-
ing approach. The robot considers the previous es-
timate as well as the current observations to chose
the model that will be used in the upcoming correc-
tion step. The process itself is independent of the
actual feature detector. Our approach has been im-
plemented and evaluated on real robot data as well
as in simulation experiments. We showed that the
presented technique allows a robot to more robustly
learn maps of different types of environments. It out-
performs traditional approaches that use only fea-
tures or only grid maps. In real world experiments,
we also showed that our approach is able to map en-
vironments which could not be modeled by either of
the single approaches.

Acknowledgment

This work has partly been supported by the Ger-
man Research Foundation (DFG) under contract
number SFB/TR-8 (A3), and by the EC under con-
tract number FP6-IST-034120-muFly.

References

[1] A. Doucet. On sequential simulation-based methods for
bayesian filtering. Technical report, Signal Processing

10



Figure 11. Parking lot at Freiburg campus.

Figure 12. Grid map of the parking lot and neighboring

building 078 at Freiburg campus. The approximated robot

trajectory is shown in dark gray, the result of our combined

mapping approach is shown in light gray.

 0

 10000

 20000

 30000

 40000

 50000

 0  500  1000  1500  2000

cu
m

u
la

ti
v

e 
er

ro
r

timestep

FastSLAM (features only)
Grisetti et al. (grid only)

Our approach

Figure 13. Results of the parking lot experiment. Deviation
of the weighted mean of the samples from the estimated
trajectory (using the 80m range scanner).

Group, Dept. of Engeneering, University of Cambridge,
1998.

[2] A. Doucet, J.F.G. de Freitas, K. Murphy, and

S. Russel. Rao-Blackwellized partcile filtering for
dynamic bayesian networks. In Proc. of the Conf. on
Uncertainty in Artificial Intelligence (UAI), pages 176–

183, Stanford, CA, USA, 2000.

[3] A. Eliazar and R. Parr.

DP-SLAM: Fast, robust simultainous localization and
mapping without predetermined landmarks. In Proc. of
the Int. Joint Conf. on Artificial Intelligence (IJCAI),

pages 1135–1142, Acapulco, Mexico, 2003.

[4] R. Eustice, H. Singh, and J.J. Leonard. Exactly
sparse delayed-state filters. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), pages
2428–2435, Barcelona, Spain, 2005.

[5] U. Frese and G. Hirzinger. Simultaneous localization
and mapping - a discussion. In Proc. of the IJCAI

Workshop on Reasoning with Uncertainty in Robotics,
pages 17–26, Seattle, WA, USA, 2001.

[6] G. Grisetti, C. Stachniss, and W. Burgard. Improved
techniques for grid mapping with rao-blackwellized
particle filters. IEEE Transactions on Robotics,
23(1):34–46, 2007.

[7] G. Grisetti, G.D. Tipaldi, C. Stachniss, W. Burgard, and
D. Nardi. Fast and accurate slam with rao-blackwellized
particle filters. Journal of Robotics & Autonomous
Systems, 55(1):30–38, 2007.

[8] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An

efficient FastSLAM algorithm for generating maps of
large-scale cyclic environments from raw laser range
measurements. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 206–211,
2003.

[9] K.L. Ho and P.M. Newman. Loop closure detection
in slam by combining visual and spatial appearance.
Robotics and Autonomous Systems, 54(9):740–749,

2006.

[10] E.M. Nebot J.I. Nieto, J.E. Guivant. The hybrid

metric maps (HYMMs): A novel map representation for
denseslam. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2004.

[11] S. Julier, J. Uhlmann, and H.F. Durrant-Whyte. A new
approach for filtering nonlinear systems. In Proc. of the

American Control Conference, pages 1628–1632, Seattle,
WA, USA, 1995.

[12] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot
localization by tracking geometric beacons. IEEE
Transactions on Robotics and Automation, 7(4):376–

382, 1991.

[13] A.A. Makarenko, S.B. Williams, F. Bourgoult, and
H.F. Durrant-Whyte. An experiment in integrated
exploration. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), Lausanne,

Switzerland, 2002.

[14] M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit.
FastSLAM 2.0: An improved particle filtering algorithm
for simultaneous localization and mapping that provably
converges. In Proc. of the Int. Joint Conf. on Artificial
Intelligence (IJCAI), pages 1151–1156, 2003.

[15] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit.
FastSLAM: A factored solution to simultaneous

11



localization and mapping. In Proc. of the National

Conference on Artificial Intelligence (AAAI), pages
593–598, Edmonton, Canada, 2002.

[16] H.P. Moravec and A.E. Elfes. High resolution maps from
wide angle sonar. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 116–121, St.
Louis, MO, USA, 1985.

[17] K. Murphy. Bayesian map learning in dynamic

environments. In Proc. of the Conf. on Neural
Information Processing Systems (NIPS), pages 1015–
1021, Denver, CO, USA, 1999.

[18] J. Neira and J.D. Tardós. Data association in stochastic
mapping using the joint compatibility test. IEEE
Transactions on Robotics and Automation, 17(6):890–
897, 2001.

[19] R. Sim and J.J. Little. Autonomous vision-based
exploration and mapping using hybrid maps and rao-
blackwellised particle filters. Intelligent Robots and

Systems, 2006 IEEE/RSJ International Conference on,
pages 2082–2089, Oct. 2006.

[20] R. Smith, M. Self, and P. Cheeseman. Estimating
uncertain spatial realtionships in robotics. In I. Cox and
G. Wilfong, editors, Autonomous Robot Vehicles, pages
167–193. Springer Verlag, 1990.

[21] C. Stachniss, G. Grisetti, W. Burgard, and N. Roy.

Evaluation of gaussian proposal distributions for
mapping with rao-blackwellized particle filters. In
Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), San Diego, CA,

USA, 2007.

[22] R.S. Sutton and A.G. Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA, 1998.

[23] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics, chapter Robot Perception, pages 171–172.
MIT Press, 2005.

[24] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani,
and H.F. Durrant-Whyte. Simultaneous localization and
mapping with sparse extended information filters. J. of
Robotics Research, 23(7/8):693–716, 2004.

[25] J. Uhlmann. Dynamic Map Building and Localization:
New Theoretical Foundations. PhD thesis, University of
Oxford, 1995.

Kai M. Wurm is a research sci-
entist at the University of Freiburg (Germany).
He studied computer science at the University of
Freiburg and received his diploma degree in 2007.
His research interests lie in the fields of SLAM,
multi-robot exploration, and terrain classification.

Cyrill Stachniss studied computer
science at the University of Freiburg and received
his Ph.D. degree in 2006. After his Ph.D., he was a
senior researcher at ETH Zurich. Since 2007, he is
an academic advisor at the University of Freiburg
in the Laboratory for Autonomous Intelligent Sys-
tems. His research interests lie in the areas of robot
navigation, exploration, SLAM, as well as learning
approaches.

Giorgio Grisetti is working as a
Post-doc at the Autonomous Intelligent Systems
Lab of the University of Freiburg. Up to 2006, he
was a PhD student at University of Rome “La
Sapienzia” in the Intelligent Systems Lab. His ad-
visor was Daniele Nardi and he received his PhD
degree in April 2006. His research interests lie in the
areas of mobile robotics. His previous and current
work aims to provide effective solutions to mobile
robot navigation in all its aspects: SLAM, localiza-
tion, and path planning.

12


